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1 Introduction

Duality is a cornucopia of string theory creating its unique properties. Superstring theory
is considered to be a candidate for a unified theory of all forces, and five types of superstring
theories have been shown to exist. Five superstring theories together with M-theory form
pairs related by T-duality or S-duality. Then why are superstring theories related in a
way of chain of dualities? T-duality is the equivalence under the interchange of R <+ o/ /R
for the radius of the compactified space R, and S-duality is the equivalence under the
interchange of g +» 1/g for the string coupling g. So they relate paired theories. These
T-duality and S-duality are encompassed by U-duality. Therefore we examine whether a
theory with manifest U-duality exists which describes different superstring theories by its
different sections. We call such a theory with manifest U-duality “F-theory”.



The theory with manifest T-duality was presented in [1-3] which was named “T-theory”
later. “T-theory” was defined by the O(D, D) current algebra which generates gauge sym-
metries of background gauge fields. It contains winding modes even in an uncompactified
space, and the D-dimensional space includes time direction to describe dynamical gravity.
All string modes including massive modes are described in the T-theory which has been
developed [1-11]. Section conditions eliminate winding modes while the string field theory
condition Lo = Lo mixes massive winding modes with massive oscillator states [12].

Duality relates nonperturbative states of classical string theory. When duality sym-
metry is represented linearly in some classical theory, nonperturbative states are described
perturbatively. The O(D, D) T-duality symmetry is represented linearly in the Double
Field Theory (DFT) [1-3, 12—-18] and the generalized geometry gives a mathematical frame-
work of geometry induced by T-duality [19-21]. They are theories of massless modes of
string theory.

T-duality and S-duality are unified into U-duality by the exceptional symmetry group
which involves non-perturbative branes [22]. M-theory was conjectured as a theory to
unify superstring theories through dualities whose low energy effective theory is the 11-
dimensional supergravity theory [23]. F-theory was firstly proposed by Vafa [24] to under-
stand the IIB theory in the string duality web where similar ideas are also referred [25, 26].
The O(D, D) T-duality symmetry is extended to the exceptional symmetry group U-duality
symmetry in generalized geometry for M-theory [27, 28] and Exceptional Field Theory
(EFT) [29-38]. Current algebras for branes were calculated to present generalized brackets
and derive background gauge symmetries [39-41] corresponding to the U-duality covariant
formulation of the 11-dimensional supergravity [29, 30].

Recently “F-theory” as a theory with manifest U-duality has been realized [7, 42-51] as
a generalization of T-theory. F-theory is defined by the exceptional group current algebras
on branes. The exceptional group acts both the spacetime coordinates and the worldvolume
coordinates. Since the exceptional group includes both the O(D, D) T-duality symmetry
and the SL(2;R) S-duality symmetry, F-theory reduces both the IIB theory and M-theory
directly by sectioning or dimensional reduction. This solves the puzzle of the IIB theory
in the duality web as shown in the duality diamond (2.1) including F-theory.

In this paper we focus on the E5=SO(5,5) F-theory. The SO(5,5) current algebra is
realized by a 10-brane. The spacetime coordinate is the 16-dimensional spinor representa-
tion of SO(5,5) while the worldvolume coordinate is 10-dimensional vector representation
of it. 16 is decomposed into 5+ 10+ 1 under GL(5) symmetry where 5, 10, 1 correspond to
the 5-dimensional momentum, the M2-brane winding mode, the M5-brane winding mode
respectively. This is a generalization of doubling the spacetime coordinate for linear re-
alization of the O(D, D) T-duality symmetry as D momenta plus D winding modes. We
propose two different ways of writing the F-theory 10-brane actions: 1. the Hamiltonian
form action and 2. Lagrangian form action.

1. The Hamiltonian form action is based on the SO(5,5) “G-symmetry” current algebra.
The Lagrangian is written in terms of the selfdual and anti-selfdual field strengths,

Fgp* and ﬁ@“ with 4 = 1,---,16. The background gauge fields G, are coset



elements of G/H where H is a subgroup of G. The worldvolume index ism = 1,---, 10
and 7Yy is the 10-dimensional gamma matrix. We propose the SO(5,5) symmetric
F-theory 10-brane action in curved backgrounds in (4.14) as

Iz/m&%L

1o o ~ O o o o
L = EFSDMGMVF@V - AF@MGMVF@V - )‘mFsT)M')’m/wFsij (11)

where g, A and N2 are Lagrange multipliers.

2. In the Lagrangian formalism the SO(5, 5) U-duality symmetry is enlarged to SO(6, 6)
“F-symmetry”. The field strength is a 12-dimensional Weyl spinor }?' p With p =
1,---,32. The background gauge fields GEX are coset elements of F/L where L is a
subgroup of F. The worldvolume index is i = 1, - - , 12 and ¥ is the 12-dimensional
gamma matrix with 2722 = %E[@Eﬁ]. We propose the SO(6,6) symmetric F-theory
10-brane action in curved backgrounds in (4.28) as

1:/&%L
o o 1 o . o
L = eFﬁGﬂFH — 5)\@FE(C’ZM)£FH (1.2)
where e and A5 are Lagrange multipliers.

The organization of the paper is as follows. In section 3 we present complete sets of
the SO(5,5) current algebras in both the SO(5,5) spinor representation in subsection 3.1
and the GL(5) tensor representation in subsection 3.2. The former reveals the structure of
the current algebra such as the bosonic k-symmetry, while the later gives direct coupling
to the 11-dimensional supergravity background. One of the author presented the SO(5,5)
current algebra of the M5-brane [41] obtained from the Pasti-Sorokin-Tonin (PST) M5-
brane Lagrangian [52]. This SO(5,5) current algebra is recognized as the F-theory 10-
brane current algebra by doubling the worldvolume coordinate as shown in (3.21), (3.24)
and (3.25). In subsection 4.1 we begin by reviewing the double zweibein method to obtain
the worldsheet covariant action [10, 11] as a method to overcome the chiral action [53]. By
applying this method to F-theory we obtain the SO(5,5) F-theory 10-brane action in the
Hamiltonian formalism in subsection 4.2. We extend it to the SO(6,6) F-theory 10-brane
action in subsection 4.3. In the SO(6, 6) Lagrangian the worldvolume vielbein merges with
the spacetime vielbein. In subsection 4.4 we present F-theory 10-brane actions in terms of
GL(6) and GL(5) tensors to couple the supergravity background. In section 5 we present an
action for a 5-brane obtained from the F-theory 10-brane action. 5 worldvolume dimensions
are reduced by solving the worldvolume section constraint V = 9"d,, = 0. The obtained
action for a M-theory 5-brane is sum of the free kinetic term and bilinears of the selfduality
constraint.



2 Introduction to F-theory

We begin by an introduction to “theories” with manifest dualities such as T-theory and F-
theory together with “S-theory” and “M-theory”. S-theory is a string theory compactified
to D-dimensions and M-theory is a brane theory compactified to (D + 1)-dimensions.
“Theories” are defined by current algebras with G-symmetry in the Hamiltonian formalism.
The background gauge fields are parameters of cosets G/H which are generalization of
the GL(D)/SO(D — 1,1) for the vielbein gauge field of the Einstein gravity. All bosonic
component fields are representation of G, while fermionic fields are representation of H. A
new duality web given in the diamond diagram in (2.1) [45].

F-theory
Epiip+1y/Hp

bispinor

e pY
M-theory T-theory
GL(D +1)/SO(D, 1) O(D,D)/SO(D — 1,1)? (2.1)
D+1 2D

N\ e

S-theory

GL(D)/SO(D — 1,1)
D

Figure: Diamond diagram

Theories are also defined by worldvolume actions. The Hamiltonian form action is ob-
tained from the G-symmetry current algebra. The spacetime and the brane worldvolume
are representations of G-symmetry. The action is written as bilinear of the field strength
F. There is a gauge symmetry generated by the Gauss law constraint with the gauge
parameter k. The spacetime coordinate X, plays the gauge field while the auxiliary co-
ordinate X, corresponds to Ag in the usual gauge theory. The worldvolume coordinate is
denoted by 0 = a%. We focus on the D=4 E5=S0O(5,5) G-symmetry case in this paper.
Representations of the G-symmetries of theories for the D=4 case are summarized in ta-
ble 1. The D=4 F-theory is described by the 10-brane in the 16-dimensional spacetime.
The 10-dimensional chiral spinor has a bosonic x-symmetry-like structure similar to the
Green-Schwarz superstring. The D=4 F-theory in the lightcone-like gauge fixing reduces
to the T-theory in the 4-dimensional spacetime.

