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Background
Long non-coding RNAs (lncRNAs) are a kind of transcribed RNA molecule with lengths 
longer than 200 nucleotides that do not encode proteins [1]. The recent advances in 
RNA sequencing technologies have attracted wide attention of researchers to lncRNAs. 
The lncRNAs are reported to play crucial roles in a variety of biological processes, such 
as epigenetic modification, chromatin remodeling, and gene transcription [2–4]. Moreo-
ver, lncRNAs are also proved to closely related to diverse diseases like cancer [5], Alzhei-
mer’s disease [6], etc.

Abstract 
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However, only a few of lncRNAs have been well-characterized functionally [7]. To 
better understand the lncRNA function, the lncRNAs need to be identified correctly. 
Therefore, rapid and accurate in silico methods are needed to help to distinguish 
coding RNAs (mRNAs) and lncRNAs.

A variety of prediction tools have been developed to classify mRNAs and lncR-
NAs. CPC (Coding Potential Calculator) is an alignment-based approach developed 
on Support Vector Machine (SVM) model [8], but it relies heavily on the previously 
used dataset. Later on alignment-free methods have been developed to overcome 
the disadvantages of alignment-base methods. Alignment-free methods only use 
sequence intrinsic information. For example, CPAT (Coding Potential Assessment 
Tool) is built with the logistic regression model [9], and LncFinder [10] and CPPred 
[11] are based on the SVM model. Recently, deep learning has also been used in dis-
tinguishing mRNAs and lncRNAs, and it is reported to outperform those traditional 
machine learning models. For example, DeepLNC [12] and RNAsamba [13] are built 
with the deep neural network (DNN), mRNN (mRNA RNN) is trained with recur-
rent neural network (RNN) [14], LncRNAnet is developed on the combination of 
RNN and convolutional neural network (CNN) [15], and DeepCPP [16] are trained 
on CNN.

When using CNN to train the model, the parameters would be adjusted according 
to the cost function batch by batch, and epoch by epoch. Therefore, the relationships 
among input samples are only considered from the cost function indirectly when 
training CNN. Hence one research question is that, can we improve the CNN model 
performance by taking more relationship among input samples into consideration in 
a direct way during the training process?

Inspired by the Siamese Neural Network (SNN) which focuses on learning embed-
dings in the deeper layer to place the same classes close together [17], here, we 
propose a novel network named Class Similarity Network to classify mRNAs and 
lncRNAs by taking more relationships among samples into consideration. Spe-
cifically, Class Similarity Network is composed of three modules: Class Similarity 
Measurement module, Fully Connected module, and Decision module. The Class 
Similarity Measurement module measures the differences of high-level features 
between each input sample and samples from both the same class and the differ-
ent class separately. The highly individualized filters will be trained for each class to 
facilitate the parameter training on later steps. The Fully Connected module learns 
the weights and biases from different dense branches and integrates the information 
to a similarity node for each class. The Decision module concatenates the nodes that 
represent the similarities for different classes to output the prediction. We note that 
the Class Similarity Network could achieve higher average accuracy than that of the 
baseline CNN model on our validation dataset under the same conditions. Besides, 
the high AUC (Area Under the Curve) values of ROC (Receiver Operating Char-
acteristic) and PRC (Precision-Recall Curve) on two test datasets, i.e. 0.9945 and 
0.9981 for ROC, and 0.9990 and 0.9858 for PRC, respectively, as well as the extensive 
comparisons with state-of-the-art methods on two test datasets demonstrate the 
effectiveness of our Class Similarity Network.
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Results
Model hyper‑parameters and implementation

The model is implemented by Keras backend in Tensorflow. To determine the number of 
convolution layers l and the hyper-parameters, we test different choices of value for each 
parameter and record the average Acc (Accuracy), Sp (Specificity), and Sn (Sensitivity) 
for three times running on validation dataset in Additional file 1: Fig. S1.a-c. Each time 
we only change the value for one parameter while keeping the value of other parameters 
unchanged. The value achieving the best Acc after 30 epochs for that parameter is cho-
sen to construct the model.

