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1 Introduction

Duality is a cornucopia of string theory creating its unique properties. Superstring theory
is considered to be a candidate for a unified theory of all forces, and five types of superstring
theories have been shown to exist. Five superstring theories together with M-theory form
pairs related by T-duality or S-duality. Then why are superstring theories related in a
way of chain of dualities? T-duality is the equivalence under the interchange of R↔ α′/R

for the radius of the compactified space R, and S-duality is the equivalence under the
interchange of g ↔ 1/g for the string coupling g. So they relate paired theories. These
T-duality and S-duality are encompassed by U-duality. Therefore we examine whether a
theory with manifest U-duality exists which describes different superstring theories by its
different sections. We call such a theory with manifest U-duality “F-theory”.
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The theory with manifest T-duality was presented in [1–3] which was named “T-theory”
later. “T-theory” was defined by the O(D,D) current algebra which generates gauge sym-
metries of background gauge fields. It contains winding modes even in an uncompactified
space, and the D-dimensional space includes time direction to describe dynamical gravity.
All string modes including massive modes are described in the T-theory which has been
developed [1–11]. Section conditions eliminate winding modes while the string field theory
condition L0 = L̄0 mixes massive winding modes with massive oscillator states [12].

Duality relates nonperturbative states of classical string theory. When duality sym-
metry is represented linearly in some classical theory, nonperturbative states are described
perturbatively. The O(D,D) T-duality symmetry is represented linearly in the Double
Field Theory (DFT) [1–3, 12–18] and the generalized geometry gives a mathematical frame-
work of geometry induced by T-duality [19–21]. They are theories of massless modes of
string theory.

T-duality and S-duality are unified into U-duality by the exceptional symmetry group
which involves non-perturbative branes [22]. M-theory was conjectured as a theory to
unify superstring theories through dualities whose low energy effective theory is the 11-
dimensional supergravity theory [23]. F-theory was firstly proposed by Vafa [24] to under-
stand the IIB theory in the string duality web where similar ideas are also referred [25, 26].
The O(D,D) T-duality symmetry is extended to the exceptional symmetry group U-duality
symmetry in generalized geometry for M-theory [27, 28] and Exceptional Field Theory
(EFT) [29–38]. Current algebras for branes were calculated to present generalized brackets
and derive background gauge symmetries [39–41] corresponding to the U-duality covariant
formulation of the 11-dimensional supergravity [29, 30].

Recently “F-theory” as a theory with manifest U-duality has been realized [7, 42–51] as
a generalization of T-theory. F-theory is defined by the exceptional group current algebras
on branes. The exceptional group acts both the spacetime coordinates and the worldvolume
coordinates. Since the exceptional group includes both the O(D,D) T-duality symmetry
and the SL(2;R) S-duality symmetry, F-theory reduces both the IIB theory and M-theory
directly by sectioning or dimensional reduction. This solves the puzzle of the IIB theory
in the duality web as shown in the duality diamond (2.1) including F-theory.

In this paper we focus on the E5=SO(5, 5) F-theory. The SO(5, 5) current algebra is
realized by a 10-brane. The spacetime coordinate is the 16-dimensional spinor representa-
tion of SO(5, 5) while the worldvolume coordinate is 10-dimensional vector representation
of it. 16 is decomposed into 5+10+1 under GL(5) symmetry where 5, 10, 1 correspond to
the 5-dimensional momentum, the M2-brane winding mode, the M5-brane winding mode
respectively. This is a generalization of doubling the spacetime coordinate for linear re-
alization of the O(D,D) T-duality symmetry as D momenta plus D winding modes. We
propose two different ways of writing the F-theory 10-brane actions: 1. the Hamiltonian
form action and 2. Lagrangian form action.

1. The Hamiltonian form action is based on the SO(5, 5) “G-symmetry” current algebra.
The Lagrangian is written in terms of the selfdual and anti-selfdual field strengths,
◦
F SD

µ and
◦
F SD

µ with µ = 1, · · · , 16. The background gauge fields Gµν are coset
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elements of G/H where H is a subgroup of G. The worldvolume index is m = 1, · · · , 10
and γmµν is the 10-dimensional gamma matrix. We propose the SO(5, 5) symmetric
F-theory 10-brane action in curved backgrounds in (4.14) as

I =
∫
dτd10σ L

L = 1
g

◦
F SD

µGµν
◦
F SD

ν − λ̂
◦
F SD

µGµν
◦
F SD

ν − λm
◦
F SD

µγmµν
◦
F SD

ν (1.1)

where g, λ̂ and λm are Lagrange multipliers.

2. In the Lagrangian formalism the SO(5, 5) U-duality symmetry is enlarged to SO(6, 6)
“F-symmetry”. The field strength is a 12-dimensional Weyl spinor

◦
Fµ with µ =

1, · · · , 32. The background gauge fields Gµν are coset elements of F/L where L is a
subgroup of F. The worldvolume index is m̂ = 1, · · · , 12 and Σm̂ is the 12-dimensional
gamma matrix with Σm̂n̂ = 1

2Σ[m̂Σn̂]. We propose the SO(6, 6) symmetric F-theory
10-brane action in curved backgrounds in (4.28) as

I =
∫
d12σ L

L = e
◦
FµG

µν ◦F ν −
1
2λm̂n̂

◦
Fµ(CΣm̂n̂)µν

◦
F ν (1.2)

where e and λm̂n̂ are Lagrange multipliers.

The organization of the paper is as follows. In section 3 we present complete sets of
the SO(5, 5) current algebras in both the SO(5, 5) spinor representation in subsection 3.1
and the GL(5) tensor representation in subsection 3.2. The former reveals the structure of
the current algebra such as the bosonic κ-symmetry, while the later gives direct coupling
to the 11-dimensional supergravity background. One of the author presented the SO(5, 5)
current algebra of the M5-brane [41] obtained from the Pasti-Sorokin-Tonin (PST) M5-
brane Lagrangian [52]. This SO(5, 5) current algebra is recognized as the F-theory 10-
brane current algebra by doubling the worldvolume coordinate as shown in (3.21), (3.24)
and (3.25). In subsection 4.1 we begin by reviewing the double zweibein method to obtain
the worldsheet covariant action [10, 11] as a method to overcome the chiral action [53]. By
applying this method to F-theory we obtain the SO(5, 5) F-theory 10-brane action in the
Hamiltonian formalism in subsection 4.2. We extend it to the SO(6, 6) F-theory 10-brane
action in subsection 4.3. In the SO(6, 6) Lagrangian the worldvolume vielbein merges with
the spacetime vielbein. In subsection 4.4 we present F-theory 10-brane actions in terms of
GL(6) and GL(5) tensors to couple the supergravity background. In section 5 we present an
action for a 5-brane obtained from the F-theory 10-brane action. 5 worldvolume dimensions
are reduced by solving the worldvolume section constraint V = ∂m∂̄m = 0. The obtained
action for a M-theory 5-brane is sum of the free kinetic term and bilinears of the selfduality
constraint.
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2 Introduction to F-theory

We begin by an introduction to “theories” with manifest dualities such as T-theory and F-
theory together with “S-theory” and “M-theory”. S-theory is a string theory compactified
to D-dimensions and M-theory is a brane theory compactified to (D + 1)-dimensions.
“Theories” are defined by current algebras with G-symmetry in the Hamiltonian formalism.
The background gauge fields are parameters of cosets G/H which are generalization of
the GL(D)/SO(D − 1,1) for the vielbein gauge field of the Einstein gravity. All bosonic
component fields are representation of G, while fermionic fields are representation of H. A
new duality web given in the diamond diagram in (2.1) [45].

F-theory
ED+1(D+1)/HD

bispinor
↙ ↘

M-theory
GL(D + 1)/SO(D, 1)

D + 1

T-theory
O(D,D)/SO(D − 1, 1)2

2D
↘ ↙

S-theory
GL(D)/SO(D − 1, 1)

D

(2.1)

Figure: Diamond diagram

Theories are also defined by worldvolume actions. The Hamiltonian form action is ob-
tained from the G-symmetry current algebra. The spacetime and the brane worldvolume
are representations of G-symmetry. The action is written as bilinear of the field strength
F . There is a gauge symmetry generated by the Gauss law constraint with the gauge
parameter κ. The spacetime coordinate Xσ plays the gauge field while the auxiliary co-
ordinate Xτ corresponds to A0 in the usual gauge theory. The worldvolume coordinate is
denoted by ∂ = ∂

∂σ . We focus on the D=4 E5=SO(5, 5) G-symmetry case in this paper.
Representations of the G-symmetries of theories for the D=4 case are summarized in ta-
ble 1. The D=4 F-theory is described by the 10-brane in the 16-dimensional spacetime.
The 10-dimensional chiral spinor has a bosonic κ-symmetry-like structure similar to the
Green-Schwarz superstring. The D=4 F-theory in the lightcone-like gauge fixing reduces
to the T-theory in the 4-dimensional spacetime.

The G-symmetry is enlarged to F-symmetry in the Lagrangian formulation where the
worldvolume Lorentz covariance is manifest. In the usual gauge theory the G-symmetric
field strengths correspond to the nonrelativistic electric field and magnetic field while the F-
symmetric field strength corresponds to the Lorentz covariant field strength. The constraint
V = 0 is a worldvolume section condition. The F-symmetries and representations of theories
are summarized as in the table 2.