The G-symmetry is enlarged to F-symmetry in the Lagrangian formulation where the
worldvolume Lorentz covariance is manifest. In the usual gauge theory the G-symmetric
field strengths correspond to the nonrelativistic electric field and magnetic field while the F-
symmetric field strength corresponds to the Lorentz covariant field strength. The constraint
VY = 0 is a worldvolume section condition. The F-symmetries and representations of theories
are summarized as in the table 2.

The F-symmetry includes the worldvolume symmetry. For example the worldsheet
zweibein is in the SL(2)/SO(1,1) coset parameter. Symmetry groups for D=4 case are
summarized as in the table 3.



) spacetime world field gauge
spacetime
theory | G-symmetry X auxiliary -volume strength parameter
7 X, ) F K
F- SO(5,5) 16 16/ 1910 16 ® 16/ 16 @ 16’
M- GL(5) 5@10 @1 1910 5 1®5 191005 101005
T- 0(4,4) 8 0 1e1 8d8 0
S- GL(4) 4 0 1®1 44 0

Table 1. G-symmetries and representations of theories (D=4 case).

space world field gauge cons
theory | F-symmetry -time -volume strength parameter -traint
X 0 F K V=0
F- SO(6,6) 32/ 12 32 32 1
M- GL(6) 692036 66 1e15¢15 a1 1015015 @1 1
T- 0(4,4)SL(2) (8,1) (1,2) (8,2) 0 0
S- GL(4)SL(2) (4,1) (1,2) (4,2) 0 0

Table 2. F-symmetries and representations of theories (D=4 case).

theory | F-symmetry G-symmetry L-symmetry H-symmetry
F-theory SO(6,6) SO(5,5) SO(6;C) SO(5;C)
M-theory GL(6) GL(5) SO(4,2) SO(4,1)
T-theory | O(4,4)SL(2) 0(4,4) SO(3;1)250(1,1)  SO(3,1)?
S-theory | GL(4)SL(2) GL(4) S0O(3,1)S0(1,1) SO(3,1)

Table 3. Symmetries of theories (D=4 case).

The spacetime and the worldvolume vielbeins are elements of the coset F/L. The
number of dimensions of the coset F/L is larger than the one of G/H by the number of
Lagrange multipliers of Virasoro constraints for the p-brane as

dim (i) = dim (g) +p+1. (2.2)
Coset groups and the G/H background gauge fields for the D=4 theories are summarized
as the table 4.

F-theory reduces to T, M, S-theories by reducing the spacetime dimensions or the
worldvolume dimensions by the dimensional reduction or the section condition. In this
paper we reduce from the F-theory 10-brane to the M-theory 5-brane with preserving the
SO(5,5) G-symmetry, then the obtained M-theory 5-brane couple to SO(5,5) background
gauge fields.



theory dim(%) dim(%) % gauge fields (;,—0.1... 3)
F-theory 36 25 gmns Bmn, CrR)
M-theory 21 15 Gri (1m=0,1,- 4)
T-theory 18 16 Imns Bmn
S-theory 12 10 Ymn

Table 4. Gauge fields (D=4 case).

3 SO(5,5) current algebra

The D=4 F-theory manifests the E5=SO(5,5) G-symmetry. This theory reduces to the
type Il superstring theories in the 4 dimensional spacetime. The type II superstring theories
in 10 dimensions have 32 supersymmetries. The supercharges have the H-symmetry index,
SO(5; C)=Sp(4;C) index A, A =1,--- ,4, and the internal space index, SU(4) index A’ =
1_, e ,4/. /Supercharges are Qu, Q AA/ while translation charges are P 4z, U545 and
U[ AB] [AB'l The superalgebra in the D=4 F-theory is given as follows.

{Qan; 93"} = 08P s

{Quaw, Qsr} = Vg s (3.1)

{Qa™, 905"} = T ™",

The 16 translation operators P 4, are decomposed into 4 momenta, 4 winding modes (NSNS
charges) and 8 RR charges (1 ® 6 @ 1 for type IIA and 4 @ 4 for type 1IB) in the type II
superstring theories in 4 dimensions. The rest of bosonic operators U az).4/57, 6[ AB] A'B]
are internal operators which are linear combinations of the 6-dimensional internal space

momenta T[AB’]? Y8l and winding modes F4g)4/57; F g B’} a5 follows.

Oup|as] = CasYiap) + Flasas)
(SMB]MB] = CABTM B) -{-F[AB][AB] . (3.2)

At first, we present current algebras in the SO(5,5) spinor representation. Next, we
present it in the GL(5) tensor representation, in which reduction to M-theory is straight-
forward and coupling to the 5-dimensional subspace of the 11-dimensional supergravity
background is manifest.

3.1 SO(5,5) spinor representation

The SO(5,5) current in a flat space is the 16-component spinor >, with p = 1,---,16,
while the worldvolume is the 10-dimensional vector with the worldvolume spacial derivative
0™ for m = 1,---,10. The SO(5,5) current algebra in a flat space is given by

[>u(0),>0(0)] = 2iYmuw0™(c — o) (3.3)



with 0§ (0) = %5(10) (o). The 10-dimensional v matrix is defined by

Vnliep V™ Mim) = 2n, (3.4)

with the SO(5, 5) invariant metric 7,,,. The gamma matrix ¥y, is transformed under the
SO(5,5) transformation as

SO(5,5) > M, M,", (M, YuopM,P)Mp™ = Yo,  MyPnHEMR =y (3.5)

The current algebra (3.3) is SO(5,5) covariant with transformations of the spinor current
and the vector derivative as

D>, — M/, Om — M0, . (3.6)

The 16-dimensional SO(5,5) spinor coordinate X* and its canonical conjugate P, are
given by

14 1 14
[Pu(0). X*(0')] = 2823(0 ). (3.7)
The selfdual current >, the anti-selfdual current > u and their algebras are given as
D>y = Py + Ym0 X" = P, + a/WXV

>y = Py — Y 02XY = P, — 3, X"

[>,(0),>u(0)] = 2iYmuw0™6(c — o')
[>u(0),>u(0)] =0 (3.8)
[5“(0), 51/(0)] = —2@'7@#”8@5(0 —a').

Under the global SO(5,5) transformation the canonical coordinates are transformed with
use of (3.5) in such a way that currents are transformed as a SO(5,5) spinor

P, — M,"P,
OmXH — ML, m(oR XYM
= (Py %+ Yimpp0™XP) — M,” (Py £ Yingup0™X") . (3.9)

The 10-dimensional worldvolume o,,-diffeomorphism is generated by the Virasoro con-
straint S™ = 0, and the 7-diffeomorphism is generated by 7. Closure of the Virasoro
algebra requires secondary constraints, /* =0 and V =0

1
R e (3.10)
1

U = A D g O = (@) =0
V = mn 00" = 0.



The constraints U* = 0 and V = 0 are the Gauss law constraints which generate infinite
series of gauge symmetries similar to the x-symmetry. For the 16 component spacetime
current >, and the 10 component worldvolume translation 0™ which satisfy (3.3), con-
straints U* = >@" and V = 0™ 0, become first class constraints. V = 0 constraint is the
SO(5,5) invariant constraint sectioning the worldvolume. S™ = 0 and U* = 0 are SO(5, 5)
covariant, while the metric 7#*¥ in 7 breaks SO(5, 5) to SO(5; C).

They satisfy the following algebra

[S2(0), 5 ul0")] = P20 — A2, 1)) — ) (311)
[T(0),>u(0")] = iU’ (0)d(c — o)

where 0™ and U* act on §(0 —¢’). The SO(5,5) indices are raised and lowered by 7, and
N2, Tt is also noted that ﬁ“pvmkﬁ = Nmn Y. The set of Virasoro algebras is given by

[S2(0), S2(0")] = i |25 — 5 {r22(oU) - (42220} (0)3(0 - o)
Fid(o — o) [a<msn> _ ;(ufymnw}
= R(s20)2(0) + 52(/)0%(0)
5 P2EU) - (57220} ()| do — o)
Fid(o — o) [a[msnl _ ;(uymnw]
[S2(0), T(0)] = § [1T0% = S0t ()] (0)3(0 = o

+id(r = o) 202 = SUnm)it e

[T (o), T(0")] = 2820 (0)5(0 — o) + (0 — ") (IpS™) (3.12)
[S™(0), Ut (o")] = i(>A"™)"V(0)d(0 — o)

[T (o), U ("] = i(>n)"V(0)d(c — o)
Ut (o), U"(0")] = —=2id""V(0)6(0 — o).

The spacetime coordinate derivative of a function ®(X) is given by

0
oXH

B(X) = 9,8(X) = i / 4" [>,(0"), B(X ()] - (3.13)

The worldvolume coordinate derivative of a function ® (X (o)) is given by

0

Oom

57— P(X(0)) = 97®(X(0)) = i/dwa' [57(0"), ®(X ()]

1
= B ,8(X). (3.14)



The SO(5,5) current algebra in curved backgrounds with torsion T,g” is given as
follows.

[>a(0),>5(0")] = 2iThs">~0(0 — 0') + iY4ap (D%(c) — DX(c")) 6(c — ') (3.15)
1
Tog” = Ejo/*(0,E15)" ) B, — 5(E[a"wgm,a,\Ew”)y@pEpV.

The curved space current >, the flat space current >, and the curved space worldvolume
derivative D2, the flat worldvolume derivative 9™ are related by the spacetime vielbein
E," and the worldvolume vielbein &,,2 as

Do = Bol'D>,, D% = E,%0m. (3.16)

The spacetime vielbein E,#* € SO(5,5)/SO(5; C') and the worldvolume vielbein relate the
curved background indices u, m and the flat space indices «, a as

Eau'ymquﬁyggm = Yaap s ggmnmgéﬁ = Nab - (3'17)

The gauge transformation of E,* is given by

WE>u(o) = i/da/ N>, (0"), Bt > (0)]
WEL = N0, B — E" 0N + (Eqv*0uA\) v . (3.18)

In curved backgrounds the 7 component of Virasoro constraint 7 = 0 (3.10) is gener-
alized as

1 1
T = D> GM" >, = —Dai* >4
4" 4" (3.19)

GH = B, 'i*P Eg .

The spacetime gauge field G*¥ is parametrized by elements of the coset SO(5,5)/SO(5;C).
Spacial components of Virasoro constraints S™ in (3.10) is inert in curved backgrounds as

1 1
1PV B = JEm (B ) = En ST (3.20)

Background independence of the spacial components of Virasoro constraints makes possible
to impose as the section conditions on fields. This is the same property with the T-theory.

3.2 GL(5) tensor representation

The SO(5,5) current algebra in the GL(5) tensor representation was obtained in the M5
brane Hamiltonian [41] from the PST action [52]. The M5-brane is a 11-dimensional super-
gravity solution which is described by the spacetime coordinate 2™ (o), m = 0,1,--- , 10,
the second rank selfdual gauge field A;;(c), ¢ = 1,---,5 and their canonical conjugates
pm(0), EY(c). The currents are the vector, the 2-rank tensor corresponding to the
M2 brane charge and the 5-rank tensor corresponding to the M5 brane charge. The 7-
diffeomorphism constraint 7 = %pm2 4+ --- = 0 is written in bilinear of currents. On
the other hand the 5-dimensional worldvolume diffeomorphism constraints are given as



Hi; = ppOix™ + %Ejlj? OiAj,j;) = 0. Multiplying the pullback matrices 9;z™ and E% ojx™
on H; = 0 gives bilinears of currents §™ = §"1""™4 = () as Virasoro constraints.

In the 5-dimensional subspace where the 11-dimensional space is compactified on a
5-dimensional torus the currents combine into the 16 dimensional SO(5,5) spinor represen-
tation. The reducible set of Virasoro constraints 8™ = S™1"™4 = () become 8™ = S,,, = 0
with m = 1,---,5 which is the 5 + 5 vector representation of the SO(5,5). All these
constraints 7, S™ and S,, satisfy a closed algebra with secondary constraints.

The SO(5,5) current algebra is written in terms of the 16-dimensional spacetime cur-
rents >y = (D, >"™™2) ) as the GL(5) decomposition of 16 component SO(5,5)
spinor current 16 — 5@ 10 @ 1. The commutator of the spinor currents gives the vector,
so the worldvolume is 10-dimensional space with 0™ = (9™, 9,,) with m = 1,--- , 10, and
m = 1,---,5. The SO(5,5) current algebra in the GL(5) tensor representation is given
with the 10-dimensional v matrices pyny and pt based on [41] by

[DM(J), DN(U/)} = QipmMNam(S(U - U/) (3.21)

panr PPN Moy = iy

The O(5,5) invariant metric 7y, is given by

n
Mon = ™ ( 0 6’”)- (3.22)
mAr 0
Concrete expression of pyy with arbitrary parameters st = (s, 5) and s; = 7y, s™ =
(51, s') is given by
n ning
m 0 57[218”2} Sm
PLMNSL = mima 5£Lm13m2] gmimaninzkg, ()
Sn 0 0
(3.23)
n ning
IMN " 0 Ofry, 5na] s™
P S1= mimsa 5[7;,“57112} €m1m2n1n2k8k 0
s" 0 0

PMN satisfies the same SO(5,5) transformation (3.5). Under the SO(5,5) transformation
it is transformed as
SO(5,5) > M= 08,2+ 6 My, My™ =60 + MY
(péMNsL)5MMN + 0NN (pMN sp) + pMN S M s, =0 (3.24)
’r]ﬂlcﬂ\flﬂ + (SMLmnlﬂ: 0

~10 -



where infinitesimal SO(5, 5) matircies are given by

n

A ning
~ m am" — % m —Ymnins 0
(SMMN = mimo _Bmﬂngn %62?152122] o 5[[2111&”2]7712] ,ymlmg
0 Brana 2
n (3.25)
n
OM,,2= m (amn Brmn )
- mo\ —ymn ™
. = . - 1
with 6m1m2m5 = §€m1 msﬁm4m5a Ymimoms = §€m1~~-m57m4m5 .

The GL(5) tensor coordinate X™ = (X™, X,,,m,, X) and its canonical conjugate
Py are introduced by

[Pa(o), XV (o")] = %5%5(0 _ o). (3.26)

The selfdual and anti-selfdual currents,t>,; and >, together with their current algebras
are given by

>y = Par+ pmav02X N
By = Pu— prun0=XY

[>a(0), >N (0)] = 2ipmmNn0Zo(o — o)

[>(o),Bn(0)] =0 (3.27)

The selfdual currents and their algebra in components are given as

>mimy — pmimsy 4 a[mngl] + %Eml"‘m4léle3m4
> = P4 9,X™
(o), B1172(0")] = 2id' 9"26(0 — o)

[>m(0),>(0")] = 2i0,6(c — o) (3.28)

[DmlmQ (U)’ [> 7874 (UI)] _ 2i€m1m2n3n4l(§l(5(0 — 0/) .

11 -



The set of Virasoro constraints in (3.10) is rewritten as

1
ST = EDMpmMNDN =0 (3.29)
1
T = ZDMﬁMNDN =0

uM = pmMNp > N0 =0
V = 0™ =0

with the SO(5; C) invariant metric

n

ning
m pmn 0 0
~MN __
n T mime ( 0 My [ma TTma]ne 0) (330)
. 0 0 1

The Virasoro constraints in components are given by

S = L, mnm = g

S = LDl + Lemmy o, > MM = () (3.31)

T = i [|>m77mn>n + %Dmlmznmmﬂﬁnzm > + §2} =0

U = SO+ ™G =0

Uiz = B (my Oma) + 3Emy s >""0™ = 0 (3.32)

U=Dp,pd"=0

Y =20"0, =0.
The Virasoro constraint S™ generates the shift of the worldvolume coordinate on the

current >ps as

[Sm(O'), DM(U/)] =3 [2[>M§m — nmpLMNUN} d(o — 0'/) . (3.33)
The Virasoro algebra in the GL(5) tensor representation is the same as (3.12) by replacing
the y™*_matrices with pm™~ in (3.23)

52(0), 52(0")] = i 2502 — L (122(U) ~ (22U} (2150 — o)

+id(o — o) [a(ms"> - (UpMD)]

2
1
+id(o — o) {26’”7 — z(upm)MﬁMNDN}

[T (o), T(0")] = 2180, (0)d(0 — 0') +i6(0 — ") (O S™)
(3.34)
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52(0).uM ()] = i(ep™) V(0)i(0 ~ o)

T (), uM(o")] = i(>0)"V(0)i(o - o)
[uM(a),uN(a')} = —2i""V(0)s(c — o)

with (pm)My = %p[mM Loinnt™. The GL(5) tensor expression of the above relation is
as follows.

[S™(0), >n(0”)] = i [2>n3m - 5372] (0)5(o — o)

(
[Sm( ) [>n1n2(0./)] = [2>n1n28m _ 1 mn1n2n3n4un3n4} (0.)5(0. _ O',)
[5™(0),>(0")] = i[2>0™ —U™] (0)é(0 — o) (3.35)

a’)

[Sin(0), 0

()] = |28 + Unnn| (0)3(0 = o)
[Su0), Bmm(0")] = i [2m7 ()5 + Sh1Ur] ()60 — o)

[sm(a), > (o’ )] = 2i5>(0)Ipnd(0 — o).

The Virasoro algebra in the GL(5) tensor expression is given by

[8™(0),S8™(o))] =i [25<ma”> - % ( > — m“llb%hu%ﬂ (0)d(o — o)

1 /- 1
+id(o — o) [(awsm) -5 (u>mn - zemnhhl’dum?ms)]

[Sm(a), ‘n(a’)} = [2(Sman +8,0™) — =™ <>lul + 35U+ = >lll2uhlg)

»-lk\H

_%(Dnum - Dmlunl)] (0)5(0 B OJ)

— ~ 1 - 1
Fid(o — o) [(amsn £0,8™) + 07 (ul>l s - 2u1112>z112>
l(umb Dml)]
9 n nl

1
emnllblngllzuls)} (0)5(0' — U/)

+id(o — o) [5(m8n) + % (Umnli - ;6mn1112131/111>l2l3>}
(S™(0), T(")] = i [470"1 - % (nmk>ka + iemml"'mnmlklnmkz>’f1k2um3m4
+ I>Z/{m>} (0)6(0 — o)
+id(o — o) [zamT — % (nmku>k +U™>

1
G b st ) (030 — o)
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_ = 1
[Sim(0), T(0")] =i [4T8m = (0" U + nklmkmwl’@ul)} (0)5(c — o)

- 1
+Z§(U - OJ) [QamT - i(nknukmbn + nk1lnk2mul[>klk2):|

[T (), T(0")] = 2i(S™Om + Snd™)(0)6(c — ') +i8(0 — ') (0" Sy + OmS™) .
(3.36)

In order to couple to the 11-dimensional supergravity background the 5-dimensional
indices are converted into the 11-dimensional tensor indices as

P — (MM P X e = €myeems X
|>m1...m5 _ 6m1~~m5§7 lgml...mf) _ 6m1...m5§ (337)

8m1-~-m4 — €m1-~m4lgl’ Sm1-~m4 — 6m1mm4l(§l .

Currents in the GL(5) tensor representation coupled to the 5-dimensional subspace of the
11-dimensional supergravity background are given as

>y = EAMDM

EAMPmM NEB Nggm = paaB ;s Ea" Nmnp™ = Nab

3 3 3
eq" eq” 7[w]n1m2 _ean%CT[L[]mmw 7[71]3m4m5}
EaM = 0 em, ™ emy™ _%e[mla1em2a20g3m4m5] (3.38)
O 0 e[mlal e em5}a5

Under the SO(5,5) transformation in 7 = 0, e, and C’E]lmznm are trasnformed fractional
linearly. The 7 component of the Virasoro constraints 7 = 0 in a curved background is
given by

1 1
T = ZDMGMNDN = ZDAﬁABDB (3.39)

GMN — g, MpAB g N

where 7B is the same matrix as 7" in (3.30).

4 F-theory 10-brane actions

The F-theory SO(5,5) current algebras (3.8) or (3.27) are realized on the 10-brane world-
volume which we call F10-brane for short from now on. The Hamiltonian is given by linear
combinations of a set of Virasoro constraints (3.10) or (3.29) which are written in terms
of the selfdual currents. In order to construct the worldvolume covariant Lagrangian we
include the ones for the anti-selfdual currents. At first, we review how to construct the
worldsheet covariant action by using the double zweibein method [10, 11]. Then we propose
actions for the F10-brane with both the SO(5,5) symmetric Hamiltonian formulation and
the SO(6,6) symmetric Lagrangian formulation.
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4.1 Double zweibein formulation in T-theory

The physical current in the T-theory is the selfdual current which is chiral in the doubled
space. For the doubled space coordinates X = (z,y) the auxiliary coordinate y is intro-
duced with the selfduality condition; the anti-selfdual current is zero 0,2 —€,,,0"y = 0. We
impose the selfduality condition as the first class constraint by squaring of it. The action
contains both the selfdual current and the anti-selfdual current leading to the worldsheet
covariant action.

The double zweibein formulation of T-theory is given by O(D, D) current algebras for
the selfdual and the anti-selfdual currents, [>3; and >,;. These currents are written in
terms of the O(D, D) coordinates, X™ and Py with M =1,--- ,2D, as

[Py(0), XV (o)) = %5%005(0 _ o)

> = Par + 0 XN

D= Py — 0 XN

> (0), >N (0")] = 2inmNOs0(0 — o)
[> (o), B (o) =0

> (o), >N (0")] = —2inyNnD,6(0 — o)

with 0,0(0) = 8%5(1)(0). Virasoro constraints in terms of the selfdual current and the
anti-selfdual currents are given by

T = i>ui™V>y T =1ou™Vey (4.1)

S=i>un™V>y S=35unMVey

where #Y and nM¥ are doubled Minkowski metric and the O(D, D) invariant metric.

The Hamiltonian form action is given by
I = /deaL, L=XMpy-H
H = gT +sS+g§T +3S (4.2)

1 R 1. . -
= Dl + )"V x + 250 + )MV E N
with Lagrange multipliers g, s, g, §. After the Legendre transformation the obtained

Lagrangian is given by
L=¢J{(g+9n—(s+8n}tJ- (4.3)
Ty = X + (g0 + 50)0,X
Jo =X — (g7 + sm)0, X

o= g+a’ s+

with X = 9, X.
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The doubled coordinate has the left moving and the right moving components XM =
(XM, XM) with M,M =1,---,D. The D-dimensional right moving subscript M is only
used in these two paragraphs, and should not be confused with the enlarged dimension
subscript. D-dimensional metrics are iy = diag (7377, 7mn) and the O(D, D) invariant
metric nyn = diag (73777, —1Mmn). The vielbein field Ey? is O(D, D) gauge field

ExnMNENE =nB (4.4)

With use of the worldsheet doubled zweibeins, e,™ and e,”, the Lagrangian (4.3) is rewrit-

ten as

- -5 1
AP+ gl+é77£l—§ (4.5)

—_—— ~
e

> ] o=
[l
a0

S

S

3

>

=

=

=

m_(e—Te—Cr) —m_(l_(g+8)> m_(l_(g_8)>
ea - T o ) ea - ~ ~ 9 Qa - ~ ~
e+’ et 1 g+s 1 g—s

with € = det e, and e = det e,™.
The Lagrangian with the usual single worldvolume zweibein e, is given by

1 — p— — —_—
= - Mg P 4+ Ty Anapd g — A J g B = A JyAnapdip|  (46)

A= p{—(s+3F9)°+7°}

with e = det e, = 2g.
It is useful to give the T-theory Lagrangian in terms of the selfdual and the anti-selfdual

currents where the anti-selfdual current is the selfduality constraint.
1o o ~ O o o o
L= EJSDMGMNJS—DN — M5 GunJgs” — Mg munJss (4.7)
1 . 3 R
= EJSDAnABJ@B — Mg tapJss® — AJ%UABJ%

Jsp? = EyAJspM
J@A — EMAJ@M

JspM = XM 4 (gi) — sn)MN 0, X E
so = XM= (gi + sm)MVy 10, X"
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Bilinears of the anti-selfdual currents relax the selfduality constraint jST)M = 0 as shown
in (D.5). It is the selfduality constraint in curved backgrounds ¢"™0m X~ Gyu=€""0m XV nyu
with ¢"" = é, g7’ = —; and Gya = Nvar- In this formulation the worldsheet zweibein is
not factored out in this Lagrangian.

4.2 SO(5,5) Hamiltonian form action

We apply the double zweibein formulation to construct F10-brane actions. The Hamilto-
nian is sum of the set of Virasoro constraints 7 = S = Y* = 0 in (3.10) and Virasoro
constraints for the anti-selfdual currents 7 = S™ = 0 in (4.2) with Lagrange multipliers
9> Sms Yy 5 G, 5m respectively. Y, plays the role of Ag in the usual gauge theory. We begin
by the following Hamiltonian form action in the SO(5,5) spinor representation

I= /drdloaL, L = X'P,—H
H = (g7 + 5mS™) + (57 + 5mS™) + UMY, (4.8)

1 . 1. . -
= 1Du(g0 + smy™) B>y 4 1530 + 5y By + D (@Y )

[¢]
The Lagrangian is written in terms of field strengths FL* as

Jm ¥}, PV + Y, VX (4.9)

=}
S—
>
|
—~
Vo)
_|._
[VaR]

(~ﬁ+ s ﬂ)’uyﬁ‘a v }%T'u - X,u, - (?ILU/YV
( Fa w = a;wXV

and the V = 0 constraint given in (3.10). The field strengths are invariant under the gauge
transformation with the gauge parameter x, and <

5o XF ="Ky, 6.V =y + PR (4.10)

by using V = 0 constraint. This gauge transformation is generated by the Gauss law
constraint as 0, X* = [[ do k, U, X*]. There are gauge symmetries of the gauge symmetry
as same as the k-symmetry 0k = @xll), 6xll) = @@, ... and 6r = (?/%[1], 0K = (Z’R[Q], cee
The infinite series of gauge symmetries reduce a half of the coordinates. The 10-dimensional
worldvolume covariant action requires the auxiliary coordinate Y),, but it is removed by
the bosonic k symmetry in the temporal gauge. In the lightcone-like gauge a half of X* is
removed, giving the (444)-dimensional T-theory.

In F-theory currents F* the worldsheet vielbein cannot be extracted from the space-
time vielbein because the SO(5,5) covariant v-matrix 7,,,,, mixes the worldvolume index
and the spacetime index unlikely to the O(D, D) invariant metric sy in the T-theory
n (4.4). The first term contains both the selfdual and the anti-selfdual field strengths so it
is a free kinetic term. Other terms contain only the anti-selfdual field strength, then they
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are constraints. The F10-brane Lagrangian is further rewritten in terms of the selfdual and
the anti-selfdual currents analogously to (4.7) as

1o . © ~ O .o, o o,
L= *FSDM’I?#VF@V - AF@NT]IM/F@ - )\mFﬁu’ymuyF@ (411)

TM - (gﬁ + Sm’)’m)uyFJ v

Mo
=
I

{ Fspt = F# + (g7 — smY2)"EFy o,
F

A=1-0lg+9)
Am = @(s+3)m -
The selfdual and the anti-selfdual currents in F-theory mixes the worldsheet vielbein and
the spacetime vielbein as in (4.7).
In curved background the SO(5,5) gauge fields G, and the SO(5, 5) currents are given
with the SO(5,5)/SO(5; C) vielbein E4™ as
Gy = E,1apE,? | Fi®=E, F.n (4.12)

The F10-brane Lagrangian in curved background is written as

L=pF " {(g+ GG — (s + g)m'YmuV} F_Y (4.13)
= pFy {(g + g)ﬁa,@ - (5 + 5)%9046} Fr

with SO(5,5) vector parameter (s + §)% = (s + 5)™&,2, as (3.5).
Then now we propose a Lagrangian for a F10-brane in curved background in terms of
the selfdual and the anti-selfdual currents is given as

1o o ~ O o o o
L = EFSDNGMVF@V - )\FsiDMGIU’FsiDV - )\mFsiDMPYmHVFsiDV (414)

1 R R R
= ;FSDanaﬁFsT)B — ANFgp*Nap Fap” — A*Fap*Yaos Fsp”

{ Fsp® = EMO‘Z%SD“
Fyp® = B, Fgt.

The X and A\ are Lagrange multipliers for selfduality constraints given in (4.11).

4.3 SO(6,6) Lagrangian form action

Next let us consider the SO(6,6) F-symmetry covariant action. The SO(6,6) y-matrix is
given by 64x64 matrix I'¢ with two 32x32 matrices X% and X2 as

sao' B
ré _ 0 3 |
g 0

They satisfy the following algebra with the SO(6,6) invairant metric n@.

=1,---,12. (4.15)

2>

. " (@ /ié)ﬁllzgndj(sl
{re, T} = 22, o - (4.16)

i(@g’égﬁ)@, = 277@—55%/ .
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The SO(5,5) y-matrix is embedded as  a = (+, — a=(1,---,10)

. 320 0 0 %
Sy 0 BT = = o
o (0 0) 6%)“ (vaaﬂ 0 )
caa'f . @ 00 -\ 0 7%ag
saaf . St = ) 5= —
(055> <0 0)’ (vmﬂ 0 )

0 —o8 0 —62
pr— @ /1 QI = ’B 4.1
Cas <6z0>’0” (65()) (17

where v2 is the 10-dimensional y-matrix 'y(ﬂag'yb)ﬁ7 = 2%5) with y28 = ~afe  The

SO(6,6) generators are decomposed into the SO(5,5) dilatation, transformation and rota-
tion as

(nlasth b = xab f (4.18)

1
2
st- B _ 5" 0 sab 5 _ _ Aab B
=\ 0 =67 )" s 0 oo
8 S

y—a B _ 0 0 : D gaé 0 _’Ygaﬁ ‘
< —y2*8 0 ¢ 0 0

We use ¥’s as the 12-dimensional Weyl-spinors. It is also convenient to have explicit
notation of matrices

(Cribst = C(oslesh)es (4.19)

0 —6% 0 —nabe
+—aB _ B abya _ B
(Ot = (_55 ’ ) (> >—<,Yaba5 . )
_~aofB
(Cx2)2f = 70 . (Cnte)es = 0 0 '
0 0 0 7*ap

Let’s rewrite the SO(5,5) covariant action (4.14) in a SO(6,6) covariant way. Two
16-component Majorana-Weyl 10-dimensional spinors X* and Y}, are embedded into a
32-component Majorana-Weyl 12-dimensional spinor

o —Ya
Z:(Xa>, o =1, ,32. (4.20)

The SO(6,6) covariant field strength in a flat background is given by

o Fa
Fg:Eaﬁ,O 78 — <F5> , a=1,---,32

(8507 s ¥\ ([ (#X)a—0Ya
R ( #"” 636*) <X5ﬁ> a <8+X°‘—((5Y a) ' (4.21)

The field strengths are invariant under the gauge symmetry

5,29 = 30989, k5. (4.22)
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The V = 0 constraint in (3.10) is enlarged SO(6,6) covariantly.
V = nn0™0* =0 with 07 =0
=V = 15,070 = 9y 00 + 2070 = 0. (4.23)
We propose a F10-brane Lagrangian in a flat space with the worldvolume vielbein by

rewriting the SO(5,5) covariant action (4.14) with the SO(6,6) field strength (4.21) with

the 32x32 matrix metric ﬁgﬁ as

O 1 ~7
L = eFyif*Fy = S\ Fa(CTH)22 By
o o O 1 (] ~7 o
= eFo(ETHE)EF; — 5A@Fg(ETCE‘LI’E)%FE (4.24)

ﬁgé _ —f]aﬁ 0
0 ﬁaﬁ .

The field strength with the worldvolume vielbein in a flat space F, is given by

1 o
Fy = exp (2 fabzab) S

1 1
exp <2fabEab> gé = exp (2111(;5 E+_) T exp(—tq Z_Q)q,é (4.25)
o x
(Ve 0 & 0
0 ﬁ 53 ¢g72aﬁ 62;
with fi_ = In¢ and f_, = —1,. The Gauss law constraint is derived from the La-
grangian analogously to the usual gauge theory action. Lagrange multipliers, e, A.;, and

the worldvolume vielbein fields ¢, g, in the SO(6, 6) action (4.24) correspond to Lagrange
multipliers of Virasoro constraints for selfdual and anti-selfdual parts, g, s, and g, 34, in
the SO(5,5) action (4.13) as

Ap- = 2(9_+§9)
e = \/pgg
)\ab - 905 aSb
6= 9L, . @t (4.26)
» g+3 Veres -
s Mg = — ggfgo(sa +34)
Vo = 955 2 b
Aa = —Ata = FAa¥”

with ¢! = (g + §)? — (s + §)2. They are solved inversely as

_ __2e9p

9= 1—2€,\+_

~ 2e¢

g = ==

H+2A- (4.27)

Sa = —Ya — kgi, Ata

- 2
Sa = Yo — 1+2ji\>+_ Ata-
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We finally obtain the SO(6, 6) covariant action for the F10-brane in curved backgrounds

I:/d”aL

o o 1 o - o
L = eFyG™ Ry = S Py (CTR2F, (4.28)

oaf3 1 A7
= Fail Fg— 53 Fa(CE®)%Fy

oo
GHY = Bylaj~Eg”

where Asa and A; are related by the worldvolume vielbein as (4.26). The SO(6,6) covari-

[¢]
ant field strength in a curved background F;, and the one in a flat space I, are given as

Fo = BlF), = (59,5 &0, 22 B2 (4.29)

Fy = (S%),, 002" .

The SO(6,6) vielbein satisfies the following condition where the SO(5,5) vielbein field is
embedded in the SO(6,6) vielbein field as
Sy = S0 BBy €4t (4.30)

1 Egt 0
Eiocﬁ = o Ja 2(117) océ p

: EST 0 1 )
/H frg ( H — Lb é /
E, ( 0 Eﬁ“) exp (2fabE ) o -

Both the SO(5,5) spacetime vielbein and the worldvolume vielbein combine into the
vielbein field of the SO(6,6) F-theory. The SO(6,6) F-theory background is described by
the coset SO(6,6)/SO(6;C) with its dimension 36 = 25 + 11. The number of spacetime
vielbein, SO(5,5)/SO(5; C) fields is 25, while the number of Virasoro constraints of a F10-
brane is 11. The SO(6,6) vielbein is transformed under the SO(6,6) transformation as

A@ € SO(67 6) ) EEQ — Eﬁé exp (A@F&—B) éé’ gA@ — AQEEA@
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4.4 GL(6) and GL(5) actions

In order to construct the perturbative M-theory 5-brane action we rewrite the SO(6,6)
F10-brane action obtained in the previous section (4.28) to the ones with GL(6) and GL(5)
symmetries. The SO(6, 6) spinor representations are decomposed into the GL(6) and GL(5)
tensor representations as follows:

F-symmetry of F-theory

SO(6, 6)
ZH(32)
Fu(32)
O (12)
Ve N\
F-symmetry of M-theory G-symmetry of F-theory
GL(6) SO(5,5)
ZM(32) = Z™(6) ® Z(6) @ Z,, .:(20) XH(16) & Y,(16)
Fy(32) = Fyn(15) @ F™(15) @ F(1) @ F(1) F,(16) @ F*(16)
O (12) = 9™(6) © 03, (6) Om(B)@ O™ (B)Dot(1) @0 (1)
N\ v
G-symmetry of M-theory

GL(5)

)= X"(B)eY(1)
w(6) = Y (5) @ X (1)

) 10) @ Y™ (10)
) = Fr mn(10) @ Fo m(5)

F(15) = F™(10) @ F™(5)
)
)
)
)

N
3
Ez)

)

S

Il

<

3

S

(4.31)

The GL(6) and GL(5) covariant field strengths, denoted by F)s instead of F ' for
simplicity, and their gauge transformation rules are given as below.

GL(6) field strengths
FM: (Fmﬁ’ Fmﬁ, FW7 F), m:]_’ ’6
Frnme = gl zmal 4 Lemmeq, 7, e

Frinying = Oy Ziing) + 0' Z g, i (4.32)
F = 032™

F =077,
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Gauge transformations
KM = (lﬁ;mﬁ, Kingy Ky R)
8 Z™ = O™k + Op k™™
0xZp = Ok + 0" ks, (4.33)
O Zriyrngring = 300y Fmaring] + 5 €ringing O 4 K5
GL(5) field strengths
Fy = (Frmn, F", Fry F' Fyy Fypoy), m=1,---,5

Fr vovms = 9 Xonvms + Fmy Ying] + Semmsvean @37 70475
Fm = 9+ X™ — 9mY + 9, Y™
Fr = 0t X +0mY,,
Framz — glm xmal 4 Lom-msg x
Ey o = OmX — 0" Xnn
F, = 0pX™

(4.34)

Gauge transformations

mima2

. mo =
'%M: (K’ 9 K/mv H) 'K‘;mlmza K 9 H)

0, XM = 0,k" + 0™k

i s maqam,
0k Xmyms = 8[m1/<cm2] — €my ey OB RTATS

0. X = 0"k,

0. Y = —0T Ky + Omi + 0™ Knm
S ymimz — gt gmima y glmagma] | %6m1"'m58m3/€m4m5 (4.35)

8.Y = 0tk + 0k

O" stands for 8, obtained from the Lagrangian. Using with the 16x16 matrix ppmn for
XM = (X", Xpn, X) and Yy = (Yo, Y™, Y) in (3.5) the field strengths are written
as below.
GL(5) field strengths
Fy=(FM FE, ), M=1,---,16

FTM :XM_ mMN gy,
roo o (4.36)
Fo v = pmmn0™X
Gauge transformations
rar = (rar, &)
8. XM = pmMNg g
g RN (4.37)
0uYM = kp —l—pmMNamIi .

X stands for 8, X obtained from the Hamiltonian form Lagrangian.
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The GL(6) covariant field strength in curved background Fj is related to the one in a

flat background I%M with the vielbein field E4™ which is a coset element of SO(6, 6)/SO(6; C)
as well as the one in (4.28) as

oA
GMN _ p MFAER N gy = B ME, (4.38)

The number of degrees of freedom of the parameter of the coset SO(6,6)/SO(6;C) is
36 = 25 4+ 10 + 1: 25 is the number of degrees of freedom of the metric and the 3-form
gauge field in 5 dimensions. 10 4 1 is the number of worldvolume dimensions constrained
by V =0, 12-1. The GL(6) covariant F10-brane action in a curved background is obtained
from the SO(6, 6) covariant F10-brane action (4.28) in terms of 32-component field strength

Fyr in (4.32) as
= /dma L

o o 1 o A o
L = eFMGMFﬂ—l— 5)\@1{7%(02@)@17&

° 1 o a7 o
= eFAA8Fp + §A@FA(CE“—I’)A—BF§ :

ﬁAB
AB — ( . ) (4.39)
—1NAB

The 12-dimensional X matrices (CE&?’)AB are the same expression in (4.19) with replacing
a0l — padB v — ntpysp and 425 — plelACp o pnelt],

The GL(5) tensors directly couple to the 11-dimensional supergravity background.
The GL(5) covariant field strength in curved background F“ is related to the one in a flat

background F'M with the vielbein field E4™ which is a coset element of SO(5,5)/S0(5;C)
as well as the one in (4.12) as

Gun = ExfiapEn®, FA=Ey*FM. (4.40)

The Hamiltonian form action given in (4.9) gives the same form with replacing ™" with

pMN - The GL(5) covariant F10-brane in curved background is given as

I= / drdo L
L=o(g+a)FMGunF-" — (s + 8)F M ppyn - (4.41)

= o(g+ 9 Fs apF-P — o(s + 8)2F A pyapF_ P

FuM = M (i) + 5™ M F
M= M (g7 + Sm, pPmYMN o



The GL(5) covariant F10-brane Lagrangian in curved background in terms of the selfdual
and the anti-selfdual currents is given by (4.11) as

1o o
L= EFSD CunFas — AP GunFag™ — NP panin P (4.42)

= ;FSD NopFep” — Asp™asFap” — XFsp™Yaos Fop

FSDM = FTM + (gﬁ Smp*)MNF
Fag™ = P2 = (g + smp™ MNPy
In order to couple to the 11-dimensional supergravity background Y;, and F' are rewrit-

ten in the 5-dimensional dual as

Y = fi€mnyomaY ™ F = 3 F g €5 (4.43)
The background of SO(5, 5) vielbein given in (3.38) is given by the metric e,,* and the three
form gauge field C,[f{]lQOS in the 5-dimensional space m = 1,--- , 5. The field strength FM
including both F-™ and F,™ in the backgrounds are as follows.

FA _ EMAFO’M
Fa — Fmema
Fajay = _FmC[g]mmmemmeaznz + Frnima€a, " €0y (4.44)
Fo,.as = +ﬁFm1m20[3]m3m4m5e[a1ml T ea5}m5
+E o ms€a; " g™

5 Perturbative M-theory 5-brane action

In order to obtain an action for the perturbative M-theory 5-brane coupled to the 11-
dimensional supergravity background, we preserve the number of the SO(5,5) currents.
The worldvolume dimensions of F-theory is reduced solving V = 0,,n™09, = 0 as )

%eml...m58m2"’m5 = 0 consistently. The 5-dimensional worldvolume theory is obtained by

the following sectioning [51]
Om=0 — V=20"0,,=0. (5.1)
The selfdual and the anti-selfdual currents for the M5-brane are given as
mimy — pmimy 4 glme xmal (5.2)

> =P

B = Pn—0"Xn

SMme . pmima _ glme xmi]

S = P.
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The SO(5,5) current algebras in (3.28) is reduced to the subalgebra which is the same one
for the SL(5) case [40]

[Sm(0), >mm2(0")] = 2i6* 0n2)§ (o — o)
[>m(o),>(0")] =0 (5.3)
(B (0), B9 ()] = 0
[Su(0),>0(0")] =0
[Bm(0), 5" (0")] = —2i6l 0m2)5(0 — o)
[Bn(0), B(0")]

[ (o), B ()]

0

0.

A set of the Virasoro constraints and the Gauss law constraints in (3.31) and (3.32) are
reduced to

Sm = % |: Emml--.m4l>m1m2[>m3m4:| =0
T = % [Dmnmnbn + 5 Dm1m277m1n277m2n2[>n1n2 +> } 0
(5.4)
umlmZ - €m1~'~m5l>m3m4am5 — O
YV =0.

An action for the M-theory 5-brane in curved background is given from the F-theory
10-brane (4.13) by sectioning the worldvolume into 5 dimensions as

I = /d7d50 L

o

L= M {(g+8)Gun — (s + 3o f -V (55)

= oF " {(g+ §)hap — o(s + 8)%paan} F- P

Now let us construct the action for the M-theory 5-brane in terms of the selfdual
and the anti-selfdual currents where the anti-selfdual currents are auxiliary introduced to
make a free kinetic term. The selfdual (SD) and the anti-selfdual (SD) field strengths are
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given by

M m [e] [e]
Fopsn = (FSD/ﬁ ) FSD/ﬁ mn FSD/ﬁ)

FSD/SiDer = FTm + {gnmnFU n - (Sanmn + ngg)}

o o o
— <k
SD/SD ™mimz2 FT mimsz + {gT’mlanlm2n2FUnln2 +(S[m1FU\m2] — €mimaningkS anlnz)}

o

o

FSD/@ = }%T + {gl*g’(, —E”ﬁ’(, n}
(5.6)

where the selfdual or the anti-selfdual currents picks up the + or — among + sign respec-
tively. The GL(5) covariant field strengths in flat space are given by

o

FM = (F LA R
= X"+ 0mY
{ vms = Xiimg + 5€myeoms OT3Y 4TS (5.7)
132 — X + ™Y,
Fo st = (Fom, Fo™, F,)
Fom = 0"Xpm
O:mm = glm1 xma] (5.8)
F,=0

The SO(5, 5) background Gy = Ep A4 En? is given by the vielbein Ey from (3.38) as

3] n (3] (3] n n
€m _Cmnlnzeal lea2 2. 3| Cm[nln20n3n4n5]ea1 Lo.. eas 5
A _ 1 (3]
En™ = 0 e[alm1 eaz]m2 ﬁcm3m4mse[a1m1 T ea5]m5 : (5'9)
mio, .. ms
0 0 e[a1 eas]

We propose a perturbative action for a M-theory 5-brane in the curved background in
terms of the selfdual and the anti-selfdual currents in (4.42) as follow.

I = /de50' L
1o o A O o

L= ;FSDMGMNFS—DNf)\F— GunFas” — X F" pin P (5.10)
1

= QFSDATA]ABFS*DB - /A\FS*DAﬁABFS*DB - AQF@APQABF@B :

The first term is a free kinetic term for GL(5) tensor fields on a (5+1)-dimensional world-
volume, while the rest is constraints of the anti-selfdual currents.
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6 Conclusions

We have presented the F-theory 10-brane actions with the SO(5,5) U-duality symmety
and the SO(6,6) enlarged U-duality symmetry. At first the SO(5,5) current algebras on
the 10-dimensional worldvolume are presented in both the SO(5,5) spinor representation
and the GL(5) tensor representation. The former reveals the gauge symmetry structure
generated by the Gauss law constraint where the 10-dimensional worldvolume translation
and the 16-dimensional spacetime current satisfy the bosonic k-symmetry structure. The
latter gives direct coupling to the 11-dimensional supergravity background fields. Next
the action of the F-theory 10-brane is obtained by the Legendre transformation of the
Hamiltonian constructed by the set of Virasoro constraints. Applying the double zweibein
method to F-theory allows to give the 10-dimensional worldvolume covariant actions. Then
we have also constructed the F-theory 10-brane action with the SO(6,6) symmetry in the
Lagrangian formalism. The worldvolume is enlarged to 12 dimensional brane spacetime,
while the target spacetime is enlarged to the 32 dimensional spacetime. The background
vielbein represents the coset SO(6,6)/SO(6; C) including both the spacetime background
SO(5,5)/SO(5;C) and the worldvolume vielbein.

We have also presented the action for the perturbative M-theory 5-brane in curved
spacetime by sectioning the worldvolume of the F-theory 10-brane action. The spacetime is
16 dimensional manifesting the SO(5,5) background coupling. The action is sum of the free
kinetic term and the bilinears of the selfduality constraint. So now quantization of the F10-
brane and the M5-brane is challenging problem. It is also interesting to note that 5-brane is
the only object that appears common to all theories; type I, ITA, IIB superstrings, SO(32),
Eg xEg heterotic superstrings, M-theory, F-theory. In F-theory the 5-brane represents the
SL(5) U-duality symmetry [46]. Recently it was shown that current algebras of 5-branes
are preserved under the S and T-duality transformations with renaming the spacetime
coordinates, where 5-branes include the NS5-brane, the D5-brane, KK5-branes and exotic
5-branes in 32-supersymmetric string theories [54]. 5-brane may give a clue of duality web
including 16 supersymmetric string theories.

Many interesting topics are unsolved such as supersymmetric actions of F-theory and
M-theory, first quantization of branes and spectrum, amplitudes, and duality web including
16-supersymmetric theories.
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A Indices

Indices are summarized as follows.

number of d.o.f. curved flat
F-theory
spacetime
SO(5,5) spinor 16 Py a, B,
SO(6,6) spinor 32 oy a,B, -
GL(5) tensor 16 M,N,---  AB,---
GL(6) tensor 32 M,N,--- AB,--
worldvolume
SO(5,5) vector 10 m,m,--- a,b,-
SO(6,6) vector 12 M, f, @b,
GL(5) vector 5 m,n,- a,b,
GL(6) vector 6 m,n, .- ab,- -
T-theory
(only section 4.1)
spacetime
O(D, D) vector 2D M, N, A, B,
left-handed D M,N,--- AB,--
right-handed D M,N,- A B,-
worldvolume
SO(1,1) vector 2 m,m, - a,b,

B Brackets

In the F-theory spacetime the Lie derivative is modified in such a way that it is the
SO(5,5) U-duality symmetry covariant. We compute commutators in the SO(5,5) spinor
representation which is easier than the GL(5) representation. For vector functions V;#(X)
with ¢ = 1,2 in the 16-dimensional spacetime a commutator brackets of these vectors is

given by
[‘/IUDM(O'), ‘/2 ‘>I/(O'/):| = 2 <2¢(12)(0—) + 2®(12)(0'/)> 8m5(0' — 0-/)
i (VPOVE — VIV B (o — o) (B.1)
1-K 1+ K
+1 ( 5 Vwmﬁ,ﬂ/g — ;@qung> (’VED)”(S(O' - 0”)
q)(ﬂm) = Vvl'ufym/.wvéu .
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The exceptional Courant bracket is given by K = 0 as

VD u(0). V3, (0")] = i ()(0) + 0 () Omd(o = o) = iVisa D80 = o)

1 14
Vi = V{10V = 5 (Vi1 00 Vi )™ (B.2)
while the exceptional Dorfman bracket is given by K =1 as
VB 4(0), VB0 (0")] = 209, (6')0d(o — ) (B.3)

—1 ( 1100V + (&/Vmez)vm”“) >,0(c — o).
C 11-dimensional tensor representation

The 16 component SO(5,5) spinor current is decomposed under the GL(5) as 16 — 5 &
10 1. We present the current algebras preserving the full tensor indices such as [>""1""%
with m = 1,--- ,5 in order to manifest the 11-dimensional supergravity background. The
SO(5,5) current for the M5-brane is obtained as > = (D>, ™12, >™1M5) [41]. The F-
theory SO(5,5) current algebras give in (3.8) are rewritten in terms of the GL(5) tensors as

[>m(0), ™72 (0")] = 2id 0"213(0 — o)
[>m(0), 15 (0")] = By o2 els(o — o)
[>m1m2(g), >3 (g!)] = 240"™1M2"N4 (0 — o)

[>a(0),Bn(0')] =0
[Bm(0), 5™ (0")] = —2ish om216(0 — o)
[Bm(0), 5" (0")] = —2smt o m5(o — o)
[>""2 (), """ (07)] = —2i9™ M2 (g — ')
where the 6(0) stands for the 10-dimensional worldvolume function 619 (s — ¢’). The
bosonic coordinates, XM = (X™, Xymas Xmy-wms ) and Py = (P, P2 P™M15) - gat-
isfy the following canonical commutators
[Pra(0), X™(0)] = 3678(0 — o)
[P372(0), Xy (0)] = 1001 87530(0 — o) (C.1)
(P15 (), X ons ()] = 26001+ 6816 (0 — o).
The covariant derivatives, which are selfdual currents, are given as
D = P+ 0" Xpn + 5:0™ ™ X ooy
>mme = prmame _ glmi xmel 4 Lgmiemay, (C.2)

s —emes 1 =
[>M1=ms — pmi-m +Ia[m1 m4Xmo}’

and the symmetry generators, which are anti-selfdual currents, are given as

[;m = Pm - anan - %8m1'..m4Xmm1---m4
M2 pmimz 4 Hlma xyma] _ %aml---m4Xm3m4 (03)

SMms _ pmyems %a[ml.-.mlems} .
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The Virasoro constraints are the followings

Sm = %l>”l>nm =0
Smima % D>, >nmema o D[m1m2>m3m41] =0
T = i { mn[>n [>m1m25m1n15m2n2 >z
L pmems 5mm2...5m5n5>”1“'”5} =0.

For the tensor calculation there are several useful relations to obtain the Virasoro
algebras for the totally antisymmetric tensors ¢"1™2 and T™! ™4 which are obtained by

the totally anti-symmetric 6 indices as

1

—ylmigmamsmalning . _y/[na cnalmimamsma
3!
Zt[mﬂngngrmd?unz — _pmnzpmimy
1mll[nn nan4) mny--ngrmlyl
Zemhlalnainagmsgng) . omnaengplils (04)

D Double vielbein formulation

The double vielbein formulation [10] in the simplest example is explain in this appendix.
The selfduality constraint in the T-theory Hamiltonian with a flat worldsheet is the anti-
selfduality current is 0: the 2D-dimensional selfdual current (the covariant derivative) and
the 2D-dimensional selfduality current (the symmetry generator current) are given by

=P XN
{ D> M+ O XN M (D.1)

Sy = Py — 0. XNnnr -

When the 2D-dimensional coordinate XM is written in terms of the D-dimensional coor-
dinates as (x,y) and the canonical conjugates as (pg,py) for the O(D, D) invariant metric
nun = (§3), the currents are written as

Px + aﬂ?/ z Pz — aay
D]\4 - bl D]\/[ == D.2
{py+6gx {py—a(,x. (D-2)

The selfduality constraint is the anti-selfdual current is 0 7 = 0 in the usual formulation.
By using the selfduality constraint p, = O,z, the selfdual current reduces into the D-
dimensional momenta and the winding modes >y — (ps, O5x).

When the Hamiltonian is made from only the selfdual currents, the Hamiltonian form
Lagrangian gives a chiral scalar Lagrangian where the term (9,7)? is absent.

I:/L, L=dip—H

1 . )
H= %>2 — L=-(X2+2gX 0,X).
g
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But adding the squared anti-selfdual current as a constraint with the Lagrange multiplier
g leads to the worldsheet covariant action as

}L g(X — 90, X)(X + §0,X). (D.3)

This is rewritten in terms of the selfdual and the anti-selfdual currents as

1 g—4g 2
L=—Jplest+ 29 (D.4
29777750 " 2g(g+g) 5P )
{ JspM = XM 4 gaMNpn 10, X F
M

Jog = XM — ghMN 0, X T

&+ g0,y T — 905y
y/ = Jem = D.5
SD {y—i-gagzn »SD {y—g8gx. (D-5)

The first term in the Lagrangian is the free kinetic term while the second term is the
selfduality constraint in a bilinear form. The bilinear form constraint reduces into the
anti-selfdual current to be 0, which relates the doubled coordinates x and y as the usual
selfduality constraint.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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