We determine to use 2 convolution layers and set the kernel size as 2 and stride size as 
1 for both layers. We use adamax as the optimizer with default parameters reported in 
its original work [18]. Because the input sets X′

pos and X′

neg can be different when train-
ing different models, our final model is an ensemble one by adding the prediction scores 
of three individual models. Each individual model is trained with 60 epochs (Additional 
file 1: Fig. S1.d) with batch size 256. The prediction label of the ensemble model is deter-
mined according to where the larger probability located in positive or negative class. The 
complete network structure and parameters are shown in Additional file 1: Fig. S2.

Influences of X
′

pos and X
′

neg

The two input sets of the Class Similarity Network during training process, i.e., X′

pos 
and X′

neg , are randomly resampled from the original training positive and negative sets 
(see Methods). To see if the choice of X′

pos and X′

neg would cause impact influences on 
the predictions, we randomly generate them 10 times to obtain different input train-
ing pairs and record their performances on our validation dataset (Fig. 1a). Besides, 
we also change the X′

pos and X′

neg during training process with n epoch intervals to see 

a

b

Fig. 1  The influences of X
′

pos and X
′

neg . a. The Acc, Sp, and Sn on validation dataset achieved by 10 different 
sets of X

′

pos and X
′

neg (x-axis), the average value is marked with the dash line. b. the Acc on validation dataset 
achieved by changing X

′

pos and X
′

neg during training with n intervals ( n = 5, 10, 15, 20 ), x-axis: training epoch
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whether such practice could improve the prediction performances on the validation 
dataset, where n = 5, 10, 15, 20 (Fig. 1b).

We note that the overall Acc with 10 different sets of X′

pos and X′

neg range from 96.60 
to 96.71%. The small variation indicates the robustness of the Class Similarity Net-
work. Furthermore, the highest Acc with different intervals in Fig. 1b are not always 
achieved at the last epoch and are not always larger than the Acc achieved without 
changing X′

pos and X′

neg during training process in Fig. 1a. Therefore, the choice of X′

pos 
and X′

neg would not cause impact influence on the Class Similarity Network, which 
demonstrates the model stability.

Comparison with baseline SNN and CNN

We compare our newly proposed Class Similarity Network with the baseline SNN 
on our validation dataset. We employ the Euclidean distance metric to construct the 
SNN model, the layers and parameters for constructing the SNN model are kept in 
consistent with the Class Similarity Network model (Additional file  1: Fig. S3). We 
train the SNN model with 60 epochs. The SNN model performs relatively poor on 
identifying the mRNA samples and it only achieves Acc as 69.61%, which is much 
lower than that of the Class Similarity Network model whose Acc is 96.36% (Addi-
tional file 1: Table S1).

We then compare our newly proposed Class Similarity Network with the baseline 
CNN on our validation dataset with different dense layers to evaluate the perfor-
mance of both the Class Similarity Measurement module and the Fully Connected 
module. Three types of dense layers are adopted, including: (1) dropout 20% input, 
connected to 128 neurons with ReLU activation function, and then connected with 
Sigmoid activation function, (2) dropout 50% input, connected with Sigmoid activa-
tion function, and (3) the combination of (1) and (2). We use z2 , z3 and z2 + z3 to 
represent the above three types of dense layers, respectively, to be consistent to the 
description in Methods. The average results of 5 times running are shown in Fig. 2.

The values of the Acc and Sp achieved by our Class Similarity Network are all higher 
than that of the baseline CNN in all three types of dense layers, which indicates the 
superiority of our method to the baseline CNN. Besides, the results on the validation 
dataset of our Class Similarity Network show that combining z2 and z3 could improve 

Fig. 2  The comparison between Class Similarity Network and baseline CNN model with different dense 
layers. Evaluation criteria (from left to right) are Acc, Sn, and Sp, where z2 represents going through two dense 
layers: from dropping out 20% data, to 128 neurons with ReLU activation function, and to decision nodes 
with Sigmoid activation function; z3 represents going through one dense layer: from dropping out 50% data 
to decision nodes with Sigmoid activation function; z2 + z3 represents the combination of z2 and z3
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the overall Acc and reduce the gap between Sn and Sp in the lncRNA and mRNA 
classification problem.

Comparison with state‑of‑the‑art methods

We compare our Class Similarity Network with other recently developed state-of-the-
art methods, including mRNN [14], lncRNAnet [15], LncFinder [10], RNAsamba [13], 
CPPred [11], and DeepCPP [16]. All these methods are developed from 2018 onward. 
LncFinder and CPPred use SVM model. Other methods use diverse deep learning archi-
tectures such as CNN, DNN, RNN, or their combinations, where the deep learning 
architectures have been verified to play important roles in a variety of lncRNA-related 
predictions. For example, deep belief network has been applied to identify the lncRNA 
and predict lncRNA-protein interaction [19]; DNN has been used to predict lncRNA 
subcellular localization [20] and promoters of coding RNA and lncRNA [21]; more com-
plex deep learning structures have been adopted to predict lncRNA-disease associations 
[22, 23]. We summarize the features used in the methods for comparisons in this work, 
as shown in Table  1. The performances for different approaches on two test datasets 
are recorded in Table 2 and Table 3, respectively, where Sp and Sn represent the Acc of 
lncRNA and mRNA separately, the w10u5 model in mRNN and normal model in Deep-
CPP are used for comparison here.

In our Class Similarity Network, the amount of lncRNA sample is only about half of 
the mRNA in the training. But our model achieves the highest and the second highest 
value of Sp in test dataset I and test dataset II separately. It improves upon other meth-
ods by more than 0.47% and 1.44% of Sp on two test datasets, respectively. And also, our 
model achieves the best Acc, Pre, and F1-score in test dataset I, and the second best Sn, 
Acc, Pre, and F1-score in test dataset II.

Although the best Sp and Pre (Precision) in test dataset II are achieved by DeepCPP 
with value of 1, DeepCPP performs poorly in identifying mRNA in test dataset II. Addi-
tionally, RNAsamba performs better than our method in predicting mRNA on both two 
test datasets, and it achieves the best overall Acc on test datset II. However, the good 
performance of RNAsamba can be attributed to its large input feature sizes. The num-
ber of features used by RNAsamba is 2757, but we only use 84 features. Moreover, even 
if RNAsamba achieves the best Acc in test dataset II, our model leads to higher value 
of Pre than it. The large number of correctly predicted mRNA samples and the much 
smaller number of wrongly predicted lncRNA samples contribute to the high Pre value 
in our model. Besides, when we compare RNAsamba with our method via the McNemar 
test on the union of test dataset I and II (Additional file  1: Fig. S4, where the McNe-
mar test on two test dataset separately are also shown), we obtain χ2 = 588.438 and p-
value = 0 , which indicates that our method is superior to RNAsamba.

We also plot the ROC curves and PRC on two test datasets for those approaches which 
return the prediction scores, as shown in Fig.  3. Specifically, test dataset I has much 
more lncRNA samples ( lncRNA : mRNA ≈ 7.09 : 1 ) and test dataset II has much more 
mRNA samples ( lncRNA : mRNA ≈ 1 : 7.68 ). Therefore, the ROC curves and PRC could 
give us an inference of prediction approaches on potentially imbalance datasets.

Although varied in ratios of different classes, our Class Similarity Network performs 
good and stable on two test datasets. The AUC of ROC curves are 0.9945 and 0.9981, 
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and the AUC of PRC are 0.9990 and 0.9858, respectively. Our method achieves the best 
AUC of PRC on test dataset I and the best AUC of ROC on test dataset II. Although 
RNAsamba achieves the best AUC of ROC on test dataset I and the best AUC of PRC on 
test dataset II, its AUC of PRC on test dataset I is only 0.9777.

Discussion
LncRNAs play significant roles in complex pathological and physiological processes. 
However, the similar properties shared by mRNAs and lncRNAs such as splicing, 
poly(A) tails, and comparable sequence lengths [24] pose challenges to the identification 
of lncRNAs from mRNAs. If the use of novel neural network structure could improve 
the classification accuracy between mRNAs and lncRNAs remains to be explored.

Inspired by SNN, we propose a novel network named Class Similarity Network to clas-
sify mRNAs and lncRNAs by considering the relationships among input samples in a 
direct way. The Class Similarity Measurement module measures the differences of high-
level features between input sample and samples in both positive and negative classes 
with specific filters targeting at each classes. The Fully Connected module learns param-
eters from different dense branches to integrate similarity information of each class. And 
the Decision module concatenates the nodes to make the prediction.

We change the selection of input positive and negative sets of the Class Similarity Net-
work and compare it with baseline SNN and CNN using validation dataset. The small 
variation and the good performances on prediction results show the robustness and the 
effectiveness of the Class Similarity Network.

We also compare the Class Similarity Network with other machine learning-based 
state-of-the-art models developed in recent years on different datasets. Class Similarity 
Network achieves overall accuracy as 98.43% and 97.54% on two test datasets and per-
forms better than other methods in most cases.

a

b

Fig. 3  The ROC (left) and PRC (right) curves for different methods on two test datasets. a Test dataset I, and b 
Test dataset II
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However, one limitation for Class Similarity Network in mRNA and lncRNA classifica-
tion is that it outputs high prediction accuracy of lncRNA but a relatively low accuracy 
of mRNA. Therefore, strategies should be explored to further improve the prediction 
accuracy of mRNA. Besides, in case that a large bias exists between training and new 
test dataset, an alternative representation of entry vectors for each class, i.e. X′

pos and 
X

′

neg , should be explored to minimise the prediction errors.

Conclusions
In this work, we propose Class Similarity Network for mRNA and lncRNA classification 
by considering the relationships among input samples in a direct way. We compare our 
approach with baseline models and other recently developed machine learning-based in 
silico tools on validation dataset and two test datasets. The high prediction results and 
their small variations illustrate the effectiveness and robustness of the Class Similarity 
Network in the classification between mRNAs and lncRNAs. We expect that the Class 
Similarity Network could provide insights and references to characterize the lncRNAs 
and understand their functions.

Methods
Datasets

Four datasets were used in this work, including a training dataset, a validation dataset, 
and two test datasets. To construct the datasets, we first downloaded the Human train-
ing dataset and the Human test dataset from work of [11] as our training dataset and 
validation dataset separately. The noncoding RNAs in these two datasets were from 
Ensembl release 90 [25] (ftp://​ftp.​ensem​bl.​org/​pub/​relea​se-​90/​fasta/​homo_​sapie​ns/​
ncrna/) and the mRNAs were from NCBI RefSeq [26]. Next we downloaded the New 
human test dataset from work of [16] as our first independent test dataset, denoted 
as test dataset I. The noncoding RNAs in test dataset I were from Ensembl release 97 
[25] but not overlapped with release 90, and the mRNAs were from NCBI RefSeq [26] 
released after 18th May 2018. Besides, we constructed the second independent test data-
set, namely test dataset II. We collected the noncoding RNAs from Ensembl release 101 
[25] and removed the samples which were overlapped with release 97. And we collected 
the mRNAs from NCBI RefSeq [26] released between 20th Jun. 2019 and 1st Oct. 2020. 
The search limitations for all mRNAs in above datasets remained the same as: “Homo 
sapiens”[Organism] AND srcdb_refseq_known[prop] AND biomol_mrna[prop]. We 
then filtered the above noncoding RNA datasets by only keeping the lncRNAs accord-
ing to the transcript biotype annotation provided by the Ensembl database. Moreover, 
the sequences which contain letter other than ’ATGC’ were also removed. The final 
data amount for each dataset is listed in Table 4 and the dataset construction process is 
briefly demonstrated in Fig. 4a.

Features

The feature representation methods we used in this work including: maximum ORF 
(open reading frame) length and coverage [9], nucleotide bias [16], k-mer, and k-mer-
score [27].

ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/ncrna/
ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/ncrna/
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The longest ORF is often considered to be the coding region [28], hence the fea-
tures related to the longest ORF are popular to be used in distinguishing mRNAs and 
lncRNAs. Maximum ORF length feature represents the length of the longest ORF in 
each RNA sequence, which is denoted as lmaxORF  . Maximum ORF coverage feature 
is obtained by dividing lmaxORF  by the length of whole sequence lRNA . Because some 

Fig. 4  The flow chart. a The dataset construction. b The feature extraction. c An overview of the proposed 
Class Similarity Network. It contains three modules: Class Similarity Measurement module, Fully Connected 
module, and Decision module

Table 1  The features used in different methods

1Linear embedding, 2One-hot, 3Numeric representations, 4Euclidean-distance, Logarithm-distance, secondary structural 
related features, and physicochemical related features, and 5composition, transition, distribution, ORF integrity, and 
Isoelectric point, Grand average of hydropathicity, and estimation of the stability of a predicted peptide

Feature \Method mRNN LncRNAnet RNAsamba LncFinder CPPred DeepCPP Class 
Similarity 
Network

Maximum ORF length � � � �

ORF coverage � � �

Nucleotide bias � �

k-mer � � �

k-merscore � � � �

Fikett score � �

Sequence encoding � 1 � 2 � 3

Other � 4 � 5



Page 9 of 14Zhang et al. BMC Bioinformatics          (2021) 22:609 	

lncRNAs do not have complete ORF, we represent the maximum ORF coverage for 
such samples as [0, lmaxORF

lRNA
] while represent those with complete ORF as [ lmaxORF

lRNA
, 0] . 

Nucleotide bias feature measures the information around start codon, as studies show 
that nucleotide around start codon can affect the regulation of translation initiation 
[29, 30]. Nucleotide bias feature is calculated as

where p(xi) denotes the frequency of nucleotide x at position i in training data, and the 
set of {−3,−2,−1, 4, 5, 6} refers to the positions of the first codon before and after the 
start codon. k-mer feature counts the frequency of k neighboring nucleotide into a vec-
tor of length 4k . Here we count the 1-mer feature of the whole sequence and the 3-mer 
feature of the longest ORF sequence. k-merscore feature represents a relative k-mer bias, 
its calculation is similar to nucleotide bias:

(1)
nucleotide bias =

1

6

∑

i∈{−3,−2,−1,4,5,6}

log
pmRNA(xi)

plncRNA(xi)
,

x ∈ {A,C ,G,T }

Table 2  The performances of different methods on test dataset I

Bold: the best result, underline: the second best

Method Sp (%) Sn (%) Acc (%) Pre F1-score

mRNN 95.22 96.50 95.38 0.7399 0.8376

LncRNAnet 97.83 95.79 97.57 0.8616 0.9070

RNAsamba 94.06 98.16 94.56 0.6996 0.8169

LncFinder 96.03 96.21 96.05 0.7735 0.8576

CPPred 96.02 95.46 95.95 0.7718 0.8534

DeepCPP 98.44 96.47 98.19 0.8969 0.9294

Class Similarity Network 98.91 95.05 98.43 0.9247 0.9374

Table 3  The performances of different methods on test dataset II

Bold: the best result, underline: the second best

Method Sp (%) Sn (%) Acc (%) Pre F1-score

mRNN 95.33 97.29 97.06 0.9938 0.9832

LncRNAnet 97.85 96.71 96.84 0.9971 0.9819

RNAsamba 94.14 98.82 98.28 0.9923 0.9902
LncFinder 96.77 96.57 96.60 0.9957 0.9805

CPPred 97.37 97.15 97.17 0.9965 0.9838

DeepCPP 1 22.73 31.63 1 0.3704

Class Similarity Network 99.29 97.31 97.54 0.9990 0.9860

Table 4  The name and size of four datasets used in this work

Dataset name Number of lncRNA Number of mRNA

Training 18146 33359

Validation 7150 8557

Test dataset I 23915 3373

Test dataset II 836 6419
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where MmRNA(Ki) and MlncRNA(Ki) represents the mean value of k-mer composition 
for mRNA and lncRNA training data. Here we calculate the k-merscore feature with 
k = 1− 6 for both the whole sequence and the longest ORF sequence. The feature 
extraction process is illustrated in Fig. 4b. After applying the above feature representa-
tion methods, each RNA sequence would be converted to a fix-length vector with length 
of 84 (Maximum ORF length (1) and coverage (2), nucleotide bias (1), 1-mer for whole 
sequence ( 41 ), 3-mer for the longest ORF sequence ( 43 ), and k-merscore feature with 
k = 1− 6 for both whole and the longest ORF sequences (6+6)).

Model structure

We propose Class Similarity Network to classify mRNAs and lncRNAs. The Class Simi-
larity Network is developed on the basis of CNN but considers the relationships among 
input samples in a direct way. It employs the similar concept of SNN [17] to measure the 
similarity among input samples. But different from SNN, Class Similarity Network intro-
duces loss function to measure the similarities in each channel, which specifically targets 
to a two-class classification problem: one for positive class and the other one for negative 
class. In this way, there are two inputs as references but one input to be contrast, hence it 
is not suitable to train the same parameters and weights for all subnetworks like what SNN 
does. To solve this, we design the network to learn the proper parameters itself to encode 
the input samples from different channels. Besides, different dense branches are integrated 
to measure the similarity to each class simultaneously. As shown in Fig. 4c, the Class Simi-
larity Network comprises three modules: Class Similarity Measurement module, Fully Con-
nected module, and Decision module. The details are described as follows.

Class similarity measurement module

We first measure the similarities between each input sample and a random sample from 
each class via the high-level features learned by the network, hence we name this module 
as the Class Similarity Measurement Module. Let Xi ∈ R

d , i = 1, 2, ..., k denotes the input 
dataset whose sample size is k and feature size is d. In the training step of a two classes 
classification problem, we have a positive dataset Xpos and a negative dataset Xneg , where 
Xpos ∪ Xneg = X and Xpos ∩ Xneg = ∅ . We randomly resample from Xpos and Xneg with 
size of k separately and obtain two new sets X′

pos and X′

neg . As shown in Fig. 4c, the Class 
Similarity Measurement Block has three inputs: X′

pos , X , and X′

neg , the samples in each of 
them will go though l 1D convolutional layers and output as Convl(x

′

pos) , Convl(x) , and 
Convl(x

′

neg ) , respectively. The convolutional layers here convert the raw features to high-
level features. With the high-level features, the similarities between input samples and 
positive samples, and the similarities between input samples and negative samples can be 
represented as:

(2)kmer score =
1

4k

4k
∑

i=1

log
MmRNA(Ki)

MlncRNA(Ki)

(3)fps(x) =Convl(x)− Convl(x
′

pos)
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The selections of X′

pos and X′

neg in the test process are different from that of the train-
ing. Rather than using the randomly resampled vectors, we use the mean value of Xpos 
and Xneg from training. Such practice can avoid the potential slightly different prediction 
results caused by using different resampled datasets.

Fully connected module

Taken the xps = fps(x) and xns = fns(x) obtained from Class Similarity Measurement 
module as the inputs, the Fully Connected module converts each of them to a single 
value which represents the similarity with positive or negative samples. We represent xps 
with dropout ratio r1 as xr1ps and with dropout ratio r2 as xr2ps . From Fig. 4c, we have three 
dense layers in the Fully Connected module, where z2 is obtained from xr1ps going through 
two dense layers via z1 , and z3 is obtained from xr2ps with one dense layer. The z1 , z2 and z3 
are obtained as follows:

where Wj denotes the weight matrix, bj denotes the bias vector, and σ(·) denotes the 
activation function. Here we take σ1 as the ReLU activation function, and take σ2 and σ3 
as the Sigmoid activation function, and we set the dropout ratio r1 and r2 as 0.2 and 0.5 
separately. Therefore, the positive similarity node is represented as:

Similarly, the negative similarity node yns can be obtained by taking xns as the input.

Decision module

For each input sample, the predicted target ŷ is obtained by concatenating the positive 
similarity node and the negative similarity node as ŷ = [yps, yns] . Given the target y , our 
goal is to minimize 

∥

∥y − ŷ
∥

∥ . If the positive target is represented as y = [1, 0] and the neg-
ative target is represented as y = [0, 1] , the values of yps and yns represent the similar-
ity to positive and negative samples separately; if the positive target is represented as 
y = [0, 1] and the negative target is represented as y = [1, 0] , the values of yps and yns 
represent the difference to positive and negative samples separately. Here we use Mean 
squared error as the loss function, hence our goal is to learn parameters θ such that:

(4)fns(x) =Convl(x)− Convl(x
′

neg )

(5)z1 =σ1

(

WT
1j1
xr1ps + b1j1

)

(6)z2 =σ2

(

WT
2j2
z1 + b2j2

)

(7)z3 =σ3

(

WT
3j3
xr2ps + b3j3

)

(8)yps = z2 + z3

(9)arg minimiseθ

∑N
i

(

yi − ŷθ |i
)2

N
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Why class similarity network?

Let C denotes the cost function, z denotes the output of the dense layer, and a denotes the 
input of the dense layer. In neural networks, the forward pass will calculate the output of 
the lth dense layer as:

The weight ω and bias b will be updated at the backpropagation step as:

with learning rate η . Therefore, the input samples are only related to each other through 
the cost function and their relationships are only considered in an indirect way. However, 
in our newly proposed Class Similarity network, the input of the dense layer actually is 
the differences of high-level features between two samples, i.e. �a , and C ∼ ω�a + b . In 
this way, the differences between two input samples are amplified, and the relationships 
between different input samples are taken into consideration in a direct way when train-
ing the network.

Besides, Class Similarity network introduces filters specified to each class and subtracts 
the high-level features rather than training the differences of raw features directly. Such 
practice could help the network to find the proper input values for parameter adjustment in 
Fully Connected module.

Evaluation metrics

We use the criteria of Accuracy (Acc), Sensitivity (Sn), Specificity (Sp), Precision (Pre), and 
F1-score to evaluate different prediction methods, which are calculated as follows:

(10)zl = σ

(

ωlal−1 + bl
)

(11)ωl
jk =ωl

jk − η
∂C

∂ωl
jk

(12)bljk =bljk − η
∂C

∂bljk

(13)Sp =
TN

TN + FP

(14)Sn =
TP

TP + FN

(15)Acc =
TP + TN

TP + FN + TN + FP

(16)Pre =
TP

TP + FP

(17)F1-score =
2× Pre × Sn

Pre + Sn
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where TP, FN, TN and FP denote the numbers of true positive, false negative, true neg-
ative, and false positive, respectively. Besides, the McNemar test is further adopted to 
compare the models, which is implemented by using the mcnemar function in python 
package statsmodels.stats.contingency_tables with continuity corrected χ2 distribution.
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