The F-symmetry includes the worldvolume symmetry. For example the worldsheet
zweibein is in the SL(2)/SO(1, 1) coset parameter. Symmetry groups for D=4 case are
summarized as in the table 3.
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theory G-symmetry
spacetime

Xσ

spacetime
auxiliary
Xτ

world
-volume

∂

field
strength

F

gauge
parameter

κ

F- SO(5, 5) 16 16′ 1⊕ 10 16⊕ 16′ 16⊕ 16′

M- GL(5) 5⊕ 10′ ⊕ 1 1⊕10⊕ 5′ 1⊕ 5 1⊕ 10⊕ 5′ 1⊕ 10⊕ 5′

T- O(4,4) 8 0 1⊕ 1 8⊕ 8 0

S- GL(4) 4 0 1⊕ 1 4⊕ 4 0

Table 1. G-symmetries and representations of theories (D=4 case).

theory F-symmetry
space
-time
X

world
-volume

∂

field
strength

F

gauge
parameter

κ

cons
-traint
V = 0

F- SO(6, 6) 32′ 12 32 32 1

M- GL(6) 6⊕ 20⊕ 6′ 6⊕ 6′ 1⊕ 15⊕ 15′ ⊕ 1 1⊕ 15⊕ 15′ ⊕ 1 1

T- O(4,4)SL(2) (8,1) (1,2) (8,2) 0 0

S- GL(4)SL(2) (4,1) (1,2) (4,2) 0 0

Table 2. F-symmetries and representations of theories (D=4 case).

theory F-symmetry G-symmetry L-symmetry H-symmetry
F-theory SO(6, 6) SO(5, 5) SO(6;C) SO(5;C)

M-theory GL(6) GL(5) SO(4, 2) SO(4, 1)

T-theory O(4,4)SL(2) O(4,4) SO(3; 1)2SO(1, 1) SO(3, 1)2

S-theory GL(4)SL(2) GL(4) SO(3, 1)SO(1, 1) SO(3, 1)

Table 3. Symmetries of theories (D=4 case).

The spacetime and the worldvolume vielbeins are elements of the coset F/L. The
number of dimensions of the coset F/L is larger than the one of G/H by the number of
Lagrange multipliers of Virasoro constraints for the p-brane as

dim
(F

L

)
= dim

(G
H

)
+ p+ 1 . (2.2)

Coset groups and the G/H background gauge fields for the D=4 theories are summarized
as the table 4.

F-theory reduces to T, M, S-theories by reducing the spacetime dimensions or the
worldvolume dimensions by the dimensional reduction or the section condition. In this
paper we reduce from the F-theory 10-brane to the M-theory 5-brane with preserving the
SO(5, 5) G-symmetry, then the obtained M-theory 5-brane couple to SO(5, 5) background
gauge fields.
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theory dim
(

F
L

)
dim

(
G
H

)
G
H gauge fields (m=0,1,··· ,3)

F-theory 36 25 gmn, Bmn, C[RR]

M-theory 21 15 gm̂n̂ (m̂=0,1,··· ,4)

T-theory 18 16 gmn, Bmn

S-theory 12 10 gmn

Table 4. Gauge fields (D=4 case).

3 SO(5, 5) current algebra

The D=4 F-theory manifests the E5=SO(5, 5) G-symmetry. This theory reduces to the
type II superstring theories in the 4 dimensional spacetime. The type II superstring theories
in 10 dimensions have 32 supersymmetries. The supercharges have the H-symmetry index,
SO(5;C)=Sp(4;C) index A, Ȧ = 1, · · · , 4, and the internal space index, SU(4) index A′ =
1, · · · , 4. Supercharges are QAA′ , Q̄ȦA

′ while translation charges are PAḂ, f[AB][A′B′] and
f̄[ȦḂ]

[A′B′]. The superalgebra in the D=4 F-theory is given as follows.

{QAA′ , Q̄Ḃ
B′} = δB

′
A′PAḂ

{QAA′ ,QBB′} = f[AB][A′B′] (3.1)
{Q̄AA

′
, Q̄Ḃ

B′} = f̄[ȦḂ]
[A′B′] .

The 16 translation operators PAḂ are decomposed into 4 momenta, 4 winding modes (NSNS
charges) and 8 RR charges (1 ⊕ 6 ⊕ 1 for type IIA and 4 ⊕ 4 for type IIB) in the type II
superstring theories in 4 dimensions. The rest of bosonic operators f[AB][A′B′], f̄[ȦḂ]

[A′B′]

are internal operators which are linear combinations of the 6-dimensional internal space
momenta Υ[ÃB̃], Ῡ[ÃB̃] and winding modes [AB][A′B′], [ȦḂ]

[A′B′] as follows.

f[AB][A′B′] = CABΥ[A′B′] + [AB][A′B′]

f̄[ȦḂ]
[A′B′] = CȦḂῩ[A′B] + [ȦḂ]

[A′B′] . (3.2)

At first, we present current algebras in the SO(5, 5) spinor representation. Next, we
present it in the GL(5) tensor representation, in which reduction to M-theory is straight-
forward and coupling to the 5-dimensional subspace of the 11-dimensional supergravity
background is manifest.

3.1 SO(5, 5) spinor representation

The SO(5, 5) current in a flat space is the 16-component spinor Bµ with µ = 1, · · · , 16,
while the worldvolume is the 10-dimensional vector with the worldvolume spacial derivative
∂m for m = 1, · · · , 10. The SO(5, 5) current algebra in a flat space is given by

[Bµ(σ),Bν(σ)] = 2iγmµν∂mδ(σ − σ′) (3.3)

– 6 –
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with ∂mδ(σ) = ∂
∂σm

δ(10)(σ). The 10-dimensional γ matrix is defined by

γ(m|µργ
lρνηl|n) = 2ηmnδνµ (3.4)

with the SO(5, 5) invariant metric ηmn. The gamma matrix γmµν is transformed under the
SO(5, 5) transformation as

SO(5, 5) 3Mm
n, M̂µ

ν , (M̂µ
σγnσρM̂ν

ρ)Mm
n = γmµν , Ml

mηlkMk
n = ηmn . (3.5)

The current algebra (3.3) is SO(5, 5) covariant with transformations of the spinor current
and the vector derivative as

Bµ → M̂µ
νBν , ∂m →Mm

n∂n . (3.6)

The 16-dimensional SO(5, 5) spinor coordinate Xµ and its canonical conjugate Pµ are
given by [

Pµ(σ), Xν(σ′)
]

= 1
i
δνµδ(σ − σ′) . (3.7)

The selfdual current Bµ, the anti-selfdual current B̃µ and their algebras are given as
Bµ = Pµ + γmµν∂

mXν = Pµ + /∂µνX
ν

B̃µ = Pµ − γmµν∂mXν = Pµ − /∂µνX
ν

[Bµ(σ),Bν(σ)] = 2iγmµν∂mδ(σ − σ′)

[Bµ(σ), B̃ν(σ)] = 0

[B̃µ(σ), B̃ν(σ)] = −2iγmµν∂mδ(σ − σ′) .

(3.8)

Under the global SO(5, 5) transformation the canonical coordinates are transformed with
use of (3.5) in such a way that currents are transformed as a SO(5, 5) spinor

Pµ → M̂µ
νPν

∂mXµ → M−1
n
m(∂nXν)M̂−1

ν
µ

⇒ (Pµ ± γmµρ∂mXρ)→ M̂µ
ν (Pν ± γmµρ∂mXρ) . (3.9)

The 10-dimensional worldvolume σm-diffeomorphism is generated by the Virasoro con-
straint Sm = 0, and the τ -diffeomorphism is generated by T . Closure of the Virasoro
algebra requires secondary constraints, Uµ = 0 and V = 0

Sm = 1
4Bµγ

mµνBν = 0 (3.10)

T = 1
4Bµη̂

µνBν = 0

Uµ = γmµνBνηmn∂
n = (B/∂)µ = 0

V = ηmn∂
m∂n = 0 .
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The constraints Uµ = 0 and V = 0 are the Gauss law constraints which generate infinite
series of gauge symmetries similar to the κ-symmetry. For the 16 component spacetime
current Bµ and the 10 component worldvolume translation ∂m which satisfy (3.3), con-
straints Uµ = B/∂

µ and V = ∂m∂m become first class constraints. V = 0 constraint is the
SO(5, 5) invariant constraint sectioning the worldvolume. Sm = 0 and Uµ = 0 are SO(5, 5)
covariant, while the metric η̂µν in T breaks SO(5, 5) to SO(5;C).

They satisfy the following algebra[
Sm(σ),Bµ(σ′)

]
= i[2Bµ∂

m − γmµνUν ](σ)δ(σ − σ′) (3.11)[
T (σ),Bµ(σ′)

]
= iη̂µνUν(σ)δ(σ − σ′)

where ∂m and Uµ act on δ(σ−σ′). The SO(5, 5) indices are raised and lowered by ηmn and
ηmn. It is also noted that η̂µργmρλη̂λν = ηmnγ

nµν . The set of Virasoro algebras is given by

[
Sm(σ),Sn(σ′)

]
= i

[
2S(m∂n) − 1

2 {η
mn(BU)− (BγmnU)}

]
(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
∂(mSn) − 1

2(UγmnB)
]

=
[
2
(
Sn(σ)∂m(σ) + Sm(σ′)∂n(σ)

)
−1

2 {η
mn(BU)− (BγmnU)} (σ)

]
δ(σ − σ′)

+iδ(σ − σ′)
[
∂[mSn] − 1

2(UγmnB)
]

[
Sm(σ), T (σ′)

]
= i

[
4T ∂m − 1

2Bµη̂
µν(γmU)ν

]
(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
2∂mT − 1

2(Uγm)µη̂µνBν

]
[
T (σ), T (σ′)

]
= 2iSm∂m(σ)δ(σ − σ′) + iδ(σ − σ′)(∂mSm) (3.12)[

Sm(σ),Uµ(σ′)
]

= i(Bγm)µV(σ)δ(σ − σ′)[
T (σ),Uµ(σ′)

]
= i(Bη̂)µV(σ)δ(σ − σ′)[

Uµ(σ),Uν(σ′)
]

= −2i/∂µνV(σ)δ(σ − σ′) .

The spacetime coordinate derivative of a function Φ(X) is given by

∂

∂Xµ
Φ(X) = ∂µΦ(X) = i

∫
d10σ′

[
Bµ(σ′),Φ(X(σ))

]
. (3.13)

The worldvolume coordinate derivative of a function Φ (X(σ)) is given by

∂

∂σm
Φ(X(σ)) = ∂mΦ(X(σ)) = i

∫
d10σ′

[
Sm(σ′),Φ(X(σ))

]
= 1

2Bµγ
mµν ∂νΦ(X) . (3.14)
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The SO(5, 5) current algebra in curved backgrounds with torsion Tαβ
γ is given as

follows. [
Bα(σ),Bβ(σ′)

]
= 2iTαβγBγδ(σ − σ′) + iγaαβ

(
Da(σ)−Da(σ′)

)
δ(σ − σ′) (3.15)

Tαβ
γ = E[α|

µ(∂µE|β]
ν)Eνγ −

1
2(E[α|

µγaµν∂λE|β]
ν)γaλρEργ .

The curved space current Bα, the flat space current Bµ and the curved space worldvolume
derivative Da, the flat worldvolume derivative ∂m are related by the spacetime vielbein
Eα

µ and the worldvolume vielbein Ema as

Bα = Eα
µBµ , Da = Ema∂m . (3.16)

The spacetime vielbein Eαµ ∈ SO(5, 5)/SO(5;C) and the worldvolume vielbein relate the
curved background indices µ, m and the flat space indices α, a as

Eα
µγmµνEβ

νEam = γaαβ , EamηmnEbn = ηab . (3.17)

The gauge transformation of Eαµ is given by

δλEα
µBµ(σ) = i

∫
dσ′

[
λνBν(σ′), EαµBµ(σ)

]
δλEα

µ = λν∂νEα
µ − Eαν∂νλµ + (Eαγa∂νλ)γaνµ . (3.18)

In curved backgrounds the τ component of Virasoro constraint T = 0 (3.10) is gener-
alized as

T = 1
4BµG

µνBν = 1
4Bαη̂

αβBβ

Gµν = Eα
µη̂αβEβ

ν .

(3.19)

The spacetime gauge field Gµν is parametrized by elements of the coset SO(5, 5)/SO(5;C).
Spacial components of Virasoro constraints Sm in (3.10) is inert in curved backgrounds as

1
4Bαγ

aαβBβ = 1
4Em

a(Bµγ
mµνBν) = EmaSm . (3.20)

Background independence of the spacial components of Virasoro constraints makes possible
to impose as the section conditions on fields. This is the same property with the T-theory.

3.2 GL(5) tensor representation

The SO(5, 5) current algebra in the GL(5) tensor representation was obtained in the M5
brane Hamiltonian [41] from the PST action [52]. The M5-brane is a 11-dimensional super-
gravity solution which is described by the spacetime coordinate xm(σ), m = 0, 1, · · · , 10,
the second rank selfdual gauge field Aij(σ), i = 1, · · · , 5 and their canonical conjugates
pm(σ), Eij(σ). The currents are the vector, the 2-rank tensor corresponding to the
M2 brane charge and the 5-rank tensor corresponding to the M5 brane charge. The τ -
diffeomorphism constraint T = 1

2pm
2 + · · · = 0 is written in bilinear of currents. On

the other hand the 5-dimensional worldvolume diffeomorphism constraints are given as
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Hi = pn∂ix
m + 1

2E
j1j2∂[iAj1j2] = 0. Multiplying the pullback matrices ∂ixm and Eij∂jxm

on Hi = 0 gives bilinears of currents Sm = Sm1···m4 = 0 as Virasoro constraints.
In the 5-dimensional subspace where the 11-dimensional space is compactified on a

5-dimensional torus the currents combine into the 16 dimensional SO(5, 5) spinor represen-
tation. The reducible set of Virasoro constraints Sm = Sm1···m4 = 0 become Sm = S̄m = 0
with m = 1, · · · , 5 which is the 5 + 5̄ vector representation of the SO(5, 5). All these
constraints T , Sm and S̄m satisfy a closed algebra with secondary constraints.

The SO(5, 5) current algebra is written in terms of the 16-dimensional spacetime cur-
rents BM = (Bm, Bm1m2 , B̄) as the GL(5) decomposition of 16 component SO(5, 5)
spinor current 16 → 5 ⊕ 10 ⊕ 1. The commutator of the spinor currents gives the vector,
so the worldvolume is 10-dimensional space with ∂m = (∂m, ∂̄m) with m = 1, · · · , 10, and
m = 1, · · · , 5. The SO(5, 5) current algebra in the GL(5) tensor representation is given
with the 10-dimensional γ matrices ρlMN and ρlMN based on [41] by[

BM (σ),BN (σ′)
]

= 2iρmMN∂
mδ(σ − σ′) (3.21)

ρ(l|ML ρ
nLN ηn|k) = ηlkδ

N
M .

The O(5,5) invariant metric ηmn is given by

ηmn =
n

n( )
m 0 δnm
m δmn 0

. (3.22)

Concrete expression of ρlMN with arbitrary parameters sl = (sl, s̄l) and sl = ηlms
m =

(s̄l, sl) is given by

ρlMNs
l =

n
n1n2 ·

m 0 δ
[n1
m sn2] s̄m

m1m2 δ
[m1
n sm2] εm1m2n1n2ks̄k 0

· s̄n 0 0

ρlMNsl =

n n1n2 ·


m 0 δm[n1
s̄n2] sm

m1m2 δn[m1
s̄m2] εm1m2n1n2ks

k 0
· sn 0 0

.

(3.23)

ρlMN satisfies the same SO(5, 5) transformation (3.5). Under the SO(5, 5) transformation
it is transformed as

SO(5, 5)3Mm
n=δm

n + δMm
n, M̂M

N =δM
N + δM̂M

N

(ρlMNsl)δM̂M
N + δM̂M

N (ρlMNsl) + ρlMNδMl
nsn=0 (3.24)

ηmlδMl
n + δMl

mηln=0
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where infinitesimal SO(5, 5) matircies are given by

δM̂M
N =

n
n1n2 ·

m αm
n − α̂

2 δ
n
m −γ̃mn1n2 0

m1m2 −β̃m1m2n α̂
2 δ

[m1
n1 δ

m2]
n2 − δ

[m1
[n1

αn2]
m2] γm1m2

· 0 βn1n2
α̂
2

δMm
n =

n
n( )

m αm
n βmn

m −γmn −αnm

with β̃m1m2m3 = 1
2ε

m1···m5βm4m5 , γ̃m1m2m3 = 1
2εm1···m5γ

m4m5 .

(3.25)

The GL(5) tensor coordinate XM = (Xm, Xm1m2 , X̄) and its canonical conjugate
PM are introduced by

[
PM (σ), XN (σ′)

]
= 1

i
δNMδ(σ − σ′) . (3.26)

The selfdual and anti-selfdual currents,BM and B̃M , together with their current algebras
are given by 

BM = PM + ρmMN∂
mXN

B̃M = PM − ρmMN∂
mXN

[BM (σ),BN (σ)] = 2iρmMN∂
mδ(σ − σ′)

[BM (σ), B̃N (σ)] = 0

[B̃M (σ), B̃N (σ)] = −2iρmMN∂
mδ(σ − σ′) .

(3.27)

The selfdual currents and their algebra in components are given as
Bm = Pm + ∂nXmn + ∂̄mX̄

Bm1m2 = Pm1m2 + ∂[m2Xm1] + 1
2ε
m1···m4l∂̄lXm3m4

B̄ = P̄ + ∂̄mX
m

[Bm(σ),Bn1n2(σ′)] = 2iδ[n1
m ∂n2]δ(σ − σ′)

[Bm(σ), B̄(σ′)] = 2i∂̄mδ(σ − σ′)

[Bm1m2(σ),Bn3n4(σ′)] = 2iεm1m2n3n4l∂̄lδ(σ − σ′) .

(3.28)
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The set of Virasoro constraints in (3.10) is rewritten as

Sm = 1
4BMρ

mMNBN = 0 (3.29)

T = 1
4BM η̂

MNBN = 0

UM = ρmMNηmnBN∂
n = 0

V = ηmn∂
m∂n = 0

with the SO(5;C) invariant metric

η̂MN =

n
n1n2 · m ηmn 0 0

m1m2 0 ηn1[m1ηm2]n2 0
· 0 0 1

. (3.30)

The Virasoro constraints in components are given by
Sm = 1

2BnBnm = 0

S̄m = 1
2

[
BmB̄ + 1

8εmm1···m4B
m1m2Bm3m4

]
= 0

T = 1
4

[
Bmη

mnBn + 1
2B

m1m2ηm1n1ηm2n2B
n1n2 + B̄2

]
= 0 .

(3.31)



Um = B̄∂m + Bml∂̄l = 0

Um1m2 = B[m1 ∂̄m2] + 1
2εm1···m5B

m3m4∂m5 = 0

Ū = Bm∂
m = 0

V = 2∂m∂̄m = 0 .

(3.32)

The Virasoro constraint Sm generates the shift of the worldvolume coordinate on the
current BM as [

Sm(σ),BM (σ′)
]

= i
[
2BM∂

m − ηmlρlMNUN
]
δ(σ − σ′) . (3.33)

The Virasoro algebra in the GL(5) tensor representation is the same as (3.12) by replacing
the γmµν-matrices with ρmMN in (3.23)[

Sm(σ),Sn(σ′)
]

= i

[
2S(m∂n) − 1

2 {η
mn(BU)− (BρmnU)}

]
(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
∂(mSn) − 1

2(UρmnB)
]

[
Sm(σ), T (σ′)

]
= i

{
4T ∂m − 1

2BM η̂
MN (ρmU)N

}
(σ)δ(σ − σ′)

+iδ(σ − σ′)
{

2∂mT − 1
2(Uρm)M η̂MNBN

}
[
T (σ), T (σ′)

]
= 2iSm∂m(σ)δ(σ − σ′) + iδ(σ − σ′)(∂mSm)

(3.34)
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[
Sm(σ),UM (σ′)

]
= i(Bρm)MV(σ)δ(σ − σ′)[

T (σ),UM (σ′)
]

= i(Bη̂)MV(σ)δ(σ − σ′)[
UM (σ),UN (σ′)

]
= −2i/∂MNV(σ)δ(σ − σ′)

with (ρmn)MN = 1
2ρ

[m|MLρlLNη
l|n]. The GL(5) tensor expression of the above relation is

as follows.

[Sm(σ),Bn(σ′)] = i
[
2Bn∂

m − δmn Ū
]

(σ)δ(σ − σ′)

[Sm(σ),Bn1n2(σ′)] = i
[
2Bn1n2∂m − 1

2ε
mn1n2n3n4Un3n4

]
(σ)δ(σ − σ′)

[Sm(σ), B̄(σ′)] = i [2B̄∂m − Um] (σ)δ(σ − σ′)[
S̄m(σ),Bn(σ′)

]
= i

[
2Bn∂̄m + Umn

]
(σ)δ(σ − σ′)[

S̄m(σ),Bn1n2(σ′)
]

= i
[
2Bn1n2(σ)∂̄m + δ

[n1
m Un2]

]
(σ)δ(σ − σ′)[

S̄m(σ), B̄(σ′)
]

= 2iB̄(σ)∂̄mδ(σ − σ′) .

(3.35)

The Virasoro algebra in the GL(5) tensor expression is given by[
Sm(σ),Sn(σ′)

]
= i

[
2S(m∂n) − 1

2

(
BmnŪ − 1

2ε
mnl1l2l3Bl1Ul2l3

)]
(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
(∂(mSn))− 1

2

(
ŪBmn − 1

2ε
mnl1l2l3Ul1l2Bl3

)]
[
Sm(σ), S̄n(σ′)

]
= i

[
2(Sm∂̄n + S̄n∂m)− 1

4δ
m
n

(
BlU l + 3B̄Ū + 3

2B
l1l2Ul1l2

)
−1

2(BnUm −BmlUnl)
]

(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
(∂mS̄n + ∂̄nSm) + 1

4δ
m
n

(
U lBl − ŪB̄−

1
2Ul1l2B

l1l2

)
−1

2(UmBn − UnlBml)
]

[
S̄m(σ), S̄n(σ′)

]
= i

[
2S̄(m∂̄n) + 1

2

(
B̄Umn −

1
2εmnl1l2l3B

l1l2U l3
)]

(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
∂̄(mS̄n) + 1

2

(
UmnB̄−

1
2εmnl1l2l3U

l1Bl2l3

)]
[
Sm(σ), T (σ′)

]
= i

[
4T ∂m − 1

2

(
ηmkBkŪ + 1

4ε
mm1···m4ηm1k1ηm2k2B

k1k2Um3m4

+ B̄Um
)]

(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
2∂mT − 1

2

(
ηmkŪBk + UmB̄

+1
4ε

mm1···m4ηm1k1ηm2k2Um3m4B
k1k2

)]
(σ)δ(σ − σ′)
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[
S̄m(σ), T (σ′)

]
= i

[
4T ∂̄m −

1
2(ηknBkUnm + ηk1lηk2mB

k1k2U l)
]

(σ)δ(σ − σ′)

+iδ(σ − σ′)
[
2∂̄mT −

1
2(ηknUkmBn + ηk1lηk2mU lBk1k2)

]
[
T (σ), T (σ′)

]
= 2i(Sm∂̄m + S̄m∂m)(σ)δ(σ − σ′) + iδ(σ − σ′)(∂mS̄m + ∂̄mSm) .

(3.36)

In order to couple to the 11-dimensional supergravity background the 5-dimensional
indices are converted into the 11-dimensional tensor indices as

Pm1···m5 = εm1···m5P̄ , Xm1···m5 = εm1···m5X̄

Bm1···m5 = εm1···m5B̄, B̃m1···m5 = εm1···m5 ¯̃B (3.37)

∂m1···m4 = εm1···m4l∂̄l, Sm1···m4 = εm1···m4lS̄l .

Currents in the GL(5) tensor representation coupled to the 5-dimensional subspace of the
11-dimensional supergravity background are given as

BA = EA
MBM

EA
MρmMNEB

NEam = ρaAB , EamηmnEbn = ηab

EA
M =


ea
m ea

nC
[3]
nm1m2 −ean 1

4!C
[3]
n[m1m2

C
[3]
m3m4m5]

0 em1
a1em2

a2 − 1
3!e[m1

a1em2
a2C

[3]
m3m4m5]

0 0 e[m1
a1 · · · em5]

a5

 . (3.38)

Under the SO(5, 5) transformation in T = 0, eam and C [3]
m1m2m3 are trasnformed fractional

linearly. The τ component of the Virasoro constraints T = 0 in a curved background is
given by

T = 1
4BMG

MNBN = 1
4BAη̂

ABBB (3.39)

GMN = EA
M η̂ABEB

N

where η̂AB is the same matrix as η̂MN in (3.30).

4 F-theory 10-brane actions

The F-theory SO(5, 5) current algebras (3.8) or (3.27) are realized on the 10-brane world-
volume which we call F10-brane for short from now on. The Hamiltonian is given by linear
combinations of a set of Virasoro constraints (3.10) or (3.29) which are written in terms
of the selfdual currents. In order to construct the worldvolume covariant Lagrangian we
include the ones for the anti-selfdual currents. At first, we review how to construct the
worldsheet covariant action by using the double zweibein method [10, 11]. Then we propose
actions for the F10-brane with both the SO(5, 5) symmetric Hamiltonian formulation and
the SO(6, 6) symmetric Lagrangian formulation.
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4.1 Double zweibein formulation in T-theory

The physical current in the T-theory is the selfdual current which is chiral in the doubled
space. For the doubled space coordinates X = (x, y) the auxiliary coordinate y is intro-
duced with the selfduality condition; the anti-selfdual current is zero ∂mx−εmn∂ny = 0. We
impose the selfduality condition as the first class constraint by squaring of it. The action
contains both the selfdual current and the anti-selfdual current leading to the worldsheet
covariant action.

The double zweibein formulation of T-theory is given by O(D,D) current algebras for
the selfdual and the anti-selfdual currents, BM and B̃M . These currents are written in
terms of the O(D,D) coordinates, XM and PM with M = 1, · · · , 2D, as[

PM (σ), XN (σ′)
]

= 1
i
δNM∂σδ(σ − σ′)

BM = PM + ∂σX
NηNM

B̃M = PM − ∂σXNηNM
[BM (σ),BN (σ′)] = 2iηMN∂σδ(σ − σ′)

[BM (σ), B̃N (σ′)] = 0

[B̃M (σ), B̃N (σ′)] = −2iηMN∂σδ(σ − σ′)

with ∂σδ(σ) = ∂
∂σ δ

(1)(σ). Virasoro constraints in terms of the selfdual current and the
anti-selfdual currents are given by

T = 1
4BM η̂

MNBN

S = 1
4BMη

MNBN

,


T̃ = 1

4B̃M η̂
MNB̃N

S̃ = 1
4B̃Mη

MNB̃N

(4.1)

where η̂MN and ηMN are doubled Minkowski metric and the O(D,D) invariant metric.
The Hamiltonian form action is given by

I =
∫
dτdσ L , L = ẊMPM −H

H = gT + sS + g̃T̃ + s̃S̃ (4.2)

= 1
4BM (gη̂ + sη)MNBN + 1

4B̃M (g̃η̂ + s̃η)MNB̃N

with Lagrange multipliers g, s, g̃, s̃. After the Legendre transformation the obtained
Lagrangian is given by

L = ϕJ+ {(g + g̃)η̂ − (s+ s̃)η} J− (4.3){
J+ = Ẋ + (g̃η̂ + s̃η)∂σX
J− = Ẋ − (gη̂ + sη)∂σX

ϕ =
[
(g + g̃)2 − (s+ s̃)2

]−1

with Ẋ = ∂τX.
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The doubled coordinate has the left moving and the right moving components XM =
(XM , XM ) with M,M = 1, · · · , D. The D-dimensional right moving subscript M is only
used in these two paragraphs, and should not be confused with the enlarged dimension
subscript. D-dimensional metrics are η̂MN = diag (ηMN , ηMN ) and the O(D,D) invariant
metric ηMN = diag (ηMN ,−ηMN ). The vielbein field EMA is O(D,D) gauge field

EM
AηMNEN

B = ηAB . (4.4)

With use of the worldsheet doubled zweibeins, ēam and eam, the Lagrangian (4.3) is rewrit-
ten as

L = 1
ē
J̄+

AηABJ̄−
B + 1

e
J+

AηABJ−
B (4.5){

J̄a
A = ēa

m∂mX
MEM

A

Ja
A = ea

m∂mX
MEM

A

ea
m =

(
e−

τ e−
σ

e+
τ e+

σ

)
, ēa

m =
(

1 −(g + s)
1 g̃ + s̃

)
, ea

m =
(

1 −(g − s)
1 g̃ − s̃

)
with ē = det ēam and e = det eam.

The Lagrangian with the usual single worldvolume zweibein eam is given by

L = 1
e

[
J+

AηABJ−
B + J+

AηABJ−B − λ+J−
AηABJ−

B − λ−J+
AηABJ+B

]
(4.6){

Ja
A = ea

m∂mX
MEM

A

Ja
A = ea

m∂mX
MEM

A

ea
m =

(
1 −(g + s)
1 g − s

)
λ± = ϕ{−(s+ s̃∓ g)2 + g̃2}

with e = det eam = 2g.
It is useful to give the T-theory Lagrangian in terms of the selfdual and the anti-selfdual

currents where the anti-selfdual current is the selfduality constraint.

L = 1
g

◦
JSD

MGMN

◦
JSD

N − λ̂
◦
JSD

MGMN

◦
JSD

N − λ
◦
JSD

MηMN

◦
JSD

N (4.7)

= 1
g
JSD

Aη̂ABJSD
B − λ̂JSD

Aη̂ABJSD
B − λJASDηABJ

B
SD JSD

A = EM
A
◦
JSD

M

JSD
A = EM

A
◦
JSD

M
◦
JSD

M = ẊM + (gη̂ − sη)MNηNL∂σX
L

◦
JSD

M = ẊM − (gη̂ + sη)MNηNL∂σX
L λ̂ = 1

g − ϕ(g + g̃)
λ = ϕ(s+ s̃) .
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Bilinears of the anti-selfdual currents relax the selfduality constraint
◦
JSD

M = 0 as shown
in (D.5). It is the selfduality constraint in curved backgrounds gτm∂mXNGNM =ετm∂mX

NηNM

with gττ = 1
g , g

τσ = − s
g and GNM = η̂NM . In this formulation the worldsheet zweibein is

not factored out in this Lagrangian.

4.2 SO(5, 5) Hamiltonian form action

We apply the double zweibein formulation to construct F10-brane actions. The Hamilto-
nian is sum of the set of Virasoro constraints T = Sm = Uµ = 0 in (3.10) and Virasoro
constraints for the anti-selfdual currents T̃ = S̃m = 0 in (4.2) with Lagrange multipliers
g, sm, Yµ , g̃, s̃m respectively. Yµ plays the role of A0 in the usual gauge theory. We begin
by the following Hamiltonian form action in the SO(5, 5) spinor representation

I =
∫
dτd10σ L , L = ẊµPµ −H

H =
(
gT + smSm

)
+
(
g̃T̃ + s̃mS̃m

)
+ UµYµ (4.8)

= 1
4Bµ(gη̂ + smγ

m)µνBν + 1
4B̃µ(g̃η̂ + s̃mγ

m)µνB̃ν + Bµ(/∂Y )µ .

The Lagrangian is written in terms of field strengths
◦
F±

µ as

L = ϕ
◦
F+

µ {(g + g̃)η̂ − (s+ s̃)mγm
}
µν

◦
F−

ν + YµVXµ (4.9)
◦
F+

µ =
◦
F τ

µ + (g̃η̂ + s̃mγm)µν
◦
F σ ν

◦
F−

µ =
◦
F τ

µ − (gη̂ + smγm)µν
◦
F σ ν

,


◦
F τ

µ = Ẋµ − /∂
µν
Yν

◦
F σ µ = /∂µνX

ν

ϕ =
[
(g + g̃)2 − (s+ s̃)m(s+ s̃)m

]−1

and the V = 0 constraint given in (3.10). The field strengths are invariant under the gauge
transformation with the gauge parameter κµ and κ̄µ

δκX
µ = /∂

µν
κν , δκYµ = κ̇µ + /∂µν κ̄

ν (4.10)

by using V = 0 constraint. This gauge transformation is generated by the Gauss law
constraint as δκXµ = [

∫
dσ κν Uν , Xµ]. There are gauge symmetries of the gauge symmetry

as same as the κ-symmetry δκ = /∂κ[1], δκ[1] = /∂κ[2], · · · and δκ̄ = /∂κ̄[1], δκ̄[1] = /∂κ̄[2], · · · .
The infinite series of gauge symmetries reduce a half of the coordinates. The 10-dimensional
worldvolume covariant action requires the auxiliary coordinate Yµ, but it is removed by
the bosonic κ symmetry in the temporal gauge. In the lightcone-like gauge a half of Xµ is
removed, giving the (4+4)-dimensional T-theory.

In F-theory currents F±µ the worldsheet vielbein cannot be extracted from the space-
time vielbein because the SO(5, 5) covariant γ-matrix γmµν mixes the worldvolume index
and the spacetime index unlikely to the O(D,D) invariant metric ηMN in the T-theory
in (4.4). The first term contains both the selfdual and the anti-selfdual field strengths so it
is a free kinetic term. Other terms contain only the anti-selfdual field strength, then they
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are constraints. The F10-brane Lagrangian is further rewritten in terms of the selfdual and
the anti-selfdual currents analogously to (4.7) as

L = 1
g

◦
F SD

µη̂µν
◦
F SD

ν − λ̂
◦
F SD

µη̂µν
◦
F SD

ν − λm
◦
F SD

µγmµν
◦
F SD

ν (4.11)
◦
F SD

µ =
◦
F τ

µ + (gη̂ − smγm)µν
◦
F σ ν

◦
F SD

µ =
◦
F τ

µ − (gη̂ + smγ
m)µν

◦
F σ ν λ̂ = 1

g − ϕ(g + g̃)
λm = ϕ(s+ s̃)m .

The selfdual and the anti-selfdual currents in F-theory mixes the worldsheet vielbein and
the spacetime vielbein as in (4.7).

In curved background the SO(5, 5) gauge fields Gµν and the SO(5, 5) currents are given
with the SO(5, 5)/SO(5;C) vielbein EAM as

Gµν = Eµ
αη̂αβEν

β , F±
α = Eµ

α
◦
F±

µ . (4.12)

The F10-brane Lagrangian in curved background is written as

L = ϕ
◦
F+

µ {(g + g̃)Gµν − (s+ s̃)mγmµν
} ◦
F−

ν (4.13)
= ϕF+

α {(g + g̃)η̂αβ − (s+ s̃)aγaαβ
}
F−

β

with SO(5, 5) vector parameter (s+ s̃)a = (s+ s̃)mEma, as (3.5).
Then now we propose a Lagrangian for a F10-brane in curved background in terms of

the selfdual and the anti-selfdual currents is given as

L = 1
g

◦
F SD

µGµν
◦
F SD

ν − λ̂
◦
F SD

µGµν
◦
F SD

ν − λm
◦
F SD

µγmµν
◦
F SD

ν (4.14)

= 1
g
FSD

αη̂αβFSD
β − λ̂FSD

αη̂αβFSD
β − λaFSD

αγaαβFSD
β

FSD
α = Eµ

α
◦
F SD

µ

FSD
α = Eµ

α
◦
F SD

µ .

The λ̂ and λa are Lagrange multipliers for selfduality constraints given in (4.11).

4.3 SO(6, 6) Lagrangian form action

Next let us consider the SO(6, 6) F-symmetry covariant action. The SO(6, 6) γ-matrix is
given by 64×64 matrix Γâ with two 32×32 matrices Σâ and Σ̃â as

Γâ =
(

0 Σ̃âα′β

Σâ
αβ′ 0

)
, â = 1, · · · , 12 . (4.15)

They satisfy the following algebra with the SO(6, 6) invairant metric ηâb̂.

{Γâ,Γb̂} = 2ηâb̂ ,


Σ(â

αβ′Σ̄b̂)β′γ = 2ηâb̂δγα

Σ̄(âα′βΣb̂)
βγ′ = 2ηâb̂δα

′

γ′ .

(4.16)
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The SO(5, 5) γ-matrix is embedded as â = (+,−, a) , a = (1, · · · , 10)

Σâ
αβ′ : Σ+ =

(
δβα 0
0 0

)
, Σ− =

(
0 0
0 δαβ

)
, Σa =

(
0 γaαβ

γaαβ 0

)

Σ̃âα′β : Σ̃+ =
(

0 0
0 δβα

)
, Σ̃− =

(
δαβ 0
0 0

)
, Σ̃a = −

(
0 γaαβ

γaαβ 0

)

Cαβ =
(

0 −δβα
δαβ 0

)
, Cα′β′ =

(
0 −δαβ
δβα 0

)
(4.17)

where γa is the 10-dimensional γ-matrix γ(a
αβγ

b)βγ = 2ηabδγα with γaαβ = γaβα. The
SO(6, 6) generators are decomposed into the SO(5, 5) dilatation, transformation and rota-
tion as

Γâb̂αβ = 1
2(Σ[âΣ̃b̂])αβ ≡ Σâb̂

α
β (4.18)

Σ+−
α
β =

(
δα
β 0

0 −δαβ

)
, Σab

α
β = −

(
γabα

β 0
0 γabαβ

)

Σ−aαβ =
(

0 0
−γaαβ 0

)
, Σ+a

α
β =

(
0 −γaαβ
0 0

)
.

We use Σ’s as the 12-dimensional Weyl-spinors. It is also convenient to have explicit
notation of matrices

(CΓâb̂)αβ = 1
2(CΣ[âΣ̃b̂])αβ (4.19)

(CΣ+−)αβ =
(

0 −δαβ
−δβα 0

)
, (CΣab)αβ =

(
0 −γabαβ

γabα
β 0

)

(CΣ−a)αβ =
(
−γaαβ 0

0 0

)
, (CΣ+a)αβ =

(
0 0
0 γaαβ

)
.

Let’s rewrite the SO(5, 5) covariant action (4.14) in a SO(6, 6) covariant way. Two
16-component Majorana-Weyl 10-dimensional spinors Xµ and Yµ are embedded into a
32-component Majorana-Weyl 12-dimensional spinor

Zα
′ =

(
−Yα
Xα

)
, α′ = 1, · · · , 32 . (4.20)

The SO(6, 6) covariant field strength in a flat background is given by

◦
Fα = Σâ

αβ′
∂âZ

β′ =
(
Fσ α

Fτ
α

)
, α = 1, · · · , 32

=
(
δβα∂

− /∂αβ
/∂
αβ

δαβ∂
+

)(
−Yβ
Xβ

)
=
(

(/∂X)α − ∂−Yα
∂+Xα − (/∂Y )α

)
. (4.21)

The field strengths are invariant under the gauge symmetry

δκZ
α′ = Σâα′β∂âκβ . (4.22)
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The V = 0 constraint in (3.10) is enlarged SO(6, 6) covariantly.

V = ηmn∂
m∂n = 0 with ∂− = 0

→ V̂ = ◦
ηm̂n̂∂

m̂∂n̂ = ηmn∂
m∂n + 2∂+∂− = 0 . (4.23)

We propose a F10-brane Lagrangian in a flat space with the worldvolume vielbein by
rewriting the SO(5, 5) covariant action (4.14) with the SO(6, 6) field strength (4.21) with
the 32×32 matrix metric ◦ηαβ as

L = eFα
◦
η
αβ
Fβ −

1
2λâb̂Fα(CΣâb̂)αβFβ

= e
◦
Fα(ET ◦ηE)αβ

◦
F β −

1
2λâb̂

◦
Fα(ETCΣâb̂E)αβ

◦
F β (4.24)

◦
η
αβ =

(
−η̂αβ 0

0 η̂αβ

)
.

