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1 Introduction

Type II string theories are known to receive non-perturbative contributions from Euclidean
D-branes wrapped on compact cycles. These contributions are expected to play an impor-
tant role in stabilizing the moduli in semi-realistic string compactifications and the deter-
mination of Yukawa couplings in the low energy effective field theory. For this reason it is
important to learn how to systematically compute these contributions to string amplitudes.

In a previous paper [1], extending the results of [2–4], we computed these correc-
tions to the hypermultiplet moduli space metric in type IIA string theory compactified
on Calabi-Yau (CY) threefolds in the weak coupling limit and compared the results with
the predictions based on S-duality, mirror symmetry and supersymmetry [5–7]. In this
paper we repeat the analysis for type IIB string theory compactified on CY threefolds.
Since the two theories are related by mirror symmetry, we could have gotten the result
just by using this symmetry. Nevertheless, since our main goal is to learn how to compute
D-instanton effects when they are not known from other considerations, it is important to
develop independent techniques for doing these computations. Indeed, as we will see, the
actual computation in type IIB string theory has a somewhat different flavor and different
subtleties than those encountered in the analysis of type IIA string theory.

The rest of the paper is organized as follows. In section 2 we describe a few of our
conventions, but refer to [1] for most of the world-sheet conventions. We also describe the
low energy effective action obtained by compactifying tree level type IIB supergravity on a
Calabi-Yau threefold and the relative normalization between the variables of supergravity
used in section 2 and section 3 and the string theory variables that we use in later calcu-
lations. In section 3 we describe the predicted result for the D-instanton contribution to
the hypermultiplet metric based on S-duality, mirror symmetry and supersymmetry. In
section 4 we describe the general strategy for computing the instanton contribution using
world-sheet techniques. This is essentially the same as in the case of type IIA string theory.
In section 4.1 we compute the normalization factor associated with the contribution from
D(-1)-branes in type IIB string theory. This case is somewhat different from the systems
analyzed in type IIA string theory in [1], where the Euclidean branes were assumed to
be rigid, with the only moduli being associated with the motion along the non-compact
directions and the fermion zero modes associated with broken supersymmetry. In contrast,
D(-1)-branes have additional moduli describing motion along the CY threefold. In sec-
tion 5 and section 6 we compute the disk amplitudes with one hypermultiplet scalar and
a pair of fermion zero modes for various scalars on various D-branes. These results are
then put together following the general algorithm of section 4 to compute the correction
to the metric on the hypermultiplet moduli space. In section 6 we generalize these results
to multiple charge systems and by taking into account the effect of background B and
RR fields. As a result, we find a perfect agreement with the prediction for the instanton
contribution to the metric presented in section 3. The appendices contain various technical
results that are used in the analysis in the main text.
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2 Preliminaries

In this section we shall describe some of our conventions and the known results on the tree
level action of type IIB string theory compactified on a Calabi-Yau threefold.

2.1 Conventions

Since most of our world-sheet conventions will follow those in [1], we shall not repeat them
here. The main difference comes in the spin fields. Unlike in type IIA string theory, the
left and right handed spin fields in type IIB string theory carry the same ten-dimensional
chirality. Therefore, now the operator product expansion of the spin fields in the two sectors
will take identical form, with the holomorphic fields / coordinates exchanged with the anti-
holomorphic fields / coordinates. These have been described in (C.1). The other world-
sheet relations that we shall use extensively are the normalizations of the open and closed
string vacua that can be used to fix the normalization of the disk and sphere amplitudes:

〈k|c−1c0c1 e
−2φ(0)|k′〉 = (2π)p+1δ(p+1)(k + k′) (2.1)

for the open string vacuum on a p-brane, and

〈k|c−1c̄−1c0c̄0c1c̄1 e
−2φ(0)e−2φ̄(0)|k′〉 = −(2π)10δ(10)(k + k′) (2.2)

for the closed string.
We shall use the same gamma matrix conventions as in [1], but since we shall use these

results extensively, we shall review some of the relations here. First of all, we take all the
ten-dimensional gamma matrices to be 16 × 16 symmetric matrices. We denote the real
coordinate labels of the CY threefold Y by lower case bold-faced letters m,n, · · · , the holo-
morphic coordinate labels ofY by lower case italic indices s, t, · · · , those of four-dimensional
space by Greek letters µ, ν, · · · , denote by Γ̃m for 4 ≤ m ≤ 9 the six-dimensional gamma
matrices, by γµ for 0 ≤ µ ≤ 3 the four-dimensional gamma matrices and choose the
ten-dimensional gamma matrices ΓM as follows:

Γ̃ = i Γ̃4 · · · Γ̃9, Γµ = Γ̃⊗ γµ, Γm = Γ̃m ⊗ I4 . (2.3)

We denote by η, η̄ the covariantly constant spinors on Y, for which we have the following
useful relations [1]:

η̄ η = 1, η̄Γ̃ijklmnη = −i εijklmn, η̄Γ̃ijη = iωij , (2.4)

where ω is the Kähler form on Y related to the metric in the holomorphic coordinates by
ωst̄ = igst̄.

As in [1], the ten-dimensional spinor indices will be labelled by α, β, · · · and the four-
dimensional spinor indices will be labelled by the dotted indices α̇, β̇, · · · and undotted
indices α, β, · · · . Since the relevant instantons break 4 out of 8 supersymmetries, they will
carry 4 fermion zero modes from the open string sector that we denote by χ̃α and χ̃α̇. We
can also represent them as ten-dimensional spinors Xα, X̂ β by choosing

X = η ⊗ χ̃α, X̂ = η̄ ⊗ χ̃α̇ . (2.5)

– 3 –
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In our analysis we shall use two types of Hodge dual. We denote by ∗ the Hodge
dual in ten dimensions and by ? the Hodge dual in the Calabi-Yau manifold. For both of
these we use the string metric. However, we express our final result in the four-dimensional
canonical metric.

2.2 Classical hypermultiplet moduli space

Upon compactification of type II string theory on a CY threefold Y, we get a N = 2
supersymmetric theory whose massless scalars can be divided into hypermultiplet and
vector multiplet fields. In particular, the scalars labelling the hypermultiplet moduli space
MH in type IIB formulation include the following fields:

• the fields za = ba + ita (a = 1, . . . , h1,1(Y)) describing appropriately normalized
complexified Kähler moduli of Y;

• the RR fields defined as period integrals of the RR p-forms C(p) of type IIB string
theory over a basis of cycles in Heven(Y,Z)

c0 = C(0), ca =
∫
γa
C(2), c̃a =

∫
γ̃a
C(4), c̃0 =

∫
Y
C(6), (2.6)

where {γa} and {γ̃a} are bases in H2(Y,Z) and H4(Y,Z), respectively;

• the dilaton τ2 whose vacuum expectation value is the inverse string coupling 1/gs;

• the axion σ which is dual to the NSNS 2-form field in four dimensions.1

The precise normalization of these fields will be described later. Throughout this paper,
we shall work in the large volume limit. However, unlike in the case of type IIA string
theory, here the large volume limit is not exact, since the Kähler moduli belong to the
hypermultiplet.

If we denote the collection of the hypermultiplet scalars by {λm}, then the kinetic term
of these fields in the action has the form

− 1
2

∫
d4xGHmn(λ) ∂µλm ∂µλn , (2.7)

where in the large volume, small string coupling approximation, the metric GHmndλmdλn is
given by

ds2
cl = 1

τ2
2

(
2dτ2 + τ2

2V κabt
adtb

)2
+Gab

(
dtadtb + dbadbb

)
+ (dc0)2

τ2
2

+ Gab
τ2

2
∇ca∇cb + Gab∇c̃a∇c̃b

τ2
2V

2 + (∇c̃0)2

τ2
2V

2 + (∇σ)2

4τ4
2V

2 .

(2.8)

1Note that NS axion and the scalars defined by (2.6) are different from those that are usually used to
express the hypermultiplet metric of type IIB string theory and that have simple transformation properties
under the S-duality group (see, e.g., [5, 8, 9]). To make contact with the literature, we show the relations
between the two sets of fields in appendix A.

– 4 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
4

Various quantities in this expression are defined as follows. Given a basis {ωa} of harmonic
(1,1)-forms, dual to the basis {γa} of integer homology 2-cycles, i.e. satisfying

∫
γa ωb = δab ,

we define,

κabc =
∫
Y
ωa ∧ ωb ∧ ωc, κab = κabct

c, V = 1
6 κabct

atbtc , (2.9)

and κab to be the matrix inverse of κab. Then the metrics appearing in (2.8) are given by

Gab ≡ −
1
V

(
κab −

1
4V κact

cκbdt
d
)
,

Gab ≡ (G−1)ab = −V
(
κab − 1

2V tatb
)
,

(2.10)

while various covariant one-forms are defined as

∇ca = dca − c0dba, ∇c̃a = dc̃a − κabccbdbc, ∇c̃0 = dc̃0 − c̃adba,
∇σ = dσ + c0∇c̃0 − ca∇c̃a + c̃a∇ca − c̃0dc

0.
(2.11)

Note that these one-forms in MH can be described in a compact way using differential
forms in Y. Let us define

B = baωa , C(even) =
3∑

k=0
C(2k) = c0 + caωa + c̃aω̃

a + c̃0ωY, (2.12)

where ω̃a is a basis of harmonic (2,2)-forms satisfying
∫
γ̃a ω̃

b = δba and ωY is a harmonic
six-form satisfying

∫
Y ωY = 1. We also introduce operator ι on even-forms which acts on

H2k(Y) by the sign ι = (−1)k. For example, ι(C(even)) differs from (2.12) by the sign of ca
and c̃0 terms. Then we have, using (B.2) and (B.3),

∇C(even) = dC(even) − dB ∧ C(even) = eBd(e−BC(even)),

∇σ = dσ +
∫
Y
ι(C(even)) ∧∇C(even),

(2.13)

where all products are to be regarded as wedge products and d acts on the moduli space
(not on Y).

The action (2.7) has been written down in the background in which the four-dimensional
canonical metric, normalized to have the action

−
∫
d4x

√
− det g R , (2.14)

has been set equal to ηµν . The relationship between the variables appearing in (2.8) and
those that appear in string (field) theory (which we shall denote by boldface letters) can be
found either by comparing the kinetic terms or by comparing the disk one-point functions
in the presence of an Euclidean D-brane. This is done in appendix F and the results are
summarized in (2.23).

Due to mirror symmetry, the hypermultiplets moduli spaces of type IIA and type IIB
string theories compactified on two mirror CY threefolds are identical. Therefore, the
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classical metric (2.8) can be related by a coordinate change to the tree level metric in the
type IIA formulation evaluated for the classical prepotential

F (X) = −1
6κabc

XaXbXc

X0 . (2.15)

This coordinate change is known as classical mirror map and in our conventions it is
given by

r = 1
2 τ

2
2V , za = ba + ita, ζ0 = c0, ζa = −ca + c0ba,

ζ̃a = −c̃a + κabcb
b
(
cc − 1

2 c
0bc
)
, ζ̃0 = −c̃0 + bac̃a −

1
2 κabcb

abb
(
cc − 1

3 c
0bc
)
,

(2.16)

where the variables on the left hand side are the same ones used in [1] to express the result
for the metric in type IIA string theory. (The NS axion is the same on both sides.)

The metric (2.8) has a large isometry group. First of all, it is invariant under SL(2,R)
transformations which include, in particular, S-duality inverting the string coupling. As
explained in appendix A, the variables we are using are closely related (but not identical) to
the variables distinguished by having simple transformations under this symmetry. Second,
the metric is invariant under various shift symmetries. They include the invariance under
shifts of the B-field

ba 7→ ba + εa, (2.17)

and the Heisenberg symmetry involving shifts of the RR fields and the NS axion. To write
them in terms of type IIB fields, it is again convenient to use the language of differential
forms. Let ϑ ∈ H(even)(Y) be a moduli independent even form. Then the Heisenberg
symmetry is described by the following transformations

C(even) 7→ C(even) + eBϑ, σ 7→ σ + θ −
∫
Y
ι(ϑ) ∧ C(even)e−B , (2.18)

where the operator ι was defined above (2.13). The invariance of the metric (2.8) under
these transformations follows from the invariance of the covariant derivatives (2.13), which
is straightforward to check taking into account the property

ι(eBϑ) = e−Bι(ϑ). (2.19)

2.3 Normalization of the fields

For our analysis we need to relate the moduli appearing in (2.8) to those that appear in the
string theory computation. This has been done in appendix F. Here we shall summarize
just the main results. We denote by gMN and BMN the ten-dimensional string metric and
NSNS 2-form field, normalized so that the polarizations hMN and bMN appearing in the
vertex operators are related to these fields via

gMN = ηMN + 2κhMN , BMN = bMN , (2.20)

where κ is related to the string coupling gs = 1/τ2 via

κ = 23 π7/2 gs . (2.21)

– 6 –
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Upon compactification on a CY threefold Y, they give rise to the scalar fields ta and ba

defined using the expansion in the basis of (1,1)-forms

gst̄ = −ita ωa,st̄, Bst̄ = 1
2κ ba ωa,st̄ . (2.22)

In these variables the Kähler form of Y reads as ω = ta ωa. We also denote by C(2k)

the RR 2k-form potential whose vertex operators are given in appendices D and E, and
by σ the scalar obtained by dualizing the NSNS 2-form field Bµν , whose normalization is
given in (F.10). We then have the following relations between these variables and the ones
appearing in section 2.2:

ta = (2π)2ta, ba = (2π)2ba, dσ = −(2π)6

2κτ2
2
dσ, C(2k) = (2π)2k

26π7/2 C
(2k). (2.23)

The variable τ2, describing the ten-dimensional dilaton is the same in the string theory
variables and in those that enter the metric (3.21). It will also be convenient to define

κab = κabctc = (2π)2 κab (2.24)

and κab as its inverse matrix.
Various useful quantities for Calabi-Yau threefolds and their properties may be found

in appendix B.

3 Prediction for the D-instanton amplitude

In this section we shall describe the prediction for the D-instanton correction to the hyper-
multiplet moduli space metric in the weak coupling and large volume limit, where the word
instanton will refer to any Euclidean D-brane whose world-volume lies along the compact
directions. This prediction will be based on the mirror symmetry applied to the leading
instanton contribution to the metric onMH in type IIA string theory found in [1].

3.1 D-instantons in type IIB

The classical metric onMH given in (2.8) is not exact and receives quantum corrections,
in particular non-perturbative corrections due to D-instantons. In contrast to type IIA
string theory, where upon compactification on a CY threefold only D2-branes generated
instanton corrections, in type IIB all Dp branes with p odd, as well as their bound states,
generate non-perturbative contributions.

The charge vector γ = (qΛ, p
Λ) classifying such D-instantons is given by the expansion

of the so called generalized Mukai vector in the basis of even-dimensional cohomology [10]

γ ≡ ch(E)
√

Td(Y) = p0 + paωa − qaω̃a + q0ωY, (3.1)

where ch(E) is the Chern character of E, Td(Y) is the Todd class of TY, and the nor-
malization and other properties of the basis forms ωa, ω̃a, ωY are specified in appendix B.
Strictly speaking, the correct mathematical description associates D-instantons to elements

– 7 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
4

in the derived category of coherent sheaves D(Y) [11, 12]. For our purpose however these
mathematical subtleties will be unimportant,2 and we can think about a D-instanton of
charge γ = (qΛ, p

Λ) as a bound state of D5-brane on Y with wrapping number p0, D3-brane
wrapping the 4-cycle −paγ̃a, D1-brane wrapping the 2-cycle −qaγa, and D(-1)-branes with
charge −q0, i.e. as a homology element

Lγ = −q0γ
0 − qaγa − paγ̃a + p0Y, (3.2)

where γ0 ∈ H0(Y). Note that Lγ is Poincaré dual to ι(γ) where ι has been defined
above (2.13). The minus signs appearing in this definition have been fixed in appendix F
and are related to the choice of sign in the boundary conditions on the spin fields given
in (C.7). We will denote by L(2n)

γ the component of Lγ belonging toH2n(Y). It is important
to note that the BPS condition requires the wrapped cycle to be holomorphic, i.e. to have
the volume form

v(2n)
γ = 1

n! (PγωPγ)n, n = p+ 1
2 , (3.3)

where Pγ is the projection operator along L
(2n)
γ . This can be defined by using a local

coordinate system in which the metric at a given point is δij, using the standard definition
of the projector in flat spacetime and then expressing it in the original coordinate system.

As in type IIA, each BPS instanton breaks 4 out 8 supercharges and is characterized
by the central charge function which can be compactly written as

Zγ =
∫
Y
e−z

aωa γ = q0 + qaz
a + 1

2 (pz2)− p0

6 (z3), (3.4)

where we used a convenient notation (xyz) = κabcx
aybzc and the second equality follows

from (B.2) and (B.3). The corresponding instanton action is given by [14, 15]

Tγ = 2πτ2|Zγ |+ 2πiΘγ , Θγ =
∫
Y
γ ∧ Cevene−B. (3.5)

The instanton corrections break the continuous symmetries discussed in the end of
section 2.2. However, their discrete subgroups survive. In particular, the transforma-
tions (A.4) with

(
a b

c d

)
∈ SL(2,Z) form the S-duality group of type IIB string theory, the

shifts (2.18) with ϑ ∈ H(even)(Z,Y) and θ ∈ 2Z describe large gauge transformations of the
RR fields and the B field, whereas (2.17) with ε ∈ Z correspond to monodromies around

2Nevertheless, one should remember that the charges q0, qa are not integer but belong to a shifted lattice

qa ∈ Z− p0

24 c2,a −
1
2κabcp

bpc, q0 ∈ Z− 1
24 p

ac2,a,

where c2,a are components of the second Chern class of Y. For explanation how this fact is reconciled with
mirror symmetry, see [9, 13]. In the large volume limit that we shall be working in, these shifts in the lattice
will not be important since for finite charges the contributions from p0 and pa dominate over that from q0
and qa. On the other hand, if we scale the charges so that their contributions are of the same order, then
q0 and qa have to be large in order to be able to compete with p0 and pa, and the lattice shift becomes
unimportant.

– 8 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
4

the large volume point in the complexified Kähler moduli space.3 The requirement of these
symmetries provides an important constraint on the moduli space metric.

The D-instanton amplitudes are proportional to e−Tγ , which is manifestly invariant
under the large gauge transformations generated by ϑ and θ for any fixed γ.4 However, this
is not the case for the monodromy transformations generated by εa. The fact that allows
the D-instanton corrections to be consistent with monodromy invariance (2.17) is that the
D-instanton action (3.5) stays invariant provided the charges also undergo a symplectic
transformation to compensate the shift of the B field, namely,

γ 7→ γ[ε] = eε
aωaγ . (3.6)

This suggests to introduce a b-dependent version of the charges

γ̌ ≡ γ[−b] = e−Bγ, (3.7)

or, more explicitly,

p̌0 = p0, p̌a = pa − p0ba , q̌a = qa + κabcp
bbc − p0

2 κabcb
bbc,

q̌0 = q0 + qab
a + 1

2 (pb2)− p0

6 (b3).
(3.8)

These charges stay invariant under monodromies and allow us to rewrite the central
charge (3.4) and the axion coupling (3.5) as

Zγ =
∫
Y
e−it

aωa γ̌ = q̌0 + iq̌at
a − 1

2 (p̌t2) + ip̌0V, (3.9)

Θγ =
∫
Y
γ̌ ∧ C(even) = q̌0c

0 − q̌aca + p̌ac̃a + p̌0c̃0, (3.10)

where V was defined in (2.9).

3.2 The leading instanton contribution

Our goal is to find the leading D-instanton correction to the classical metric on MH

which can then be tested against direct calculation of string amplitudes. Since the mirror
symmetry allows to identify the metrics in type IIA and type IIB formulations, the simplest
approach to our problem is to take the leading D-instanton contribution found on the type
IIA side in [1] and translate it to the type IIB theory.5 For this reason, we shall first review

3More precisely, to be the symmetries at non-perturbative level, most of these transformations should be
supplemented with some additional constant terms whose origin can be traced to the non-integrality of the
D-instanton charges in the type IIB formulation [16, 17] (see footnote 2). For example, (A.4) requires an
additional shift of ca by a term proportional to the second Chern class of Y and the multiplier system of the
Dedekind eta function [13]. For our purposes however all these additional contributions to the symmetry
transformations are not important and can be ignored.

4In fact, this would be true if the charges were integer. However, their non-integrality is compensated
by the constant terms mentioned in footnote 3 so that e−Tγ is indeed invariant.

5Note that mirror symmetry was one of the inputs in the derivation of the D-instanton corrected metric
in [5–7] (see, in particular, earlier work [18]) and hence can be freely used in this context. On the other
hand, when we try to reproduce the results by explicit world-sheet calculation, we shall not make use of
mirror symmetry.
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the results for the leading D-instanton contribution in the type IIA variables introduced in
section 2.

First, given a holomorphic prepotential6 F (z0, · · · , zh1,1), let us define the correspond-
ing Kähler potential

K = − logK, K = zΛNΛΣz̄
Σ, NΛΣ = −2 ImFΛΣ, (3.11)

where FΛΣ ≡ ∂zΛ∂zΣF . We also introduce a one-form

Cγ = NΛΣ
(
qΛ − ReFΛΞp

Ξ
) (
dζ̃Σ − ReFΣΘdζ

Θ
)

+ 1
4 NΛΣ p

Λ dζΣ , (3.12)

where NΛΣ is the matrix inverse of NΛΣ. Using the form of F given in (2.15) and the
change of variables (2.16), the instanton action Tγ (3.5) takes the form

Tγ = 8π
√
r

K
|Zγ |+ 2πiΘγ , (3.13)

where (with z0 ≡ 1)

Zγ = qΛz
Λ − pΛFΛ , Θγ = qΛζ

Λ − pΛζ̃Λ . (3.14)

Eqs. (3.13), (3.14) agree with the form of Tγ , Zγ and Θγ given in [1].
In terms of these quantities, the leading instanton contribution to the metric onMH ,

which follows both from a combination of supersymmetry, mirror symmetry and S-duality
as well as from a direct computation of string amplitudes, was found to be ([1], eq. (3.5)):

ds2
inst =

∑
γ

Ωγ Σγ

16r
√

2πT R
γ

(
Ã2
γ +O(dTγ)

)
, (3.15)

where the sum goes over the full charge lattice, T R
γ = Re Tγ , Ωγ is the Donaldson-Thomas

(DT) invariant7 corresponding to instanton charge γ which (roughly) counts the number
of independent supersymmetric cycles in the sector with charge γ, and the functions Σγ

and Ãγ are defined as

Σγ =
∞∑
k=1

σkγ√
k
e−kTγ , (3.16)

Ãγ = |Zγ |√
rK

(
dσ + ζ̃Λdζ

Λ − ζΛdζ̃Λ −
4i
√
rK

|Zγ |
Cγ + 8r Im ∂ log Zγ

K

)
. (3.17)

6The prepotential is a function of h1,1 + 1 variables zΛ, homogeneous of degree 2. The complexified
Kähler moduli coincide with the homogeneous coordinates za/z0. For simplicity, we will work in the gauge
z0 = 1 after taking the derivatives with respect to zΛ.

7Note that for pure electric charges these invariants are known to be

Ωγ =
{
−χ, γ = (0, 0, 0, q0),
nqa , γ = (0, 0, qa, q0), qa 6= 0,

where χ is the Euler characteristic of Y and nqa are its genus 0 Gopakumar-Vafa invariants.
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Here σγ is a sign factor, known as quadratic refinement, which satisfies the defining relation
σγ1σγ2 = (−1)〈γ1,γ2〉σγ1+γ2 , and ∂ = dza∂za is the Dolbeault holomorphic differential on
the Kähler space parametrized by za. Finally, O(dTγ) in (3.15) refers to terms proportional
to dTγ . As discussed in [1], these terms can be removed by field redefinition and cannot be
determined by our analysis of string amplitudes.

To translate (3.15) to the type IIB formulation, one has to express it through the
natural type IIB variables described in the beginning of section 2.2. This is the subject
of the mirror map. While its large volume, weak coupling limit is given by (2.16), it is
known however that it receives all possible quantum corrections if we require the type IIB
description to be invariant under the S-duality transformations given in (A.4) [19, 20].
From the point of view of the type IIB theory, this amounts to a redefinition of the fields
appearing on the right hand side of (2.16) and does not change the S-matrix of the theory.
Since comparison with the string theory results are based on the S-matrix, such field
redefinitions are invisible in the string theory computation. Therefore, for our purposes we
can safely use the classical mirror map (2.16) to express the type IIA results in terms of
the variables of the type IIB theory.

Given (2.15) and (2.16), we find

K = 4
3 (t3) = 8V , ∂K = −2iκabtbdza,

dr

r
= 2dτ2

τ2
+ 1

2V κabt
adtb, (3.18)

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ = ∇σ, (3.19)

Cγ = q̌0
4V

(
∇c̃0 + 1

2 κbct
c∇cb

)
+ q̌a

(
−1

2 κ
ab∇c̃b + 1

4 t
adc0

)
+ (p̌t2)

8V

(
∇c̃0 + 1

2 κbct
c∇cb

)
− 1

2 p̌
aκab∇cb −

p̌0

4
(
ta∇c̃a + V dc0

)
,

(3.20)

where the last relation is obtained with help of (B.1) and we used covariant derivatives and
charges defined in (2.11) and (3.8), respectively. These results allow us to rewrite (3.15) as

ds2
inst =

∑
γ

Ωγ Σγ

8τ2
2V
√

2πT R
γ

(
A2
γ +O(dTγ)

)
, (3.21)

where

Aγ = Ãγ + i

π
dTγ =

T R
γ

4πτ2
2V
∇σ +

iT R
γ

π

(
∂̄ log Z̄γ

K
+ dr

2r

)
− 4i Cγ − 2dΘγ , (3.22)

and we shifted this quantity by the irrelevant term proportional to dTγ to facilitate com-
parison with the amplitude calculation. Substituting (3.10) and (3.20) into (3.22), one
obtains the following explicit expression

Aγ =
T R
γ

4πτ2
2V
∇σ +

iT R
γ

π

(
dτ2
τ2
− i

4V κabt
adbb

)
+ 2iτ2

Zγ
|Zγ |

dZ̄γ

−
(
iq̌0
V

+ i(p̌t2)
2V + 2p̌0

)
∇c̃0 +

(
2iκabq̌b − 2p̌a + ip̌0ta

)
∇c̃a

+
(

2q̌a −
i

4V
(
2q̌0 + (p̌t2)

)
κabt

b + 2iκabp̌b
)
∇ca −

(
2q̌0 + iq̌at

a − ip̌0V
)
dc0 .

(3.23)
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The instanton contribution (3.21) together with (3.23) is the prediction to be reproduced
by the world-sheet approach. For future use we note that, as a consequence of (3.9), the
factors T R

γ and Zγ/|Zγ | in the presence of background ba may be obtained using their
expressions for ba = 0 and then replacing γ by γ̌.

As discussed in [1], the quadratic refinement σγ appearing in (3.16) can be changed
by including constant shifts in the definition of the RR scalars, leading to constant shift
in Θγ . Using this freedom, we can choose the sign factors σγ arbitrarily for a linearly
independent set of basis vectors γ. For other charge vectors, they are fixed by the relation
σγ1σγ2 = (−1)〈γ1,γ2〉σγ1+γ2 which is expected to follow from cluster property. However,
since our approximation keeps only multi-instantons wrapping the same cycle, our analysis
is not sensitive to this relation. On the other hand, in [1] we did show that cluster property
implies the condition σkγ = (σγ)k and the result for the annulus amplitude given below is
consistent with the choice σγ = 1. Therefore, in our analysis below we shall not discuss
the factors σγ any further.

We shall work in the large volume limit by scaling the fields as

τ2, c
0 ∼ λ0, ta, ba, ca ∼ λ1/3, c̃a ∼ λ2/3, c̃0, σ ∼ λ, (3.24)

and taking λ to be large. In this limit all terms in the tree level metric (2.8) scale in the
same way. If we keep the charges fixed as we take this limit, then we can see, using (3.8),
that the contribution from the charge associated with brane of highest dimension dominates
in (3.23), e.g. when p0 is non-zero then the terms proportional to p0 dominate, when p0 = 0
but pa is non-zero then terms proportional to pa dominate and so on. However, due to the
transformation (3.6) of the charges under the shift ba → ba + εa, it is more appropriate to
scale the εa’s appearing in (3.6) by λ1/3 as we take the large λ limit. This suggests the
following scaling of the charges:

γ = e−λ
1/3f̄aωa γ̄ (3.25)

with the barred quantities kept fixed as we take the large λ limit. We shall see in section 6.3
that this limit arises naturally when we switch on gauge field strengths on the D-branes
and keep the magnitude of the field strength fixed as we take the large volume limit. It
is easy to verify that under the scaling (3.25), the contributions to (3.23) (and also Tγ)
are still hierarchical, i.e. when p̄0 is non-zero then the terms proportional to p̄0 dominate,
when p̄0 = 0 but p̄a is non-zero then terms proportional to p̄a dominate and so on.

4 Strategy for computing instanton correction to the metric

The general strategy that we shall follow for the computation of D-instanton corrections to
the metric is the same as that in [1]. For this reason we shall now briefly recall these results.
The computation involves two parts. The first part is the computation of the exponential
of the annulus amplitude. After factoring out the integration over the collective modes,
this determines the normalization N (0)

k,γ of the k-instanton amplitude with each instanton
carrying charge γ. The second part of the computation involves the disk amplitude with
the insertion of a closed string vertex operator representing a hypermultiplet scalar λm and
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a pair of open string vertex operators associated with the fermion zero modes χ̃α, χ̃β̇ . This
amplitude has the form

i am,γ γ
µ
α̇α χ̃

αχ̃α̇ pµλ
m, (4.1)

where am,γ is a computable constant, pµ is the momentum carried by λm and we have used
the convention that, while specifying an amplitude, we also multiply it by the fields whose
amplitude is being computed. In terms of these quantities the instanton correction to the
metric takes the form [1]:

ds2
inst =

∑
γ

Ωγ

∞∑
k=1
Nk,γ e−kTγ

(∑
m

am,γ dλ
m

)2

, Nk,γ = 4κ2 V−1N (0)
k,γ . (4.2)

Here −Tγ is the action of a single D-brane of charge γ, V is the volume of Y (B.4) and κ
has been defined in (2.21). The real part T R

γ of the instanton action is given by

T R
γ = Tp|Vγ | , Tp = 1

(2π)pgs
, (4.3)

where Tp is the Dp-brane tension and, for a Dp-brane wrapping a cycle L(p+1)
γ , we define

Vγ =
∫
L

(p+1)
γ

v(p+1)
γ , (4.4)

which can be expressed through the Kähler form using (3.3). By definition, Vγ measures
the volume of the cycle L(p+1)

γ , but there are some caveats. First of all, note that (4.4)
changes sign under γ → −γ and is therefore not strictly positive. This is due to the fact
that under γ → −γ, a Dp-brane becomes an anti-Dp-brane which has opposite intrinsic
orientation, but our definition of the volume form (3.3) remains intact. This is why to get
the volume of the cycle, we had to put the absolute value symbol in (4.3). Second, we note
that if γ is not primitive, but has the form lγ′ for some positive integer l and some primitive
vector γ′, then Vγ is defined as l times the volume (with sign) of the cycle labelled by γ′.
This is consistent with (4.3) since the action of an instanton is expected to be multiplied
by l when the instanton charge is multiplied by l.

If the supersymmetric cycle associated with the charge γ is rigid, i.e. has no defor-
mations other than the collective modes associated with the motion along non-compact
directions and the fermion zero modes associated with broken supersymmetry, then the
computation of N (0)

k,γ proceeds in the same way as in [1] and yields the result

N (0)
k,γ = go,γ 2−5π−13/2k−1/2 , (4.5)

where go,γ is the open string coupling on the instanton, determined from the relation

T R
γ = 1

2π2g2
o,γ

⇒ g2
o,γ = 2(2π)p−2 gs

|Vγ |
. (4.6)

Therefore, we have

ds2
inst = κ2

23π13/2V
∑
γ

Ωγ go,γ

∞∑
k=1

k−1/2 e−kTγ

(∑
m

am,γ dλ
m

)2

. (4.7)
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However, (4.5) needs to be modified for D(-1)-branes which have extra moduli correspond-
ing to motion along Y. We shall determine this modified formula in section 4.1 where we
shall also argue that this modification does not change the final formula (4.7) since it is
accounted for by the DT invariant Ωγ for pure D(-1)-charge.

4.1 Normalization of the D(-1)-brane amplitudes

When a Dp-brane is wrapped on a rigid p-cycle, then the computation of the annulus
partition function, that determines the overall normalization of the amplitudes due to a
particular D-brane, follows from the analysis in [1] and yields the result (4.5). However, this
does not work for D(-1)-branes which have extra moduli corresponding to motion inside
Y. In this section we shall determine this extra contribution.

First we consider the case of a single D(-1)-brane. This has six additional bosonic mod-
uli describing the location of the instanton on the Calabi-Yau space and twelve additional
fermionic moduli representing the superpartners of these bosonic modes. The twelve ad-
ditional fermions can be grouped into 6 complex fermions, and furthermore, due to SU(3)
holonomy of the Calabi-Yau manifold, their spinor index can be traded for the tangent
space vector index. We can represent the integral over these additional modes as

∫ 6∏
i=1

{
dmi√

2π
dλi dλ

∗
i

}
eS , (4.8)

where mi are the coordinates of the Calabi-Yau manifold and the action is fixed by super-
symmetry. We can read this out e.g. from the dimensional reduction of the supersymmetric
σ-model in two dimensions [21] to be:

S = −1
4Rijkl λ

∗
iλ
∗
jλkλl . (4.9)

The integral (4.8) may be expressed as

−
∫ 6∏

i=1

dmi√
2π

1
3!

1
26 ε

i1j1i2j2i3j3εk1l1k2l2k3l3Ri1j1k1l1Ri2j2k2l2Ri3j3k3l3 = −χ , (4.10)

where χ is the Euler number of the Calabi-Yau manifold. Therefore, (4.5) for k = 1 is
modified to

N (0)
1,γ0 = −χ go,γ0 2−5 π−13/2 . (4.11)

The sign in (4.10) is ambiguous since it depends on the sign of the integration measure
over the fermion zero modes. In principle the sign can be fixed using cluster property as in
appendix C of [1]. However, we have not done this. Instead, we have used the information
that the DT invariant associated to pure D(-1) charges is given by −χ (see footnote 7).

Next we turn to k-instanton amplitudes. We shall now argue that for computing the
ratio N (0)

k,γ0/N (0)
1,γ0 we can use the results in ten-dimensional flat spacetime. The essence of

the argument is as follows. Since the D-instantons move in ten-dimensional spacetime, the
extra variables that we encounter for k-instantons are clearly the same whether they move
in flat spacetime or the Calabi-Yau space. Furthermore, it was shown in [1] that the matrix
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model governing the dynamics of multiple branes restricts the relative separation between
the branes to a distance scale of order (go,γ0)1/2 ∼ g

1/4
s . Therefore as long as Y has size

of the order of string scale or larger, the dynamics of the relative separation between the
branes is insensitive to the curvature of Y in the weak coupling limit and we can use the
flat spacetime results of [4]. This gives:8

N (0)
k

N (0)
1

= k3/2∑
d|k

1
d2 ⇒ N (0)

k = −χ go,γ0 2−5 π−13/2 k3/2∑
d|k

1
d2 . (4.12)

Substituting this into (4.2) without the Ωγ factor, we get the following correction to the
metric due to multiple D(-1)-branes:

− 4κ2

V χ go,γ0 2−5 π−13/2
∞∑
k=1

k3/2∑
d|k

1
d2 e

−kTγ0

(∑
m

am,γ0 dλm
)2

. (4.13)

We now claim that, taking into account that Ωq0γ0 = −χ, this result agrees with the
contribution to (4.7) from charges of the form γ = `γ0 with ` ∈ Z+. Indeed, using the
relabelling d = n, k = n`, one finds

∞∑
k=1

k3/2∑
d|k

1
d2 e

−kTγ0 =
∞∑
`=1

`3/2
∞∑
n=1

n−1/2e−n`Tγ0 . (4.14)

Hence, one can rewrite (4.13) as

κ2

23π13/2V

∞∑
`=1

Ω`γ0 `−1/2go,γ0

∞∑
k=1

k−1/2e−k`Tγ0

(∑
m

` am,γ0 dλm
)2

. (4.15)

It remains to take into account that due to T`γ0 = ` Tγ0 and (4.6), one has go,`γo =
`−1/2go,γo , while the disk one-point function satisfies am,`γ0 = ` am,γ0 because it has an
overall multiplicative factor of T R

γ . Therefore, we can express (4.15) as

κ2

23π13/2V

∞∑
`=1

Ω`γ0 go,`γ0

∞∑
k=1

k−1/2e−kT`γ0

(∑
m

am,`γ0 dλm
)2

. (4.16)

This can now be interpreted as part of the contribution to (4.7), with γ taking values `γ0.
In our analysis we have assumed that the 2 and 4-cycles of the CY are rigid so that D1

and D3-branes wrapped on these cycles have no extra moduli. When these conditions fail,
there will be extra integrals in these cases as well. Our result for D(-1)-branes suggests that
such extra contributions will also arise in the counting of BPS index of D1 and D3-branes
wrapped on these cycles and will be included in the definition of the DT invariants Ωγ so
that (4.7) will continue to hold in these cases as well.

8If we use eqs. (10) and (25) of [4], we shall get the ratio to be k9/2∑
d|k 1/d2. However, 1/

√
k in

the Chan-Paton factor of fermionic vertex operators now produce a factor of 1/k in (4.9) and hence 1/k3

in (4.10). This explains the power k9/2/k3 = k3/2 in (4.12).
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5 Explicit computation of Dp-brane corrections

Our main goal is to reproduce the prediction (3.21) for the instanton contribution to the
metric onMH by explicit world-sheet computation. In this section we will reproduce the
‘linear terms’ in Aγ , namely those that survive when we set the background NSNS 2-form
and RR fields to zero. In this case the b-dependent charges q̌0, q̌a and p̌a defined in (3.8)
reduce to q0, qa and pa and all covariant derivatives (2.11) are replaced by ordinary ones.
We shall further assume that only one type of charge is present, corresponding to Dp-brane
wrapped on a (p+1)-cycle L(p+1)

γ for fixed p. In section 6 we shall relax these assumptions.
The following equations will be used for the computation of the disk amplitudes [1]:

{Vc} = 1
2 κTp 〈c

−
0 Vc〉 , (5.1)

and {
Vc

n∏
k=1

V (k)
o

}
= i π κ Tp

∫ 〈
Vc

n∏
k=1

V (k)
o

〉
. (5.2)

Here Vc and V
(k)
o denote closed and open string vertex operators, respectively, k labels

different operators, and 〈 〉 denotes correlation function on the upper half plane. Note that
the formula takes a different form when no open string vertex operators are present —
this can be traced to the presence of a conformal Killing vector on the disk with just one
closed string insertion. On the right hand side of (5.2) the integration is performed over
the locations of the (n− 1) open string vertex operators along the real axis.

The main tools in our analysis will be the operator product expansion (C.1) and the
boundary conditions (C.2), (C.7) that allow us to replace the anti-holomorphic fields in
the upper half plane by the holomorphic fields at the complex conjugate points. The final
correlation function will be evaluated using the normalization condition (2.1).

5.1 NSNS axion contribution

The analysis of this contribution is almost identical to the D2-brane contribution computed
in [1] once we replace the tension T2 by Tp.

The disk amplitude with one 2-form vertex operator and a pair of open string zero
modes in the presence of a flat Euclidean Dp-brane is given by:

iπκ Tp 2 bµν XαX̂ β
∫ ∞
−∞

dz
〈
c c̄ (∂Xµ + i pρ ψ

ρψµ) eip.Xe−φ̄ψ̄ν(i) ce−φ/2Sα(0) e−φ/2Sβ(z)
〉
.

(5.3)
Here we are using the same world-sheet notations as in [1]. Dropping ∂Xµ and eip.X terms
whose contributions vanish due to the physical state condition, and using the doubling
trick to replace the anti-holomorphic fields by holomorphic ones at the complex conjugate
point, this becomes

− 2iπ κ Tp bµν XαX̂ β
∫ ∞
−∞

dz
〈
i c pρψ

ρψµ(i) c e−φψν(−i) c e−φ/2Sα(0) e−φ/2Sβ(z)
〉
. (5.4)

The minus sign arises due to Dirichlet boundary conditions on ψ̄ν . As in [1], we shall take
the z integration contour to pass above the origin. We now deform it to pick up the residue
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from the pole at i. The effect of this is to drop the integration over z together with the factor
e−φ/2Sβ(z) inside the correlator and replace the factor ψρψµ(i) by (iπ/2) (Γρµ) γ

β e−φ/2Sγ(i).
The resulting correlation function can be easily evaluated and gives:

1
2 π

2κTp pρ bµν XαX̂ β (ΓρµΓν)βα (2π)p+1δ(p+1)(0) → 1
2 π

2κ T R
γ pρ bµν XαX̂ β (Γρµν)βα ,

(5.5)
where in the second step we have interpreted the (2π)p+1δ(p+1)(0) as integration over the
Dp-brane world-volume yielding a factor of |Vγ | and used (4.3) to express Tp|Vγ | as T R

γ .
In terms of four-dimensional spinors the above expression becomes

1
2 π

2κ T R
γ pρ bµν χ̃

αχ̃α̇ (γρµν)α̇α . (5.6)

Following the same steps as in [1], we can express this in terms of a dual scalar σ (called
σ̃ in [1]) using the relation

pµbνρ + pνbρµ + pρbµν = 1
2V

εµνρτ p
τσ , (5.7)

where V is the volume of the CY manifold given in (B.4). In terms of σ, the expression (5.6)
takes the form

1
2 π

2κ T R
γ

1
6V ερµν

τ pτσ (γρµν)α̇α χ̃αχ̃α̇ = − iπ2

2V κ T R
γ pµσ (γµ)α̇α χ̃αχ̃α̇

= iπ2

4V τ2
2
T R
γ pµσ (γµ)α̇α χ̃αχ̃α̇ ,

(5.8)

where in the last step we have used relations (2.23). Comparing this with (4.1), we get

aσ,γdσ = π2

4V τ2
2
T R
γ dσ . (5.9)

5.2 Dilaton contribution

We shall now compute the coefficient am,γ associated with the dilaton field τ2. As in [1],
we start with the dilaton vertex operator in the (−1,−1) picture which, at non-zero mo-
mentum, is given by

Ṽ−1,−1 = fµν c c̄ e
−φ ψµ e−φ̄ψ̄ν eip.X , (5.10)

where
fµν ∝

(
ηµν − (n.p)−1 (nµpν + nνpµ)

)
, (5.11)

and n is any four-vector for which n.p 6= 0. Our first step will be to determine the
normalization of fµν . For this we compute the disk one-point function of the dilaton on a
D(-1)-brane. This is given by:

κT−1
2

1
2
〈(
∂c(i)− ∂̄c̄(i)

)
Ṽ−1,−1(i)

〉
= −κT−1

4 f µ
µ . (5.12)
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Let τ̃2 = τ2
√

V be the inverse of the four-dimensional string coupling. Then f µ
µ must be

proportional to δτ̃2/τ̃2. On the other hand, since T−1 = 2πτ2 we see that the expected
one-point coupling of δτ2 is −T−1δτ2/τ2. Therefore, we choose

f µ
µ = 4

κ

δτ̃2
τ̃2

= 4
κ

(
δτ2
τ2

+ δV
2V

)
. (5.13)

Once the normalization has been fixed this way, we can use it to compute the dilaton
amplitude on any Dp-brane.

We shall now analyze the disk amplitude with one dilaton and a pair of open string
fermion zero modes on a Dp-brane. It can be found using the dilaton vertex operator in
the (−1, 0) picture

V−1,0 = −fµν c c̄ {∂Xµ + i pρ ψ
ρψµ} eip.Xe−φ̄ψ̄ν(i) + · · · . (5.14)

This operator has the same form as the NSNS axion vertex operator. Therefore, the
analysis of the amplitude follows exactly the same route as in section 5.1 and leads us to
the left hand side of (5.5) with bµν replaced by −fµν/2:

−1
4 π

2κTp pσ fµν XαX̂ β (ΓσµΓν)βα (2π)p+1δ(p+1)(0) → −1
4 π

2κ T R
γ pσ fµν χ̃

αχ̃α̇ (γσµγν)α̇α .
(5.15)

Expressing (γσµγν) as γσµν + γσηµν − γµησν , and using the form of fµν given in (5.11), we
see that only the γσηµν term contributes. Finally, using (5.13), the resulting expression
may be written as:

− π2 T R
γ pσ

(
δτ2
τ2

+ δV
2V

)
(γσ)α̇α χ̃αχ̃α̇ . (5.16)

Comparing this with (4.1) and using (2.23), we obtain

(am,γdλm)dilaton = iπ2

τ2
T R
γ

(
dτ2 + τ2

2V dV

)
. (5.17)

5.3 Kähler and B-field moduli contribution

A general closed string vertex operator in the (0,−1) picture, polarised in the internal CY
directions, has the form

Ve = 2 eij c c̄
(
∂X i + i pρ ψ

ρψi
)
eip.Xe−φ̄ψ̄j(i) + · · · , (5.18)

so that the amplitude is given by

2iπκ Tp eijXαX̂ β
∫
dz
〈
cc̄
(
∂X i + i pρ ψ

ρψi
)
eip.Xe−φ̄ψ̄j(i) ce−φ/2Sα(0) e−φ/2Sβ(z)

〉
.

(5.19)
We can drop the ∂X i and eip.X terms since they do not contribute to the correlation
function. Also, using the doubling trick, we can replace the c̄ e−φ̄ψ̄j(i) term by (P j

k −
Qj

k) c e−φψk(−i), where P and Q are respectively projection operators tangential and trans-
verse to the brane. This leads to,

2iπκ Tp i pρXαX̂ β eij(P j
k −Q

j
k)
∫
dz
〈
c ψρψi(i) c e−φψk(−i) ce−φ/2Sα(0) e−φ/2Sβ(z)

〉
.

(5.20)
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Picking up the residue at z = i, evaluating the remaining correlator and expressing the
result in terms of four-dimensional spinors, we get

− 1
2 π

2κTp pρ χ̃
αχ̃β̇ γρ

β̇α
eij (P j

k −Q
j
k) η̄Γ̃iΓ̃kη (2π)p+1δ(p+1)(0) . (5.21)

Since η̄Γ̃iΓ̃kη = gik + iωik and Qj
k = δj

k − P
j
k, we have

eij(P −Q)j
k η̄Γ̃iΓ̃kη = 2eijP

j
k

(
gik + iωik

)
−
(
ei

i + ieijω
ij
)
. (5.22)

The second contribution can be easily evaluated. Indeed, using (2.20) which gives

eij = δgij
2κ + δBij, (5.23)

this term can be written as

− 1
2κδg

i
i − iδBijω

ij = − i
κ
δgst̄ωst̄ − 2i δBst̄ω

st̄ , (5.24)

where we have used ωst̄ = −igst̄ in the holomorphic indices s, t. Using (2.22), (B.12)
and (2.23), we can rewrite (5.24) as,

− i

2κV κabctbtc (δba − iδta) = − i

2κV δbaκabct
btc − 1

κ

δV

V
. (5.25)

This result should still be integrated over the wrapped cycle producing the factor |Vγ |.
Using (4.3), this gives the following contribution to (5.21):

− 1
2 π

2κ T R
γ pρ χ̃

αχ̃β̇ γρ
β̇α

(
− i

2κV δbaκabt
b − 1

κ

δV

V

)
. (5.26)

To evaluate the first term on the r.h.s. of (5.22), we use the BPS condition (3.3) which
implies that the projector Pγ on the wrapped cycle (replacing P in the above formulæ)
satisfies P stγ = P s̄t̄γ = 0. Thus, we get

2eijP
j
γ,k

(
gik + iωik

)
= 2eijP

ij
γ + 2(est̄ − et̄s)P st̄γ = 2

κ
(δgst̄ + 2κ δBst̄)P st̄γ

= 2
κ

(δba − iδta)ωa,st̄P st̄γ = 8π2

κ
δz̄a ωa,st̄P

st̄
γ ,

(5.27)

where we expressed the result in terms of complexified Kähler moduli z̄a ≡ ba − ita =
1

4π2 (ba − ita). For p = −1, ωa has no component along the directions tangential to the
brane and (5.27) vanishes. For p ≥ 1, the contribution of (5.27) to (5.21) takes the form:

− 4π4 Tp pρ χ̃
αχ̃β̇ γρ

β̇α
Ip , (5.28)

where

Ip = δz̄a
Vγ

|Vγ |

∫
L

(p+1)
γ

v(p+1)
γ ωa,st̄P

st̄
γ = iδz̄a(

p−1
2

)
!

Vγ

|Vγ |

∫
L

(p+1)
γ

ωa ∧ ω
p−1

2 , (5.29)
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and we used (B.13) and (B.19). Note the factor

Vγ

|Vγ |
=

∫
L

(p+1)
γ

ω
p+1

2

|
∫
L

(p+1)
γ

ω
p+1

2 |
(5.30)

that is needed to ensure that we choose the correct sign of the volume form. For D1-brane
wrapped on L(2)

γ , one obtains from (5.29)

I1 = iδz̄c
(−qata)
|qbtb|

∫
L

(2)
γ

ωc = i(δz̄cqc)
qata

|qbtb|
. (5.31)

For D3-brane wrapped on L(4)
γ , one obtains

I3 = iδz̄a
−(pt2)
|(pt2)|

∫
L

(4)
γ

ωa ∧ ω = − i (pt2)
|(pt2)| δz̄

a
∫
Y
ωa ∧ ω ∧ (−pbωb)

= i(pt2)
|(pt2)| κabcδz̄

apbtc ,
(5.32)

where −paωa is the Poincaré dual form to L(4)
γ . Finally, for D5-brane wrapped on p0Y,

one finds
I5 = ip0

2 δz̄a
p0

|p0|

∫
Y
ωa ∧ ω ∧ ω = i|p0|

2 κabcδz̄
atbtc. (5.33)

We shall be considering D-branes carrying only one type of charge so that only one of the
terms is present. Using (3.4) and (2.23), all three contributions (5.31), (5.32) and (5.33),
as well as the vanishing result for p = −1, can be written as

Ip = (2π)p−1 Zγ
|Zγ |

δZ̄γ , (5.34)

for vanishing background ba. Substituting this into (5.28), we get the contribution from
the first term on the r.h.s. of (5.22) to (5.21):

− π2(2π)p+1 Tp pρ χ̃
αχ̃β̇ γρ

β̇α

Zγ
|Zγ |

δZ̄γ . (5.35)

Adding (5.26) and (5.35) and using (4.1), (4.3), we get

ata,γdt
a + aba,γdb

a =π2T R
γ

( 1
4V κabt

bdba − idV

2V

)
+ 2iπ3τ2

Zγ
|Zγ |

dZ̄γ . (5.36)

5.4 RR contributions

Using the (−1/2,−1/2) picture vertex operator for RR fields given in appendix E, the disk
amplitude with one RR closed string field with polarization F γδ and two open string zero
mode fields Xα, X̂ β for a general Dp-brane can be expressed as

iπκ Tp F
γδ Xα X̂ β

∫
dz
〈
cc̄e−φ/2Sγe

−φ̄/2S̄δ(i) c e−φ/2Sα(0) e−φ/2Sβ(z)
〉
. (5.37)
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We shall take the z contour to lie above the origin as before. Using the boundary condition
on the real line described in (C.7) and the doubling trick, we represent the closed string
vertex operator as

i

(p+ 1)! c e
−φ/2 Sγ(i) c e−φ/2 vI1···Ip+1(ΓI1···Ip+1)δδ′Sδ′(−i) , (5.38)

where v is the volume form along the brane. We can now calculate the correlation function
by first deforming the z contour to pick up the residue at i using the following operator
product expansion

e−φ/2Sγ(w) e−φ/2Sβ(z) = i (w − z)−1 (ΓM )γβe−φψM (w) + . . . . (5.39)

The operator at i then becomes 2π c e−φψM (ΓM )βγ . We are now left with a ψ-S-S correlator
that gives a term proportional to (ΓM )δ′α. The result is

i

(p+ 1)! π
2κTp F

γδ XαX̂ β (ΓM )βγ vI1···Ip+1(ΓI1···Ip+1ΓM )δα (2π)p+1δ(p+1)(0) . (5.40)

Our interest will be in the couplings proportional to pµC(2k)
m1···m2k . For this we pick the

following term in the expansion of F γδ given in (D.7), taking into account the doubling of
the multiplicative factor due to the self-duality constraint (D.8):

i

(2k)!F
(2k+1)
µm1···m2k(Γµm1···m2k)γδ = i

(2k)! ipµC(2k)
m1···m2k(ΓµΓm1···m2k)γδ. (5.41)

Also since the brane lies along a subspace of Y, v is replaced by the volume form v
(p+1)
γ on

the (p+ 1)-cycle L(p+1)
γ wrapped by the Dp-brane with only internal components. Finally,

the (2π)p+1δ(p+1)(0) term has to be interpreted as integration along this cycle. Substi-
tuting (5.41) into (5.40) and using the expression for the tension from (4.3) and the last
relation in (2.23), we get the relevant term to be

− π2(2π)2k−p

8(p+ 1)!
ipµ

(2k)! X
αX̂ β

×
∫
L

(p+1)
γ

v(p+1)
γ (v(p+1)

γ )i1···ip+1 C
(2k)
m1···m2k(ΓMΓµΓm1···m2kΓi1···ip+1ΓM )βα . (5.42)

Due to the presence of two factors of v(p+1)
γ , we do not need to include the compensating

sign that accompanied (5.29). By splitting the sum over M into non-compact and compact
directions, and using (2.3), we can write

ΓMΓµΓm1···m2kΓi1···ip+1ΓM = γµΓmΓ̃Γm1···m2kΓi1···ip+1Γm − 2γµΓ̃Γm1···m2kΓi1···ip+1 .

(5.43)
Substituting this into (5.42), using four-dimensional spinor notation (2.5) and Γ̃η = 1, we
can express the amplitude as

π2(2π)2k−p

8(p+ 1)!
ipµ

(2k)! χ̃
αχ̃β̇γµ

β̇α

∫
L

(p+1)
γ

v(p+1)
γ (v(p+1)

γ )i1···ip+1 C
(2k)
m1···m2k

× η̄
[
Γ̃mΓ̃m1···m2kΓ̃i1···ip+1Γ̃m + 2 Γ̃m1···m2kΓ̃i1···ip+1

]
η .

(5.44)
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Comparison with (4.1) turns this into the following contribution to am,γdλm:

π2(2π)2k−p

8(p+ 1)!
1

(2k)!

∫
L

(p+1)
γ

v(p+1)
γ (v(p+1)

γ )i1···ip+1 dC
(2k)
m1···m2k

× η̄
[
Γ̃mΓ̃m1···m2kΓ̃i1···ip+1Γ̃m + 2 Γ̃m1···m2kΓ̃i1···ip+1

]
η ,

(5.45)

with the understanding that the differential d acting on C(2k) is in the moduli space and
not in spacetime.

The general procedure that we shall follow for analyzing the integrand of (5.45) is as
follows. We first express the product Γ̃m1···m2kΓ̃i1···ip+1 using the identity

Γ̃i1···i2a Γ̃j1···i2 b =
min(2a,2b)∑

`=max(0,(a+b−3))
(−1)`(`+1)/2 δi1···i` , j1···j`Γ̃i`+1···i2 aj`+1···j2 b

+ inequivalent perm. with sign,

(5.46)

where
δi1···in , j1···jn ≡ gi1j1 · · · ginjn + (−1)P weighted perm. of j1, · · · , jn , (5.47)

and inequivalent permutation in (5.46) means all
(2a
`

)
inequivalent permutations of i1, · · · ,

i2a and independently, all
(2b
`

)
inequivalent permutations of j1, · · · , j2b. Then we can ma-

nipulate the resulting expression with the help of the identity

η̄
[
Γ̃mΓ̃j1···j2`Γ̃m + 2 Γ̃j1···j2`

]
η = (8− 4`) η̄ Γ̃j1···j2` η , (5.48)

and then use (2.4) to evaluate the right hand side. This allows us to express the integrand
in terms of geometric quantities on Y. Note that for ` = 2 the right hand side vanishes
and so we do not need the expression for η̄Γ̃ijklη.

We shall now evaluate (5.45) for different values of k and p. Note that p is always
odd. Even though F(3) and F(7) are related by the duality relation (D.8), and therefore
the corresponding potentials C(2) and C(6) are related by (E.27), we shall treat C(2)

mn and
C(6)

m1···m6 as independent fields in our analysis. This is due to the fact that the internal
components of C(6) are equivalent to the ones obtained by dualizing the field C(2)

µν , but
are not related to the internal components of C(2). Since much of our analysis will be
repetitive, we shall give most of the details at the beginning, but will be progressively less
explicit as we proceed.

5.4.1 D(-1)-brane

For p = −1, we can use (5.48) to simplify (5.45) to

− π3(2π)2k (4k − 8)
4(2k)! dC

(2k)
m1···m2k η̄ Γ̃m1···m2k η. (5.49)

It remains to make this result explicit for different k.

0-form potential. For k = 0, using η̄η = 1 and taking into account that C(0) = c0, (5.49)
gives

ac0,γ0dc0 = 2π3dc0 , (5.50)
where γ0 refers to the charge vector corresponding to a single D(-1)-brane.

– 22 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
4

2-form potential. For k = 1, using the relation η̄Γ̃ijη = iωij and expressing the 2-form
field through the moduli ca (see (2.12)), one finds that (5.49) reduces to

aca,γ0dca = 2iπ5dC
(2)
ij ω

ij = 4iπ5(ωa,ω) dca = 4iπ5 1
2V κabctbtcdca = iπ3

2V κabt
bdca , (5.51)

where we have used the identity (B.12) in the third step and the first relation in (2.23) in
the last one.

4-form potential. Since for k = 2 (5.49) vanishes, there is no coupling to C(4), or
equivalently its components c̃a along Y.

6-form potential. Using the relation η̄Γ̃m1···m6η = −iεm1···m6 , we can express (5.49) for
k = 3 as

ac̃0,γ0dc̃0 = iπ3(2π)6 (? dC(6)) = iπ3

V
dc̃0 , (5.52)

where in the second step we have used (B.7) and (2.23).
The results derived above are for a single D(−1)-brane, which, according to (3.2),

carries charge q0 = −1. For D(−1)-brane charge q0, the above results should be multiplied
by −q0.

5.4.2 D1-brane

0-form potential. For p = 1, k = 0, after using (5.48), (2.4) and (B.13), we can ex-
press (5.45) as

πi

8 dC(0)
∫
L

(2)
γ

v(2)
γ (v(2)

γ )ijω
ij = πi

4 dc0
∫
−qaγa

ω = −πi4 qatadc0 . (5.53)

Using again (2.23), we find
ac0,qbγbdc

0 = −iπ3qat
a dc0 . (5.54)

2-form potential. For p=1, k=1, using (5.46), (5.48) and (2.4), we can express (5.45) as

π3
∫
L

(2)
γ

v(2)
γ

(
i dC

(2)
ij (v(2)

γ )j
k ω

ik + dC
(2)
ij (v(2)

γ )ji
)
. (5.55)

The first term in the integrand vanishes which can be seen by expressing it in terms of
holomorphic and anti-holomorphic components. Thus, taking into account that C(2) =
caωa, one remains with

aca,qbγbdc
a = −2π3 dca

∫
−qaγa

ωa = 2π3 qa dc
a . (5.56)

4-form potential. For p = 1, k = 2, the contribution (5.45) gives the following expres-
sion

2
4! π

5
∫
L

(2)
γ

v(2)
γ (v(2)

γ )ijdC
(4)
klmn

(
i εijklmn − 12i δimδjnωkl

)
= −iπ5

∫
L

(2)
γ

(
−4 ? dC(4) + v(2)

γ dC
(4)
ijkl (v(2)

γ )ijωkl
)
.

(5.57)
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The second term in the integrand can be rewritten using (B.9) as follows

dC
(4)
ijkl (v(2)

γ )ijωkl = 1
8 dC

(4)
ijkl (v(2)

γ )ij εklmnpqωmnωpq

= 1
16 εijklrs(? dC(4))rs (v(2)

γ )ij εklmnpqωmnωpq

= (v(2)
γ )ij(? dC(4))kl (ωijωkl + 2ωik ωlj

)
= 4(v(2)

γ ,ω)(? dC(4),ω) + 4(v(2)
γ )st̄ωsū (? dC(4))ūv ωvt̄ .

(5.58)

Using (2.12), (B.10) and (B.2), one can show that (? dC(4),ω) = tadc̃a/V. Using also
ωst̄ = igst̄ in the second term on the r.h.s. of (5.58), one obtains

dC
(4)
ijkl (v(2)

γ )ijωkl = 4
V

(v(2)
γ ,ω) tadc̃a − 4(v(2)

γ , ? dC(4)). (5.59)

Thus, (5.57) becomes

iπ5
∫
−qaγa

(
8 ? dC(4) − 4

V tadc̃aω
)

= 8iπ5κabqa(dc̃b) , (5.60)

where we used (B.6). Due to (2.24), this gives

ac̃a,qbγbdc̃a = 2iπ3κabqadc̃b. (5.61)

6-form potential. For k = 3, (5.45) vanishes due to (5.48). This shows that

ac̃0,γ dc̃0 = 0 . (5.62)

5.4.3 D3-brane

0-form potential. For p = 3, k = 0, the integrand in (5.45) vanishes due to (5.48) and
we have

ac0,pbγbdc
0 = 0 . (5.63)

2-form potential. In this case we have p = 3, k = 1 and can express (5.45) as

πi

4! · 8

∫
L

(4)
γ

v(4)
γ dC

(2)
ij (v(4)

γ )klmn
(
εijklmn − 12 δim δjnωkl

)
. (5.64)

This can further be rewritten as

πi

4

∫
L

(4)
γ

(
? dC(2) − dC(2) ∧ ω

)
= − πi

4

∫
−paγ̃a

(
2dC(2) ∧ ω − (t2dc)

4V ω2
)

= πi

4

(
2(ptdc)− (t2dc)

4V (pt2)
)
,

(5.65)

where we used (B.2) and (B.5). Therefore, taking into account the first relation in (2.23),
we have

aca,pbγbdc
a = 2iπ3κabp

adcb − iπ3

4V (pt2)κabtadcb. (5.66)
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4-form potential. In this case we have p = 3, k = 2 and can express (5.45) as

2π3

4!

∫
L

(4)
γ

v(4)
γ (v(4)

γ )ijkl

[
dC(4)ijkl + 2i dC(4)ijk

mω
ml − 2i

3! dC
(4)i

mnp ε
mnpjkl

]
. (5.67)

The last two terms actually vanish: the vanishing of the second term becomes evident after
writing it in the holomorphic and anti-holomorphic components, whereas the vanishing of
the third one follows just from the anti-symmetrization of indices as the index i can equal
neither jkl nor mnp, and these six indices must all be different. Thus, one remains with

ac̃a,pbγbdc̃a = 2π3
∫
−paγ̃a

dC(4) = −2π3 pa dc̃a . (5.68)

6-form potential. In this case we have p = 3, k = 3 and can express (5.45) as

2iπ5

4! (? dC(6))
∫
L

(4)
γ

v(4)
γ (v(4)

γ )ijkl ε
ijklmn ωmn = 4iπ5(? dC(6))

∫
−paγ̃a

?ω

= − 2iπ5 (pt2)
V dc̃0 ,

(5.69)

where we used (B.9) and (B.2). Therefore, due to (2.23), we have

ac̃0,pbγbdc̃0 = − iπ
3

2V (pt2)dc̃0 . (5.70)

5.4.4 D5-brane

0-form potential. In this case we can express (5.45) as

ac0,γ̃0dc
0 = i dc0

8(2π)3

∫
Y
v(6)
γ = iV

8(2π)3 dc0 = iπ3V dc0 , (5.71)

where in the last step we have used (2.23). Here γ̃0 corresponds to the charge vector
describing a D5-brane wrapped on Y.

2-form potential. In this case the integrand in (5.45) vanishes and we have

aca,γ̃0dc
a = 0 . (5.72)

4-form potential. In this case we can express the contribution (5.45) as

π2

8 · 6! · 4!
1

2π

(
6
2

)
× 4!× 4i

∫
Y
v(6)
γ

(
v(6)
γ

)i1···i6
dC

(4)
i1···i4

ωi5i6

= iπ

4

∫
Y
v(6)
γ

(
v(6)
γ , dC(4) ∧ ω

)
= iπ

4

∫
Y
dC(4) ∧ ω = iπ

4 tadc̃a .
(5.73)

Using the first relation in (2.23), one finds

ac̃a,γ̃0dc̃a = iπ3tadc̃a. (5.74)
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6-form potential. For p = 5, k = 3, we can express (5.45) as

ac̃0,γ̃0dc̃0 = −2π3
∫
Y
dC(6) = −2π3 dc̃0 . (5.75)

Eqs. (5.71)–(5.75) hold for a single D5-brane carrying charge p0 = 1. For general p0,
these expressions should be multiplied by p0.

5.5 Final result

Adding the various contributions to am,γdλm obtained in this section, we get

∑
m

am,γdλ
m = π2

4V τ2
2
T R
γ dσ + iπ2

τ2
T R
γ dτ2 + π2

4V T
R
γ κabt

bdba + 2iπ3τ2
Zγ
|Zγ |

dZ̄γ

−q0

[
iπ3

V
dc̃0 + iπ3

2V κabt
bdca + 2π3dc0

]
+qa

[
2iπ3κab dc̃b + 2π3dca − iπ3tadc0

]
(5.76)

+
[
− iπ

3

2V (pt2)dc̃0 − 2π3padc̃a + 2iπ3κabp
adcb − iπ3

4V (pt2)κabtadcb
]

+p0
[
− 2π3dc̃0 + iπ3tadc̃a + iπ3V dc0

]
,

with the understanding that this result is valid when only one type of charge is present.
Comparing this with (3.23) for vanishing background values of ba and RR fields, we con-
clude that ∑

m

am dλ
m = π3Aγ . (5.77)

Now, using (4.6) and (4.7), we can express the instanton correction to the metric as:

ds2
inst = κ2

23π13/2V
∑
γ

Ωγ(
2π2T R

γ

)1/2

∞∑
k=1

k−1/2 e−kTγ

(∑
m

am,γ dλ
m

)2

. (5.78)

Using (2.21), (2.23) and (5.77) this reduces to

ds2
inst = 2−7/2 π−1/2(τ2

2V )−1∑
γ

Ωγ

(T R
γ )1/2

∞∑
k=1

k−1/2 e−kTγ A2
γ . (5.79)

This is in perfect agreement with the prediction (3.21).

6 Non-linear terms

The results of explicit instanton calculation given in (5.76), (5.78) match the predic-
tion (3.21) when the background values of B and RR fields are set to zero in the expression
for Aγ . Furthermore, in (5.76) we had to restrict to instantons carrying only one type of
charge, while the result (3.21) includes sum over instantons that can carry multiple types
of charges corresponding to Dp-branes for different values of p. Our goal in this section
will be to rectify these defects.
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6.1 Disk amplitude with one RR field and a pair of zero modes

First, we shall study the effect of switching on the B field along Y on the amplitudes
involving the RR fields. In the presence of such a background, the tension of a Dp-brane
is modified to:

T̃p ≡ Tp
√
det(g‖ + 2κB‖)

/√
detg‖ , (6.1)

where the subscript ‖ denotes the pullback along the world-volume directions of the D-
brane. The boundary condition on the spin fields given in (C.7) get modified to [22]

e−φ̄/2S̄α(z̄) = − i

(2k)!

√
detg‖√

det(g‖ + 2κB‖)
vm1···m2k(Γm1···m2k ê−κ(BP )ijΓij) β

α e−φ/2Sβ(z) ,

e−3φ̄/2S̄α(z̄) = i

(2k)!

√
detg‖√

det(g‖ + 2κB‖)
vm1···m2k(Γm1···m2k ê−κ(BP )ijΓij)αβ e−3φ/2Sβ(z) ,

(6.2)

where BP = PBP denotes the projection of B along the brane.9 The factor of 2κ comes
from the particular normalization of the 2-form field we have chosen, reflected in (2.20). ê
should be interpreted as an exponential on forms: after Taylor expanding, one has to anti-
symmetrize the tangent-space indices of the Γ-matrices. Due to this, the series terminates
after a finite number of terms; e.g. in the case of the D1-brane, only the first two terms
survive.

The modifications (6.1), (6.2) due to the presence of background B field can affect the
computation of the am’s in section 5 by changing the result of the disk amplitude with one
closed string vertex operator and two fermion zero modes from the open string sector. In
the absence of B-field background, the integral in (5.45) has the general form

1
(p+ 1)!

∫
L

(p+1)
γ

v(p+1)
γ v

(p+1)
γ,i1···ip+1

Y (p+1)i1···ip+1 =
∫
L

(p+1)
γ

Y (p+1) (6.3)

for some (p + 1)-form Y (p+1). Using the Poincaré duality between (p + 1)-cycles and
(5 − p)-forms on Y, we can associate a (5 − p)-form ω

(5−p)
γ with L

(p+1)
γ and express the

integral (6.3) as ∫
Y
ω(5−p)
γ ∧ Y (p+1) . (6.4)

In particular, we have

ω(0)
γ = p0, ω(2)

γ = −paωa, ω(4)
γ = −qaω̃a, ω(6)

γ = −q0ωY, (6.5)

while their sum, which we denote by ωγ , can be seen as Poincaré dual to the homology
element (3.2). It follows from the remark below (3.2) that ωγ = ι(γ).

9While the pullback and projection are closely related objects, they are not the same. The former has
its indices labelled by the intrinsic coordinates on the brane that run over (p + 1) values while the latter
has its indices labelled by the coordinates of the full spacetime even though it will be a matrix of rank
≤ (p+ 1).
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Now let us consider the effect of switching on the B-field. The net effect is to make
the following replacement in the expression for the integrand in (5.45):

v
(p+1)
γ,i1···ip+1

Γi1···ip+1 ⇒ v
(p+1)
γ,i1···ip+1

Γi1···ip+1 ê−κ(BP )ijΓij

= v
(p+1)
γ,i1···ip+1

[
Γi1···ip+1 + 2κBi1i2Γi3···ip+1 + (2κ)2

2 Bi1i2Bi3i4Γi5···ip+1

+ (2κ)3

6 Bi1i2Bi3i4Bi5i6Γi7···ip+1

]
,

(6.6)

where we have terminated the sum using the fact that p is at most 5. The rest of the
factors remain the same. Note that on the r.h.s. of (6.6) we have used the full Bij since
contraction with v

(p+1)
γ given in (3.3) automatically ensures projection along the brane.

Since the factors
√
det(g‖ + 2κB‖)

/√
detg‖ cancel between (6.1) and (6.2), we effectively

make the replacement

Y (p+1) ⇒ Y (p+1) + 2κ
(2π)2 B∧Y (p−1) + 1

2
(2κ)2

(2π)4 B∧B∧Y (p−3) + 1
6

(2κ)3

(2π)6 B∧B∧B∧Y (p−5) .

(6.7)
In writing the above expression we have used the fact that when we go from p-brane
contribution to the (p− 2)-brane contribution, we have to replace the Γi1···ip+1 contracted
with the volume form on the brane by Γi3···ip+1 and also the tension that multiplies the
amplitudes gets multiplied by a factor of (2π)2. Substituting this into (6.4) and using the
relation 2κ

(2π)2 B = ∑
a b

aωa = B following from (2.22) and (2.23), we obtain

∫
Y
ω(5−p)
γ ∧ Y (even)eB , Y (even) =

3∑
k=0

Y (2k). (6.8)

Let us combine all charge vectors together by considering the formal sum of contri-
butions (6.8) for different p keeping in mind that at this stage, a physical instanton will
carry only one of the four types of charges corresponding to a given value of p. With this
understanding we can express the net contribution from the formal sum as∫

Y
ωγ ∧ eB Y (even) =

∫
Y
ι(γ̌) ∧ Y (even) =

∫
Y
ωγ̌ ∧ Y (even), (6.9)

where we used ωγ = ι(γ), (2.19) and (3.7). Since we are allowed to have only a fixed
value of p, (6.9) should be interpreted as follows. The contribution due to a given Dp-
brane of fixed charge in the presence of a background B field is given by the sum of the
contributions from different types of branes, carrying charges p̌Λ, q̌Λ, with no background
B field. However, these charges are not independent, since they are all determined by the
charge labelling the original Dp-brane which could be p0, pa, qa or q0. We shall partially
overcome this restriction in section 6.3.

So far the analysis of this section has been done for constant B field and vanishing
RR background. Therefore, we could not determine the terms proportional to dba inside
the covariant derivatives in (2.11). However, the following argument can be used to show
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that what appear in the expression for ∑m amdλ
m are the full covariant derivatives. The

point is that perturbative amplitudes in type IIB string theory as well as all instanton
amplitudes, with the sole exception of a disk with one closed string vertex operator, are
computed using the (−1/2,−1/2) picture vertex operators of the RR fields, which involve
the field strengths F(2k+1) instead of the potentials C(2k). This leads to a symmetry under
constant shift of the potentials C(2k) which translates to the shift symmetry (2.18). The
disk one-point functions that are responsible for the breaking of the shift symmetry can be
summed to produce the factor e−kTγ that accompanies the instanton amplitude — this has
been checked explicitly in appendix section G. Therefore, ∑m amdλ

m must be invariant
under the continuous shift symmetry. This is precisely achieved by the covariant derivatives
whose invariance under transformations (2.18) was verified in the end of section 2.2.10

To summarize, we found that the RR contribution to amdλm in the presence of the B
field is given by the RR contribution to (5.76) with the charges replaced by p̌Λ, q̌Λ and the
differentials of the RR scalars replaced by their covariant versions (2.11). This gives

1
π3

(∑
m

am,γdλ
m

)
RR

=−q̌0

[
i

V
∇c̃0 + i

2V κabt
b∇ca+ 2dc0

]
+ q̌a

[
2iκab∇c̃b+ 2∇ca− itadc0

]
+
[
− i

2V (p̌t2)∇c̃0 − 2p̌a∇c̃a + 2iκabp̌a∇cb −
i

4V (p̌t2)κabta∇cb
]

+p0
[
−2∇c̃0 + ita∇c̃a + iV dc0

]
. (6.10)

This agrees with the RR part of (3.23).

6.2 Disk amplitude with one NSNS field and a pair of zero modes

Turning on a constant B field in the internal directions along the D-brane modifies the
boundary condition on ψM , with the doubling trick now leading to the replacement [23]

c̄ e−φ̄ψ̄M (i)→ OMN c e
−φψN (−i) , (6.11)

where O is the orthogonal matrix

O = P (gP + 2κBP )−1(gP − 2κBP )−Q , BP = PBP, gP = PgP, (6.12)

and P and Q are the projection operators tangential and transverse to the brane, respec-
tively. Note that the inverse of (gP + 2κBP ) exists since it is taken inside the subspace
projected by P . In addition, the D-brane tension is modified as in (6.1). Since the action
of O on directions transverse to the brane does not depend on B, the dilaton and NSNS
axion amplitudes are formally the same as those found in section 5.1 and section 5.2 before
with the D-brane tension modified as above.

10Note that while the shift symmetry in string field theory shows the existence of a shift symmetry of∑
m
amdλ

m, the actual transformation laws may be different due to the possibility of non-trivial transfor-
mations relating the fields and the transformation parameters in string field theory and effective field theory
description. What we are using here to fix the form of am is the knowledge that the missing terms must be
proportional to dba together with the shift symmetry transformation laws (2.18) that leave the tree level
action (2.8), (2.11) invariant.
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In the case of Kähler and B-field moduli, (5.21) generalizes to

− 1
2 π

2κ T̃p pρ γ
ρ

β̇α
χ̃αχ̃β̇ eijO

j
k

(
gik + iωik

)
(2π)p+1δ(p+1)(0) . (6.13)

Since Q = 1− P , we can write as in (5.22)

eijO
j
k

(
gik + iωik

)
= 2eij

(
P (gP + 2κBP )−1 gP

)j

k

(
gik + iωik

)
−
(
ei

i + ieijω
ij
)
. (6.14)

The second term gives the same contribution as (5.26) with T Rγ including the effect of the
background B field as shown in (G.6), whereas the first can be rewritten as (cf. (5.27))

2
κ

(δba − iδta)ωa,st̄
(
P (gP + 2κBP )−1 P

)t̄s
= 2
κ

(δgP + 2κδBP )st̄
(
(gP + 2κBP )−1

)t̄s
,

(6.15)
where δgP and δBP are defined as the projection of δg and δB on the brane, i.e. we do
not take into account the possible variation of P in defining these quantities.11

If we work within the subspace projected by P , then we can regard (δgP + 2κδBP )
as a (p + 1)/2 × (p + 1)/2 matrix obtained by this projection and (gP + 2κBP )−1 as the
inverse of this matrix. There is a closely related object where instead of using projection
we use the pullback operation for covariant tensors. The projection depends on the choice
of metric but the pullback does not. For a rank (1,1) tensor M , the pullback M‖ and
the projection MP are related by M‖ = WMP W̄

T for some matrix W . However, in the
combination appearing in (6.15) the dependence on the matrix W cancels, showing that
we can replace the matrices by their pullback. This allows us to express it as:

2
κ
Trh

[
(δg‖ + 2κδB‖)

(
g‖ + 2κB‖

)−1
]

= 2
κ
δ log deth

(
g‖ + 2κB‖

)
, (6.16)

where the subscript ‘h’ indicates that we are considering the trace and determinant using
the holomorphic coordinates on the brane as in (6.15). Since pullback of a covariant tensor
does not depend on the choice of metric, in this form it does not matter if in computing
δg and δB we first compute the variation and then take the pullback or take the variation
of the pullback, and therefore we could pull the δ outside the trace and the determinant.
Using (6.16), the contribution of the first term in (6.14) to (6.13) is given by:

− π2 T̃p pρ γ
ρ

β̇α
χ̃αχ̃β̇

Vγ

|Vγ |

∫
L

(p+1)
γ

v(p+1)
γ δ log deth

(
g‖ + 2κB‖

)
. (6.17)

The factor Vγ/|Vγ | has the same origin as in (5.29). Now using (G.4) with M = g + 2κB
and N some matrix having the expansion Nst̄ = Naωa,st̄ with coefficients independent of
ta and ba, we get

log deth
(
g‖ + 2κB‖

)
= log Z̄γ + log dethN‖ − log Z̄γ(N) , (6.18)

11Of course, the cycle itself, determined from the requirement of holomorphy, does not depend on the
choice of g and B, but P , expressed in a fixed coordinate system, could still depend on the choice of the
metric.
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where Z̄γ(N) is Z̄γ evaluated at za = Na/(2π)2. Since the last two terms are independent
of the moduli, their variation vanishes and we obtain

δ log deth
(
g‖ + 2κB‖

)
= δZ̄γ

Z̄γ
. (6.19)

Since this is a constant in Y, it comes out of the integral in (6.17). The integration now
yields a factor of Vγ . Using the relation T̄p|Vγ | = T R

γ = 2πτ2|Zγ | in the presence of a
background B field, as verified in (G.6), we can express (6.17) as

− π2 pρ γ
ρ

β̇α
χ̃αχ̃β̇ 2πτ2 |Zγ |

δZ̄γ

Z̄γ
. (6.20)

Adding (5.26) and (6.20) and using (4.1), we get

ata,γdt
a + aba,γdb

a =π2T R
γ

( 1
4V κabt

bdba − idV

2V

)
+ 2iπ3τ2

Zγ
|Zγ |

dZ̄γ . (6.21)

This has the same form as equation (5.36), except that it is now valid even in the presence
of background B field.

Finally, we shall discuss the replacement of dσ in (5.76) by the full covariant derivative
∇σ that appears in the expression for Aγ in (3.23). This follows essentially from the same
argument as in [1]. Since the tree level kinetic term (2.8) also involves ∇σ, such a term
must be present already in the dualization rule (5.7) due to the presence of an additional
term in the action involving the NSNS 3-form field strength before dualization. In other
words, the Fourier transform of dσ is replaced by the Fourier transform of ∇σ on the r.h.s.
of (5.7). Therefore, dσ in (5.76) should be replaced by ∇σ.

In summary, we have shown that the contribution to ∑m am,γdλ
m/π3 from the NSNS

sector fields λm reproduces the result given in the first line of (3.23) even in the presence
of background B field.

6.3 Multiple-charge system

Notwithstanding our use of the formal sum in (6.9), our analysis up to now applies to the
case where the instanton carries a single type of Dp-brane charge. We shall now rectify
this defect by using the fact that the original Dp-brane could carry world-volume gauge
field with field strength Fij and this could induce Dq-brane charges with q < p. It is known
that in the world-volume theory the combination F +B appear together. Therefore, if we
decompose F as12

F = faωa , (6.22)

then in (3.8) the combination fa + ba will appear together. For reasons that will become
clear soon, let us denote the charge carried by the original system by γ̄ = (p̄Λ, q̄Λ) —

12Since F must be along the world-volume of the brane, not all fa’s are allowed. But since the final
formula is sensitive only to the components of F along the brane, the extra variables are automatically
eliminated.
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as before only one of these charges will be taken to be non-zero. Then, using the form
notation, (3.7) will now be replaced by

γ̌ = e−B−F γ̄ = e−Bγ, (6.23)

where in the last step we defined
γ = e−F γ̄. (6.24)

As a result, (6.23) has the form identical to (3.7). The analysis of the earlier sections will
now proceed as before with γ replaced by γ̄ and B replaced by B+F . But by regarding γ
as the instanton charge and by choosing the fa’s appropriately, we can now make all of the
charges (pΛ, qΛ) (or a subset of them) non-zero. We still have the constraint that in terms
of the barred variables, only one charge can be non-zero at a time. Since fa’s, representing
flux of gauge field strengths through 2-cycles, are quantized, the charges (pΛ, qΛ) remain
quantized since (p̄Λ, q̄Λ) are quantized. In contrast, ba’s are continuous variables and as a
result p̌a, q̌a, q̌0 are not quantized. Eq. (6.23) shows that the final result, expressed in terms
of γ and B, takes the same form as before.

We can now make contact with the large volume limit described in (3.25) if we identify
fa with λ1/3f̄a. Therefore, fa scales in the same way as ba. This is natural since fa + ba

appear in this combination in all formulæ, but also from the point of view that with this
choice FijF

ij on the brane remains finite as we take the large volume limit. Hence, if we
keep the magnitude of the gauge field strength on the brane fixed as we take the large
volume limit then we naturally arrive at the scaling described in (3.25). