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Abstract 

Background:  There is a lack of effective treatments for recurrent or metastatic nasopharyngeal carcinoma (RM-NPC). 
Furthermore, the response rate of NPC patients to programmed death 1 (PD-1) inhibitors is approximately 20% to 
30%. Thus, we aimed to explore reliable and minimally invasive prognostic indicators to predict the efficacy of PD-1 
inhibitors combination therapy in RM-NPC.

Methods:  The serum markers of 160 RM-NPC patients were measured before and three weeks after the first anti-
PD-1 treatment. The least absolute shrinkage and selection operator (LASSO) logistic regression was carried out to 
select dynamic serum indicators and construct a prediction model. Furthermore, we carried out univariate, multivari-
ate, nomogram and survival analyses to identify independent prognostic factors that were associated with 1-year 
progression-free survival (PFS).

Results:  Based on two markers that were screened by Lasso logistic regression, we constructed a risk score predic-
tion model for the prediction of anti-PD-1 efficacy at 8–12 weeks with an AUC of 0.737 in the training cohort and 
0.723 in the validation cohort. Risk score and metastases were included in the nomogram, and the Kaplan–Meier sur-
vival curves demonstrated that the high-risk group has shorter PFS compared to the low-risk group. The concordance 
index (C-index) of the nomogram for PFS is higher than that of the TNM stage in the training and validation cohort.

Conclusion:  We proposed a strategy to monitor dynamic changes in the biochemistry markers and emphasized 
their importance as potential prognostic biomarkers for the treatment of advanced NPC treated with PD-1 inhibitors. 
Our risk score prediction model was based on the dynamic change of LDH and AST/ALT, which has predictive and 
prognostic value for NPC patients who were treated with PD-1 inhibitors.
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Introduction
Nasopharyngeal carcinoma (NPC) is one of the most 
common head and neck malignant tumors in Southeast 
Asia, including southern China [1, 2]. Concurrent radio-
therapy and chemotherapy are the standard NPC treat-
ments [2]. However, the available treatment options for 
patients with recurrence, distant metastasis, and resist-
ance to first-line platinum-based chemotherapy are still 
very limited. Although the exact contribution of the 
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Epstein-Barr virus (EBV) to the malignant transforma-
tion of epithelial tumors (i.e. undifferentiated NPC and 
EBV-related gastric cancer) remains unclear, the abnor-
mal viral latent infection that was established by EBV in 
the epithelium is considered to be an important cause 
of malignant transformation. Further studies have also 
demonstrated that EBV infection can be identified in 
high-grade precancerous lesions of NPC, while it is rarely 
detected in low-grade precancerous lesions [3, 4].

Both the serum EBV antibody and plasma EBV DNA 
copy number are commonly used biomarkers for NPC 
diagnosis. With regards to early diagnosis and treatment 
of NPC, a large-scale prospective clinical study with more 
than 70,000 people was carried out in high-risk areas for 
NPC. By detecting two serum EBV antibodies, VCA-IgA 
and EA-IgA, and further examinations, the diagnosis rate 
was found to be significantly higher than that of the con-
trol group (79.0% vs. 45.9%, P < 0.0001) after six years of 
follow-up [5]. Another prospective study found that 78 
patients (15.1%) out of 518 patients with non-metastatic 
NPC were plasma EBV DNA-negative (0–20 copies/ml), 
and 62 patients in this subset (12.0%) had 0 copy/ml [6]. 
Plasma EBV DNA was also used for efficacy judgment 
and prognostic analysis. However, it is usually used in 
primary treatment procedures. For patients that experi-
ence relapsed and refractory NPC, routine blood tests, 
blood biochemical tests, and imaging examinations are 
still most commonly used.

The immune-checkpoint-blockade (ICB) therapy, prin-
cipally represented by PD-1/programmed death-ligand 
1 (PD-L1) inhibitors, significantly improves the survival 
rate of patients with diverse cancer types. Encouraged 
by such great achievements, many clinical trials of ICB 
alone or with chemotherapy have been initiated in pre-
treated patients with RM-NPC (recurrent or metastatic 
NPC) [7]. In clinical trials, certain therapeutic effects 
were observed, although the overall response rate was 
still unsatisfactory, and individual effects vary greatly 
[8–10]. Thus, there is an urgent need to find an effec-
tive prediction indicator for both treatment and survival 
benefits. A multicenter retrospective study reported that 
the combined baseline serum biomarkers are correlated 
with the efficacy of ICB treatments in NSCLC patients 
[11]. After evaluating 466 patients, the Lung Immune 
Prognostic Index (LIPI), the baseline derived neutro-
phils/(leukocytes minus neutrophils) ratio (dNLR) and 
LDH were identified as predictors of anti-PD-1 treatment 
in NSCLC. However, for RM-NPC patients who have 
received anti-PD-1 combined treatment, there is still a 
lack of reliable predictive serum markers for anti-PD-1 
efficacy.

Herein, we conducted a retrospective study involv-
ing 160 NPC patients in order to explore the prognostic 

value of dynamic serum biomarkers. We aimed to explore 
reliable and minimally invasive prognostic indicators to 
predict the efficacy of anti-PD-1 combination therapy in 
NPC.

Methods
Patients and study design
From March 2018 to April 2021, this retrospective study 
included 160 patients from the Guangzhou Sun Yat-
sen University Cancer Center who underwent the PD-1 
checkpoint inhibitor combination treatment. The inclu-
sion criteria included patients with recurrent or meta-
static NPC who received PD-1 in combination with 
radiotherapy or chemotherapy from March 2018 to 
May 2020. Exclusion criteria included a follow-up time 
of < 1  year and a lack of hematological examination. 
Patients were randomly divided into two groups (ratio 
2:1), including the training group (n = 106), which was 
used to construct the predictive model, and the valida-
tion group (n = 54), which helped validate the model. The 
PD-1 inhibitors used by patients included Camrelizumab, 
Pembrolizumab, Toripalimab, and Sintilimab, with dos-
ages of 200  mg, 200  mg, 240  mg, and 200  mg, respec-
tively, administered once every 3 weeks. PD-1 inhibitors 
were administered for at least three months, and com-
plete blood counts and serum biomarkers were measured 
both at the beginning of treatment (within three days 
before the first treatment) and 3 weeks later. After treat-
ment, the response was initially evaluated at 8–12 weeks 
and updated continuously. Demographic, clinical, and 
pathological data were also collected.

In the training and validation cohorts, radiological 
examinations were carried out according to RECIST 
(solid tumor response assessment criteria) v1.1 in order 
to evaluate the effect of immunotherapy at 8–12 weeks, 
which included complete response (CR), partial response 
(PR), stable disease (SD), and progressive disease (PD). 
The time interval between the start date of PD-1/PD-L1 
inhibitor treatment, as well as the date of disease pro-
gression or death (PFS), was calculated for each patient.

The baseline covariates, which included age, body mass 
index (BMI), gender, clinical stage, histological type, 
Eastern Cooperative Oncology Group Performance Sta-
tus (ECOG PS), metastasis stage, histological stages, 
clinical stages, and TNM classification were collected. 
Laboratory examinations, including white blood cell, 
counts, neutrophil counts, lymphocyte counts, mono-
cytes, eosinophils, basophils, red blood cells, platelets, 
hemoglobin levels, neutrophil count/lymphocyte count 
(NLR), monocyte count/lymphocyte count(MLR), plate-
let count/lymphocyte count (PLR), carbon dioxide levels, 
calcium levels, lactate dehydrogenase (LDH) levels, cre-
atinine levels, glucose levels, alanine aminotransferase 
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(ALT) level, aspartate aminotransferase (AST) levels, 
bilirubin levels, gamma-glutamyl transpeptidase levels, 
alkaline phosphatase levels, cholinesterase (CHE) lev-
els, creatine kinase levels, cystatin C levels, urea levels, 
uric acid (UA) levels, triglycerides, cholesterol levels, 
high-density lipoprotein-C, low-density lipoprotein-C, 
apolipoprotein A1 (ApoA1), apolipoprotein B, C-reac-
tion protein, serum amyloid, total protein, globulin, and 
albumin levels. Details about how these serum biomark-
ers were measured are listed in Additional file 2: Table S1 
and Additional file 3: Table S2.

Statistical analysis
Disease control (DC) represents both partial response 
and stable disease. In order to construct the prediction 
model, we utilized the Lasso logistic regression in the 
training group to select markers. According to the regu-
lation weight λ, LASSO shrinks all regression coefficients 
towards zero and sets the coefficients of many irrele-
vant features to zero. The optimal values of the penalty 
parameter λ were determined via tenfold cross-validation 
with the 1 standard error (SE) of the minimum criteria 
(the 1-SE criteria), whereas the final value of λ yielded a 
minimum cross-validation error. Retained features with 
nonzero coefficients were utilized for regression model 
fitting [12]. Next, the coefficients that were weighted by 
Lasso logistic regression were employed to calculate a 
risk score for each patient using a linear combination of 
selected variables.

The endpoint for the logistic regression was disease 
control at first scan after initiation of anti-PD-1 based 
therapy, which was between 8–12  weeks. The ROC 
curves, calibration curves, and clinical impact curves 
were utilized to determine the discrimination ability of 
the prediction model. Using Cox proportional hazard 
model, univariate and multivariate analyses were con-
ducted to estimate the independent potential risk factors 
that affect 1-year PFS. The nomogram was established 
using data from the training cohort. Furthermore, the 
concordance index (C-index) and calibration curve were 
utilized to determine the predictive accuracy and dis-
criminatory capacity. After establishing the nomogram, 
the optimal cut-off for the different continuous vari-
ables in the training cohort was determined by using the 
maximally selected rank statistics via the ‘surv_cutpoint’ 
function of the ‘survminer’ R package. Patients in the 
training and validation cohorts were then subdivided into 
high- and low-risk groups according to the optimal cutoff 
value, and Kaplan–Meier survival curves were then plot-
ted for both groups. P < 0.05 was considered to be statis-
tically significant. Analyses were performed with either 
the GraphPad Software or R Foundation for Statistical 
Computing.

Results
Patient characteristics and follow‑up
The main clinical characteristics of the 160 NPC patients 
in the training and validation cohorts are listed in 
Table  1. Overall, 160 patients, including 113 males and 
47 females were involved in this study. Patients ranged 

Table 1  Demographics and clinical characteristics of patients

ECOG Eastern Cooperative Oncology Group Performance Status, PR partial 
response, SD stable disease; PD progressive disease

Characteristic cohort (n = 54) Training 
cohort 
(n = 106)
No. (%)

Validation
No. (%)

p

Age, y

 Median (range) 47(24–73) 43(19–78) 0.9718

Sex

 Female 29 (27.36) 18 (33.33) 0.4660

 Male 77 (72.64) 36 (66.67)

Recurrence

 Yes 50 (47.17) 23 (42.59) 0.6180

 No 56(52.83) 31 (57.41)

ECOG

 0 6 (5.66) 9 (16.67) 0.1930

 1 98 (92.45) 45 (83.33)

 2 2 (1.89) 0 (0.00)

Histological type

 Poorly differentiated type 3 (2.83) 6 (11.11) 0.0620

 Undifferentiated type 103 (97.17) 48 (88.89)

Clinical stage

 II–III 38 (35.85) 19 (35.19) 0.1430

 IVa 21 (19.81) 15 (27.78)

 IVb 36(33.96) 12 (22.22)

 IVc 11 (10.38) 8 (14.81)

Tumor stage

 T0–2 24 (22.64) 12 (22.22) 0.9520

 T3–4 82 (77.36) 42 (77.78)

Node stage

 N0–1 47 (44.34) 23 (42.59) 0.8670

 N2–3 59 (55.66) 31 (57.41)

Metastasis stage

 M0 49 (46.23) 28 (51.85) 0.5090

 M1 57 (53.77) 26(48.15)

Outcomes

 PR 24 (22.64) 10 (18.52) 0.0610

 SD 68 (64.15) 35 (64.81)

 PD 14 (13.21) 9 (16.67)

The PD1 drug

 Camrelizumab 16 (15.09) 2 (3.70) 0.2070

 Pembrolizumab 3 (2.83) 0 (0.00)

 Toripalimab 72 (67.93) 45 (83.33)

 Sintilimab 15 (14.15) 7 (12.97)
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between 19 to 78 years old. The median age in this study 
was 47 years old in the training cohort, and 43 years old 
in the validation cohort. In our study, all patients were in 
the advanced TNM stage when using PD-1 inhibitors and 
underwent recurrence or/and lymph node metastasis or/
and distant metastasis. Among the 160 patients, 73 expe-
rienced recurrence, while 87 did not have a recurrence. 
In addition, 83 patients had tumor distant metastasis 
while 77 did not have distant metastasis. The response 
to PD-1 inhibitor treatment in NPC patients was ini-
tially evaluated at 8–12 weeks and updated continuously. 
The follow-up time was more than 12  months. Patients 
were randomly subdivided into two groups at a ratio of 
2:1. Results indicated that in the training and validation 
cohorts, 13.21% and 16.67% of patients, respectively, 
developed progressive disease, and 86.79% and 83.33% 
of patients respectively maintained disease control in 
the training and validation cohorts. Overall, 34 of 160 
patients (21.25%) achieved a partial response.

Construction of the risk model based on the dynamic 
changes of serum markers to predict clinical outcomes
LASSO regression is suitable for analyzing high-dimen-
sional data as it is able to extract the most important 
predictor variables from the original data set. The dif-
ferences between the 56 serum markers of NPC patients 
after three weeks of PD-1 inhibitors treatment and before 
treatment were calculated (∆W3). LASSO logistic regres-
sion model was applied in order to build a risk score pre-
diction model and 56 variables were then reduced to two 
potential predictors. A coefficient profile plot is shown 
in Fig.  1B, and a cross-validated error plot is shown in 
Fig.  1C. Our model demonstrated that two dynamic 
serum indicators (dynamic changes of AST/ALT, and 
LDH) that were identified by the training set (n = 106) 
were utilized to predict the efficacy of anti-PD-1 therapy 
(Fig. 1D).

The risk score of each patient was obtained using regres-
sion coefficients of dynamic changes of markers: Risk 
score = (− 0.242*∆W3 AST/ALT) + (− 0.0007*∆W3LDH).

The performance of the prediction model
The risk score obtained by our model demonstrated 
superior sensitivity and specificity for anti-PD-1 effi-
cacy prediction [area under curve (AUC), 0.737; Fig. 2A] 
within the training cohort. Our model demonstrated 
the consistency of the probability of efficacy prediction 
between the optimal prediction, as well as actual obser-
vation (Fig.  2B). Besides, the decision curve analysis 
(DCA) also suggested the potential clinical effects and its 
utility of risk score (Fig. 2C).

Afterward, we validated our model within the valida-
tion cohort. The ROC analysis demonstrated slightly 

lower sensitivity and specificity than the training cohort 
[area under curve (AUC), 0.723; Fig. 2D]. The ROC anal-
ysis demonstrated the agreement of the probability of 
efficacy prediction between the optimal prediction and 
actual observation within the validation cohort (Fig. 2E). 
Besides, the decision curve analysis (DCA) also suggested 
the potential clinical effects and its utility of risk score as 
a similar clinical impact curve was obtained in the valida-
tion cohort (Fig. 2F).

Risk score and metastasis stage associated with 1‑year PFS
We performed a univariate analysis that included nine 
covariates, including treatment pattern, ECOG, BMI, 
clinical stage, TNM classification, gender, and age. Metas-
tasis stage, gender and risk score were significantly asso-
ciated with 1-year PFS [Hazard ratio (HR) = 2.313, 95% 
CI 1.398–3.828, p = 0.001; HR = 1.696, 95% CI 1.034–
2.783, p = 0.036; and HR = 7.443, 95% CI 2.684–20.641; 
p < 0.001, respectively] (Fig.  3A). There were no differ-
ences observed in our cohorts according to treatment 
pattern, ECOG, BMI, clinical stage, tumor stage, node 
stage, and age with regards to 1-year PFS. In multivari-
ate analysis (Fig. 3B), metastasis stage and risk score were 
found to be strongly associated with 1-year PFS [Hazard 
ratio (HR) = 2.194, 95% CI 1.320–3.646, p = 0.002; and 
HR = 5.163, 95% CI 1.889–14.107, p = 0.001, respec-
tively]. Gender appeared to have little effect on 1-year 
PFS, and there is no significant difference in the multivar-
iate analysis. Meanwhile, considering the significant dif-
ference in the incidence rate of NPC between males and 
females, we did not include gender within the candidate 
range of predictors.

Nomogram development with risk score and metastasis 
stage
We constructed a nomogram using results from mul-
tivariate analysis (Fig.  4A). We included risk score and 
metastasis into the nomogram. Selection of the final 
cutoff point was conducted using the R package “sur-
vival”. The calibration curve of the nomogram is shown 
in Fig.  4B and C, which was derived from the training 
cohort and the validation cohort, respectively.

Subsequently, the patients were either subdivided 
into the high-risk or low-risk group according to “Auto 
Select best cutoff” (Additional file  1: Fig.  S1) using the 
Kaplan–Meier plotter. High risk indicated that a total 
score of ≤ 78.5, while the low risk indicated a total score 
of > 78.5. The Kaplan–Meier survival curves demon-
strated that the high-risk group has a shorter PFS com-
pared to the low-risk group [(p < 0.001, the training 
cohort; p = 0.042, the validation cohort), Fig. 4D–E]. The 
concordance index (C-index) of the nomogram for PFS 
was 0.662 (95% CI 0.577–0.746), which was higher than 
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Fig. 1  Prediction of the efficacy of NPC patients treated with PD-1 inhibitors based on dynamic serum indicators. A Workflow for modeling 
and validation of prediction model; B LASSO regression analysis for candidates screening; C Coefficients of selected markers; D Unsupervised 
hierarchical clustering of selected markers and clinical outcomes
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Fig. 2  The prediction accuracy of the efficacy prediction model for NPC patients treated with PD-1 inhibitors. A Receiver operating characteristic 
(ROC) curves of a prediction model in the training cohort; B Calibration curve of a prediction model in the training cohort; C Clinical impact curve 
of a prediction model in the training cohort; D Receiver operating characteristic (ROC) curves of a prediction model in the validation cohort; E 
Calibration curve of a prediction model in the validation cohort; F Clinical impact curve of a prediction model in the validation cohort
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that of the TNM stage [0.536 (95% CI 0.465–0.606)] in 
the training cohort (Table  2). In the validation cohort, 
the C-index of the nomogram for predicting PFS was also 
higher compared to that of the TNM stage [0.630 (95% 
CI 0.509–0.752) vs. (0.513; 95% CI 0.410–0.615)].

Discussion
Increasingly more patients with advanced-stage cancer 
benefit from PD-1/PD-L1 inhibitors. Despite the certain 
success in clinical trials of PD-1 inhibitors for NPC, not 
all patients are able to achieve long-term improvement in 
progression-free survival.

Thus far, scientists have developed many predictive 
markers for PD-1 inhibitor efficacy [13], including PD-L1 
expression [14], tumor mutational burden (TMB) detec-
tion [15], microsatellite instability (MSI) detection [16], 
dMMR (mismatch repair) detection, tumor-Infiltrating 
lymphocyte (TIL) detection [17], and even intestinal flora 
analysis [18].

Despite the fact that there is evidence that these above 
biomarkers are valuable for predicting the effect of 
immunotherapy, these tests are generally expensive, with 
low penetration rates, as well as large regional differ-
ences in detection rates. The cost of TMB testing involves 

Fig. 3  Univariate and multivariate Cox regression analyses. A Univariate analysis of clinical characteristics and risk score in the combined cohort; B 
Multivariate analysis of selected variances

(See figure on next page.)
Fig. 4  Prognostic prediction 1-year PFS of NPC patients treated with PD-1 inhibitors based on risk scores and metastasis stage. A Nomogram 
predicting the 1-year PFS in the training cohort; B, C the calibration plot for the nomograms at 1- year PFS in training cohort (B) and validation 
cohort (C); D, F. Kaplan–Meier curves for 1–year PFS based on the predictions of the nomogram in the training cohort (E) and the validation cohort 
(F)
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Fig. 4  (See legend on previous page.)
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next-generation sequencing, which is even more prohibi-
tive [19]. In addition, for tumor tissue PD-L1 staining, 
it was difficult to standardize and unify the pathological 
section staining and image reading among the different 
medical institutions, which may cause the reliability of 
the results to be greatly reduced. For patients with RM-
NPC whose primary tumor has been cleared, biopsy for 
PD-L1 staining is inappropriate when undergoing PD-1 
combined with radiotherapy or chemotherapy as the sec-
ond-line treatment. In contrast, blood counts and serum 
chemical composition testing are easy to achieve, and 
cancer patients regularly undergo testing during treat-
ment. It is worth mentioning that blood markers related 
to systemic inflammation and tumor burden are known 
to be related to immunotherapy response.

Lactate dehydrogenase (LDH) is a classic inflamma-
tory marker found in cancer patients [20]. Lactate is not 
only a type of waste product in cellular metabolism but 
also functions as a critical molecule involved in cancer. 
As previously reported, lactate connects cancer cells, 
immune cells, and stromal cells in the tumor microen-
vironment [21]. LDH provides energy for tumor cells. 
Under hypoxic conditions, the growth of LDH-deficient 
tumor cells becomes limited [22]. It has been shown that 
tumor cells with decreased LDH activity are not able to 
maintain high ATP levels, which results in slow cell pro-
liferation under normoxic or hypoxic conditions. The 
most common mechanism of LDH regulating cell migra-
tion and invasion is known to be related to lactate secre-
tion. Studies have shown that the level of lactic acid is 
related to the incidences of distant metastasis, and a high 
concentration of lactic acid is related to the early distant 
metastasis rate of cancer [23].

More importantly, LDH can be utilized as a prognos-
tic index of malignant tumor [24]. LDH is one of the risk 
factors in the international prognosis index (IPI), and a 
strong predictor of survival among patients with invasive 
lymphoma [25]. Studies have also reported the correla-
tion between LDH serum levels and clinical outcomes 
in Ewing’s sarcoma [26], in advanced biliary tract cancer 
[27], renal cell carcinoma [28] with chemotherapy, and in 
melanoma [29, 30], advanced non-small cell lung cancer 
[31] with PD-1 treatment.

The levels of serum ALT/AST ratio (LSR) have been 
generally accepted as a predictor of liver injury [32]. One 
study reported that baseline ALT/AST is related to the 
prognosis of patients with gastric adenocarcinoma [33]. 
In addition, GGT and AST/ALT are independent factors 
that predict the overall survival rate of esophageal squa-
mous cell carcinoma [34] and primary hepatic carcinoma 
[35].

Herein, we demonstrated that the dynamic changes 
of LDH and LSR are related to the efficacy of PD-1 

inhibitors in NPC, as well as the prognosis of RM-NPC 
patients. Meanwhile, as the dosing interval, three weeks 
after the initiation of treatment may be an appropriate 
time to evaluate the correlation between biomarkers, 
and an anti-PD-1 antibody treatment response in NPC 
patients, according to previous research [36]. As one of 
the indicators we selected, LDH has been validated to 
have prognostic value in chemotherapy and immuno-
therapy while ALT/AST needs to be confirmed in more 
studies. Thus, our study may provide clues for the use 
of these blood parameters as biomarkers for checkpoint 
inhibitors. As an important part of our study, we utilized 
the Lasso analysis to explore potential serum markers 
that established and verified our predictive prognostic 
model. Compared to the most adopted PD-L1 expression 
or TMB detection, monitoring the dynamic changes of 
serum markers was less invasive and more economical. 
Through the use of the predictive model, we were able to 
predict the short-term efficacy of 8–12 weeks and 1-year 
PFS according to dynamic changes of serum markers 
before and three weeks after the first anti-PD-1 treat-
ment. One strength of this study is the nomogram com-
bined by risk score and metastasis stage in predicting the 
prognosis of patients with RM-NPC, and the high-risk 
group had a shorter 1-year PFS than the low-risk group.

To the best of our knowledge, our study is the first to 
explore prognostic parameters in RM-NPC patients who 
were treated with anti-PD-1 inhibitors. A large-scale 
cohort study indicated TILs may reflect the immuno-
logical heterogeneity of NPC and may represent a new 
prognostic biomarker [37]. However, this study is not 
just for patients who underwent anti-PD-1 therapy. The 
same group also established an immune score model that 
estimates the risk of disease progression in NPC patients 
[38]. Nevertheless, our model focuses on the dynamic 
changes of existing serum parameters in NPC patients, 
avoids additional costs, and provides a novel predictive 
model for patients who have undergone expensive anti-
PD-1 therapy.

Considering the nature of retrospective studies, our 
study still has some limitations, which include insuffi-
cient sample size due to missing laboratory data, lack of 
standardized predictive biomarkers as a reference, and 
the diversity of pre-treatment models. In addition, our 
observational research was based on a single institution, 
which may cause selection bias.

Conclusions
In summary, we proposed a strategy to monitor dynamic 
changes of biochemistry markers and emphasized their 
importance as potential prognostic biomarkers for the 
treatment of advanced NPC with ICBs. As our model 
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may help identify RM-NPC patients who are unlikely to 
benefit from anti-PD-1 therapy, further investigations are 
needed in order to evaluate the predictive value of these 
markers in larger multicenter populations and prospec-
tive clinical studies.
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