The field strength with the worldvolume vielbein in a flat space Fα is given by

Fα = exp
(1

2fabΣ
ab
)
α
β ◦F β

exp
(1

2fabΣ
ab
)
α
β = exp

(1
2lnφ Σ+−

)
α

γ exp(−ψa Σ−a)γβ (4.25)

=

√φ δγα 0
0 1√

φ
δαγ

( δβγ 0
ψaγ

aαβ δγβ

)

with f+− = lnφ and f−a = −ψa. The Gauss law constraint is derived from the La-
grangian analogously to the usual gauge theory action. Lagrange multipliers, e, λâb̂, and
the worldvolume vielbein fields φ, ψa, in the SO(6, 6) action (4.24) correspond to Lagrange
multipliers of Virasoro constraints for selfdual and anti-selfdual parts, g, sa and g̃, s̃a, in
the SO(5, 5) action (4.13) as



e =
√
ϕgg̃

φ =
√

gg̃
ϕ

1
g+g̃

ψa = gs̃a−g̃sa
g+g̃

,



λ+− = g−g̃
2(g+g̃)

λab = ϕs̃[asb]

λ+a = −
√
gg̃ϕ
g+g̃ (sa + s̃a)

λ−a = −λ+a − 2
φλabψ

b

(4.26)

with ϕ−1 = (g + g̃)2 − (s+ s̃)2. They are solved inversely as

g = 2eφ
1−2λ+−

g̃ = 2eφ
1+2λ+−

sa = −ψa − 2φ
1−2λ+−

λ+a

s̃a = ψa − 2φ
1+2λ+−

λ+a .

(4.27)
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We finally obtain the SO(6, 6) covariant action for the F10-brane in curved backgrounds

I =
∫
d12σ L

L = e
◦
FµG

µν ◦F ν −
1
2λm̂n̂

◦
Fµ(CΣm̂n̂)µν

◦
F ν (4.28)

= Fα
◦
η
αβ
F β −

1
2λâb̂Fα(CΣâb̂)αβF β

Gµν = Eα
µ ◦η

αβ
Eβ

ν

where λm̂n̂ and λâb̂ are related by the worldvolume vielbein as (4.26). The SO(6, 6) covari-

ant field strength in a curved background Fα and the one in a flat space
◦
Fµ are given as

Fα = Eα
µ ◦Fµ = (Σâ)αβ′Eâm̂∂m̂Zµ

′
Eµ′

β′ (4.29)
◦
Fµ = (Σm̂)µν′∂m̂Zν

′
.

The SO(6, 6) vielbein satisfies the following condition where the SO(5, 5) vielbein field is
embedded in the SO(6, 6) vielbein field as

Σâ
αβ′ = Σm̂

µν′Eα
µEβ′

ν′Em̂â (4.30)

Eα
µ = exp

(1
2fabΣ

ab
)
α
β

(
Eβ

µ 0
0 (Eµβ)T

)

Eα′
µ′ =

(
(Eµβ)T 0

0 Eβ
µ

)
exp

(1
2fabΣ

ab
)
β′
α′ .

Both the SO(5, 5) spacetime vielbein and the worldvolume vielbein combine into the
vielbein field of the SO(6, 6) F-theory. The SO(6, 6) F-theory background is described by
the coset SO(6, 6)/SO(6;C) with its dimension 36 = 25 + 11. The number of spacetime
vielbein, SO(5, 5)/SO(5;C) fields is 25, while the number of Virasoro constraints of a F10-
brane is 11. The SO(6, 6) vielbein is transformed under the SO(6, 6) transformation as

Λâb̂ ∈ SO(6, 6) , Eµ̂
α̂ → Eµ̂

β̂ exp
(
Λâb̂Γ

âb̂
)
β̂
α̂ , Eâm̂ → Λâb̂Eb̂

m̂ .
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4.4 GL(6) and GL(5) actions

In order to construct the perturbative M-theory 5-brane action we rewrite the SO(6, 6)
F10-brane action obtained in the previous section (4.28) to the ones with GL(6) and GL(5)
symmetries. The SO(6, 6) spinor representations are decomposed into the GL(6) and GL(5)
tensor representations as follows:

F-symmetry of F-theory
SO(6, 6)

Zµ(32)
Fµ(32)
∂m̂(12)

↙ ↘
F-symmetry of M-theory
GL(6)

ZM (32) = Zm̂(6)⊕ Z̄m̂(6)⊕ Zm̂n̂l̂(20)
FM (32) = Fm̂n̂(15)⊕ F m̂n̂(15)⊕ F (1)⊕ F̄ (1)
∂m̂(12) = ∂m̂(6)⊕ ∂m̂(6)

G-symmetry of F-theory
SO(5, 5)

Xµ(16)⊕ Yµ(16)
Fµ(16)⊕ Fµ(16)
∂m(5)⊕ ∂̄m(5)⊕ ∂+(1)⊕ ∂−(1)

↘ ↙
G-symmetry of M-theory
GL(5)

Zm̂(6) = Xm(5)⊕ Y (1)
Z̄m̂(6) = Ym(5)⊕ X̄(1)

Zm̂n̂l̂(20) = Xmn(10)⊕ Y mn(10)
Fm̂n̂(15) = Fτ mn(10)⊕ Fσ m(5)
F m̂n̂(15) = Fmnσ (10)⊕ Fmτ (5)

F (1) = Fσ(1)
F̄ (1) = F̄τ

∂m̂(6) = ∂m(5)⊕ ∂+(1)
∂m̂(6) = ∂m(5)⊕ ∂−(1) .

(4.31)

The GL(6) and GL(5) covariant field strengths, denoted by FM instead of
◦
FM for

simplicity, and their gauge transformation rules are given as below.

GL(6) field strengths

FM = (F m̂n̂, Fm̂n̂, F, F̄ ) , m̂ = 1, · · · , 6

F m̂1m̂2 = ∂[m̂1Zm̂2] + 1
3!ε

m̂1···m̂6∂m̂3Zm̂4···m̂6

Fm̂1m̂2 = ∂[m̂1Z̄m̂2] + ∂ l̂Zm̂1m̂2 l̂

F = ∂m̂Z
m̂

F̄ = ∂m̂Z̄m̂

(4.32)
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Gauge transformations

κM = (κm̂n̂, κm̂n̂, κ, κ̄)
δκZ

m̂ = ∂m̂κ+ ∂n̂κ
n̂m̂

δκZ̄m̂ = ∂m̂κ̄+ ∂n̂κn̂m̂

δκZm̂1m̂2m̂3 = 1
2∂[m̂1κm̂2m̂3] + 1

2εm̂1···m̂6∂
m̂4κm̂5m̂6

(4.33)

GL(5) field strengths

FM = (Fτ mn, F
m
τ , F̄τ ; Fmnσ , Fσ, Fσ m) , m = 1, · · · , 5

Fτ m1m2 = ∂+Xm1m2 + ∂[m1Ym2] + 1
2εm1···m5∂

m3Y m4m5

Fmτ = ∂+Xm − ∂mY + ∂nY
mn

F̄τ = ∂+X̄ + ∂mYm

Fm1m2
σ = ∂[m1Xm2] + 1

2ε
m1···m5∂m3Xm4···m5

Fσ m = ∂mX − ∂nXmn

Fσ = ∂mX
m

(4.34)

Gauge transformations

κM = (κm1m2 , κm, κ; κm1m2 , κ
m, κ̄)

δκX
m = ∂nκ

nm + ∂mκ

δκXm1m2 = ∂[m1κm2] − εm1···m5∂
m3κm4m5

δκX̄ = ∂mκm
δκYm = −∂+κm + ∂mκ̄+ ∂nκnm

δκY
m1m2 = ∂+κm1m2 + ∂[m1κm2] + 1

2ε
m1···m5∂m3κm4m5

δκȲ = ∂+κ+ ∂nκ
n .

(4.35)

∂+ stands for ∂τ obtained from the Lagrangian. Using with the 16×16 matrix ρmMN for
XM = (Xm, Xmn, X̄) and YM = (Ym, Y mn, Y ) in (3.5) the field strengths are written
as below.

GL(5) field strengths
FM = (FτM , Fσ M ) , M = 1, · · · , 16 Fτ

M = ẊM − ρmMN∂mYN

Fσ M = ρmMN∂
mXN

(4.36)

Gauge transformations
κM = (κM , κM ) δκX

M = ρmMN∂mκN

δκYM = κ̇M + ρmMN∂
mκN .

(4.37)

Ẋ stands for ∂τX obtained from the Hamiltonian form Lagrangian.
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The GL(6) covariant field strength in curved background FA is related to the one in a
flat background

◦
FM with the vielbein field EAM which is a coset element of SO(6, 6)/SO(6;C)

as well as the one in (4.28) as

GMN = EA
M ◦η

AB
EB

N , FA = EA
M
◦
FM . (4.38)

The number of degrees of freedom of the parameter of the coset SO(6, 6)/SO(6;C) is
36 = 25 + 10 + 1: 25 is the number of degrees of freedom of the metric and the 3-form
gauge field in 5 dimensions. 10 + 1 is the number of worldvolume dimensions constrained
by V = 0, 12-1. The GL(6) covariant F10-brane action in a curved background is obtained
from the SO(6, 6) covariant F10-brane action (4.28) in terms of 32-component field strength
FM in (4.32) as

I =
∫
d12σ L

L = e
◦
FMG

MN
◦
FN + 1

2λm̂n̂
◦
FM (CΣm̂n̂)MN

◦
FN

= eFA
◦
ηABFB + 1

2λâb̂
◦
FA(CΣâb̂)AB

◦
FB ,

◦
ηAB =

(
η̂AB

−η̂AB

)
. (4.39)

The 12-dimensional Σ matrices (CΣâb̂)AB are the same expression in (4.19) with replacing
γaαβ → ρaAB, γaαβ → ηabρbAB and γabαβ → ρ[a|ACρcCBη

c|b].
The GL(5) tensors directly couple to the 11-dimensional supergravity background.

The GL(5) covariant field strength in curved background FA is related to the one in a flat
background

◦
FM with the vielbein field EAM which is a coset element of SO(5, 5)/SO(5;C)

as well as the one in (4.12) as

GMN = EM
Aη̂ABEN

B , FA = EM
A
◦
FM . (4.40)

The Hamiltonian form action given in (4.9) gives the same form with replacing γmµν with
ρmMN . The GL(5) covariant F10-brane in curved background is given as

I =
∫
dτd10σ L

L = ϕ(g + g̃)
◦
F+

MGMN

◦
F−

N − ϕ(s+ s̃)l
◦
F+

MρlMN

◦
F−

N (4.41)

= ϕ(g + g̃)F+
Aη̂AB

◦
F−

B − ϕ(s+ s̃)a
◦
F+

AρaABF−
B

◦
F+

M =
◦
F τ

M + (g̃η̂ + s̃mρ
m)MN

◦
F σN

◦
F−

M =
◦
F τ

M − (gη̂ + smρ
m)MN

◦
F σN .
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The GL(5) covariant F10-brane Lagrangian in curved background in terms of the selfdual
and the anti-selfdual currents is given by (4.11) as

L = 1
g

◦
F SD

MGMN

◦
F SD

N − λ̂
◦
F SD

MGMN

◦
F SD

N − λm
◦
F SD

MρmMN

◦
F SD

N (4.42)

= 1
g
FSD

αη̂αβFSD
β − λ̂FSD

αη̂αβFSD
β − λaFSD

αγaαβFSD
β


◦
F SD

M =
◦
F τ

M + (gη̂ − smρm)MN
◦
F σN

◦
F SD

M =
◦
F τ

M − (gη̂ + smρ
m)MN

◦
F σN .

In order to couple to the 11-dimensional supergravity background Ym and F̄ are rewrit-
ten in the 5-dimensional dual as

Ym = 1
4!εmn1···n4 Ȳ

n1···n4 , F̄ = 1
5!Fm1···m5ε

m1···m5 . (4.43)

The background of SO(5, 5) vielbein given in (3.38) is given by the metric ema and the three
form gauge field C [3]

m1m2m3 in the 5-dimensional space m = 1, · · · , 5. The field strength
◦
FM

including both
◦
F τ

M and
◦
F σ

M in the backgrounds are as follows.

FA = EM
A
◦
FM

F a = Fmem
a

F a1a2 = −FmC [3]
mn1n2ea1

n1ea2
n2 + Fm1m2ea1

m1ea2
m2

F a1···a5 = + 1
2·3!Fm1m2C

[3]
m3m4m5e[a1

m1 · · · ea5]
m5

+Fm1···m5ea1
m1 · · · ea5

m5 .

(4.44)

5 Perturbative M-theory 5-brane action

In order to obtain an action for the perturbative M-theory 5-brane coupled to the 11-
dimensional supergravity background, we preserve the number of the SO(5, 5) currents.
The worldvolume dimensions of F-theory is reduced solving V = ∂mη

mn∂n = 0 as ∂̄m =
1
4!εm1···m5∂

m2···m5 = 0 consistently. The 5-dimensional worldvolume theory is obtained by
the following sectioning [51]

∂̄m = 0 → V = 2∂m∂̄m = 0 . (5.1)

The selfdual and the anti-selfdual currents for the M5-brane are given as
Bm = Pm + ∂nXmn

Bm1m2 = Pm1m2 + ∂[m2Xm1]

B̄ = P̄

(5.2)


B̃m = Pm − ∂nXmn

B̃m1m2 = Pm1m2 − ∂[m2Xm1]

¯̃B = P̄ .
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The SO(5, 5) current algebras in (3.28) is reduced to the subalgebra which is the same one
for the SL(5) case [40]


[Bm(σ),Bn1n2(σ′)] = 2iδ[n1

m ∂n2]δ(σ − σ′)

[Bm(σ), B̄(σ′)] = 0

[Bm1m2(σ),Bn3n4(σ′)] = 0

(5.3)

[
B̃µ(σ),Bν(σ′)

]
= 0

[
B̃m(σ), B̃n1n2(σ′)

]
= −2iδ[n1

m ∂n2]δ(σ − σ′)[
B̃m(σ), ¯̃B(σ′)

]
= 0[

B̃m1m2(σ), B̃n3n4(σ′)
]

= 0 .

A set of the Virasoro constraints and the Gauss law constraints in (3.31) and (3.32) are
reduced to 

Sm = 1
2BnBnm = 0

S̄m = 1
2

[
BnB̄ + 1

8εmm1···m4B
m1m2Bm3m4

]
= 0

T = 1
2

[
Bmη

mnBn + 1
2B

m1m2ηm1n2ηm2n2B
n1n2 + B̄2

]
= 0

U = Bm∂
m = 0

Um = B̄∂m = 0

Um1m2 = εm1···m5B
m3m4∂m5 = 0

V = 0 .

(5.4)

An action for the M-theory 5-brane in curved background is given from the F-theory
10-brane (4.13) by sectioning the worldvolume into 5 dimensions as

I =
∫
dτd5σ L

L = ϕ
◦
F+

M
{

(g + g̃)GMN − ϕ(s+ s̃)lρlMN

} ◦
F−

N (5.5)

= ϕF+
A {(g + g̃)η̂AB − ϕ(s+ s̃)aρaAB

}
F−

B .

Now let us construct the action for the M-theory 5-brane in terms of the selfdual
and the anti-selfdual currents where the anti-selfdual currents are auxiliary introduced to
make a free kinetic term. The selfdual (SD) and the anti-selfdual (SD) field strengths are
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given by

◦
F SD/SD

M = (
◦
F SD/SD

m,
◦
F SD/SD mn,

◦
F SD/SD)

◦
F SD/SD

m =
◦
F τ

m±
{
gηmn

◦
F σ n− (sn

◦
Fσ

mn + s̄m
◦
F σ)

}
◦
F SD/SD m1m2 =

◦
F τ m1m2 ±

{
gηm1n1ηm2n2

◦
Fσ

n1n2 + (s[m1

◦
Fσ|m2]− εm1m2n1n2ks̄

k
◦
Fσ

n1n2)
}

◦
F SD/SD =

◦
F̄ τ ±

{
g
◦
Fσ − s̄n

◦
Fσ n

}
(5.6)

where the selfdual or the anti-selfdual currents picks up the + or − among ± sign respec-
tively. The GL(5) covariant field strengths in flat space are given by

◦
F τ

M = (
◦
F τ

m,
◦
F τ mn,

◦
F̄ τ )

◦
F
m

τ = −Ẋm + ∂mY
◦
F τ m1m2 = Ẋm1m2 + 1

2εm1···m5∂
m3Y m4m5

◦
F̄ τ = ˙̄X + ∂mYm

(5.7)

◦
F σ M = (

◦
F σ;m,

◦
F σ

mn,
◦
F σ)

◦
F σ;m = ∂nXnm
◦
F
m1m2

σ = ∂[m1Xm2]

◦
F σ = 0

(5.8)

The SO(5, 5) background GMN =EM
Aη̂ABEN

B is given by the vielbein EMA from (3.38) as

EM
A =


em

a −C [3]
mn1n2ea1

n1ea2
n2 1

2·3!C
[3]
m[n1n2

C
[3]
n3n4n5]ea1

n1 · · · ea5
n5

0 e[a1
m1ea2]

m2 1
3!C

[3]
m3m4m5e[a1

m1 · · · ea5]
m5

0 0 e[a1
m1 · · · ea5]

m5

 . (5.9)

We propose a perturbative action for a M-theory 5-brane in the curved background in
terms of the selfdual and the anti-selfdual currents in (4.42) as follow.

I =
∫
dτd5σ L

L = 1
g

◦
F SD

MGMN

◦
F SD

N − λ̂
◦
F SD

MGMN

◦
F SD

N − λm
◦
F SD

MρmMN

◦
F SD

N (5.10)

= 1
g
FSD

Aη̂ABFSD
B − λ̂FSD

Aη̂ABFSD
B − λaFSD

AρaABFSD
B .

The first term is a free kinetic term for GL(5) tensor fields on a (5+1)-dimensional world-
volume, while the rest is constraints of the anti-selfdual currents.
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6 Conclusions

We have presented the F-theory 10-brane actions with the SO(5, 5) U-duality symmety
and the SO(6, 6) enlarged U-duality symmetry. At first the SO(5, 5) current algebras on
the 10-dimensional worldvolume are presented in both the SO(5, 5) spinor representation
and the GL(5) tensor representation. The former reveals the gauge symmetry structure
generated by the Gauss law constraint where the 10-dimensional worldvolume translation
and the 16-dimensional spacetime current satisfy the bosonic κ-symmetry structure. The
latter gives direct coupling to the 11-dimensional supergravity background fields. Next
the action of the F-theory 10-brane is obtained by the Legendre transformation of the
Hamiltonian constructed by the set of Virasoro constraints. Applying the double zweibein
method to F-theory allows to give the 10-dimensional worldvolume covariant actions. Then
we have also constructed the F-theory 10-brane action with the SO(6, 6) symmetry in the
Lagrangian formalism. The worldvolume is enlarged to 12 dimensional brane spacetime,
while the target spacetime is enlarged to the 32 dimensional spacetime. The background
vielbein represents the coset SO(6, 6)/SO(6;C) including both the spacetime background
SO(5, 5)/SO(5;C) and the worldvolume vielbein.

We have also presented the action for the perturbative M-theory 5-brane in curved
spacetime by sectioning the worldvolume of the F-theory 10-brane action. The spacetime is
16 dimensional manifesting the SO(5, 5) background coupling. The action is sum of the free
kinetic term and the bilinears of the selfduality constraint. So now quantization of the F10-
brane and the M5-brane is challenging problem. It is also interesting to note that 5-brane is
the only object that appears common to all theories; type I, IIA, IIB superstrings, SO(32),
E8×E8 heterotic superstrings, M-theory, F-theory. In F-theory the 5-brane represents the
SL(5) U-duality symmetry [46]. Recently it was shown that current algebras of 5-branes
are preserved under the S and T-duality transformations with renaming the spacetime
coordinates, where 5-branes include the NS5-brane, the D5-brane, KK5-branes and exotic
5-branes in 32-supersymmetric string theories [54]. 5-brane may give a clue of duality web
including 16 supersymmetric string theories.

Many interesting topics are unsolved such as supersymmetric actions of F-theory and
M-theory, first quantization of branes and spectrum, amplitudes, and duality web including
16-supersymmetric theories.
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A Indices

Indices are summarized as follows.

number of d.o.f. curved flat
F-theory
spacetime

SO(5, 5) spinor 16 µ, ν, · · · α, β, · · ·

SO(6, 6) spinor 32 µ, ν, · · · α, β, · · ·

GL(5) tensor 16 M,N, · · · A,B, · · ·

GL(6) tensor 32 M,N, · · · A,B, · · ·
worldvolume

SO(5, 5) vector 10 m,n, · · · a, b, · · ·

SO(6, 6) vector 12 m̂, n̂, · · · â, b̂, · · ·

GL(5) vector 5 m,n, · · · a, b, · · ·

GL(6) vector 6 m̂, n̂, · · · â, b̂, · · ·
T-theory

(only section 4.1)
spacetime

O(D,D) vector 2D M,N, · · · A,B, · · ·

left-handed D M,N, · · · A,B, · · ·
right-handed D M,N, · · · A,B, · · ·
worldvolume

SO(1, 1) vector 2 m,n, · · · a, b, · · ·

B Brackets

In the F-theory spacetime the Lie derivative is modified in such a way that it is the
SO(5, 5) U-duality symmetry covariant. We compute commutators in the SO(5, 5) spinor
representation which is easier than the GL(5) representation. For vector functions Viµ(X)
with i = 1, 2 in the 16-dimensional spacetime a commutator brackets of these vectors is
given by

[
V µ

1 Bµ(σ), V ν
2 Bν(σ′)

]
= 2i

(1−K
2 Φm

(12)(σ) + 1 +K

2 Φm
(12)(σ

′)
)
∂mδ(σ − σ′)

−i (V ν
1 ∂νV

µ
2 − V

ν
2 ∂νV

µ
1 )Bµδ(σ − σ′) (B.1)

+i
(1−K

2 V1γ
m∂µV2 −

1 +K

2 ∂µV1γ
mV2

)
(γmB)µδ(σ − σ′)

Φm
(12) = V1

µγmµνV2
ν .
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The exceptional Courant bracket is given by K = 0 as[
V µ

1 Bµ(σ), V ν
2 Bν(σ′)

]
= i

(
Φm

(12)(σ) + Φm
(12)(σ

′)
)
∂mδ(σ − σ′)− iV[12]

µBµδ(σ − σ′)

V[12]
µ = V ν

[1|∂νV
µ
|2] −

1
2(V[1|

ργmρλ∂νV|2]
λ)γmνµ . (B.2)

while the exceptional Dorfman bracket is given by K = 1 as[
V µ

1 Bµ(σ), V ν
2 Bν(σ′)

]
= 2iΦm

(12)(σ
′)∂mδ(σ − σ′) (B.3)

−i
(
V ν

[1|∂νV
µ
|2] + (∂νV1γ

mV2)γmνµ
)
Bµδ(σ − σ′) .

C 11-dimensional tensor representation

The 16 component SO(5, 5) spinor current is decomposed under the GL(5) as 16 → 5 ⊕
10⊕ 1. We present the current algebras preserving the full tensor indices such as Bm1···m5

with m = 1, · · · , 5 in order to manifest the 11-dimensional supergravity background. The
SO(5, 5) current for the M5-brane is obtained as BM = (Bm,Bm1m2 ,Bm1···m5) [41]. The F-
theory SO(5, 5) current algebras give in (3.8) are rewritten in terms of the GL(5) tensors as

[Bm(σ),Bn1n2(σ′)] = 2iδ[n1
m ∂n2]δ(σ − σ′)

[Bm(σ),Bn1···n5(σ′)] = 2i
4! δ

[n1
m ∂n2···n5]δ(σ − σ′)

[Bm1m2(σ),Bn3n4(σ′)] = 2i∂m1m2n3n4δ(σ − σ′)[
BM (σ), B̃N (σ′)

]
= 0

[
B̃m(σ), B̃n1n2(σ′)

]
= −2iδ[n1

m ∂n2]δ(σ − σ′)[
B̃m(σ), B̃n1···n5(σ′)

]
= −2i

4! δ
[n1
m ∂n2···n5]δ(σ − σ′)[

B̃m1m2(σ), B̃n3n4(σ′)
]

= −2i∂m1m2n3n4δ(σ − σ′)

where the δ(σ) stands for the 10-dimensional worldvolume function δ(10)(σ − σ′). The
bosonic coordinates, XM = (Xm, Xm1m2 , Xm1···m5) and PM = (Pm, Pm1m2 , Pm1···m5), sat-
isfy the following canonical commutators

[Pm(σ), Xn(σ)] = 1
i δ
n
mδ(σ − σ′)

[Pm1m2(σ), Xn1n2(σ)] = 1
i δ

[n1
m1δ

n2]
m2δ(σ − σ′)

[Pm1···m5(σ), Xn1···n5(σ)] = 1
i δ

[n1
m1 · · · δ

n5]
m5δ(σ − σ′) .

(C.1)

The covariant derivatives, which are selfdual currents, are given as
Bm = Pm + ∂nXmn + 1

4!∂
m1···m4Xmm1···m4

Bm1m2 = Pm1m2 − ∂[m1Xm2] + 1
2∂

m1···m4Xm3m4

Bm1···m5 = Pm1···m5 + 1
4!∂

[m1···m4Xm5] ,

(C.2)

and the symmetry generators, which are anti-selfdual currents, are given as
B̃m = Pm − ∂nXmn − 1

4!∂
m1···m4Xmm1···m4

B̃m1m2 = Pm1m2 + ∂[m1Xm2] − 1
2∂

m1···m4Xm3m4

B̃m1···m5 = Pm1···m5 − 1
4!∂

[m1···m4Xm5] .

(C.3)
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The Virasoro constraints are the followings

Sm = 1
2BnBnm = 0

Sm1···m4 = 1
2

[
BnBnm1···m4 + 1

8B
[m1m2Bm3m4]

]
= 0

T = 1
4

[
Bmδ

mnBn + 1
2B

m1m2δm1n1δm2n2B
n1n2

+ 1
5!B

m1···m5δm1n2 · · · δm5n5B
n1···n5

]
= 0 .

For the tensor calculation there are several useful relations to obtain the Virasoro
algebras for the totally antisymmetric tensors tm1m2 and Tm1···m4 which are obtained by
the totally anti-symmetric 6 indices as

1
3!V

[m1εm2m3m4]n1n2 = −V [n1εn2]m1m2m3m4

1
4 t

[m1m2Tm3m4]n1n2 = −tn1n2Tm1···m4

1
4ε

ml1l2[n1n2Tn3n4] = εmn1···n4T l1l2 . (C.4)

D Double vielbein formulation

The double vielbein formulation [10] in the simplest example is explain in this appendix.
The selfduality constraint in the T-theory Hamiltonian with a flat worldsheet is the anti-
selfduality current is 0: the 2D-dimensional selfdual current (the covariant derivative) and
the 2D-dimensional selfduality current (the symmetry generator current) are given by{

BM = PM + ∂σX
NηNM

B̃M = PM − ∂σXNηNM .
(D.1)

When the 2D-dimensional coordinate XM is written in terms of the D-dimensional coor-
dinates as (x, y) and the canonical conjugates as (px, py) for the O(D,D) invariant metric
ηMN = ( 0 1

1 0 ), the currents are written as

BM =
{
px + ∂σy

py + ∂σx
, B̃M =

{
px − ∂σy
py − ∂σx .

(D.2)

The selfduality constraint is the anti-selfdual current is 0 B̃M = 0 in the usual formulation.
By using the selfduality constraint py = ∂σx, the selfdual current reduces into the D-
dimensional momenta and the winding modes BM → (px, ∂σx).

When the Hamiltonian is made from only the selfdual currents, the Hamiltonian form
Lagrangian gives a chiral scalar Lagrangian where the term (∂σx)2 is absent.

I =
∫
L , L = ẋp−H

H = g

2B
2 → L = 1

g
(Ẋ2 + 2gẊ ∂σX) .

– 31 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
1

But adding the squared anti-selfdual current as a constraint with the Lagrange multiplier
g̃ leads to the worldsheet covariant action as

H = g

4B
2 + g̃

4B̃
2 → L = 1

g + g̃
(Ẋ − g∂σX)(Ẋ + g̃∂σX) . (D.3)

This is rewritten in terms of the selfdual and the anti-selfdual currents as

L = 1
2gJSDJSD + g − g̃

2g(g + g̃)JSD
2 (D.4){

JSD
M = ẊM + gη̂MNηNL∂σX

L

JSD = ẊM − gη̂MNηNL∂σX
L

JSD
M =

{
ẋ+ g∂σy

ẏ + g∂σx
, JSD =

{
ẋ− g∂σy
ẏ − g∂σx .

(D.5)

The first term in the Lagrangian is the free kinetic term while the second term is the
selfduality constraint in a bilinear form. The bilinear form constraint reduces into the
anti-selfdual current to be 0, which relates the doubled coordinates x and y as the usual
selfduality constraint.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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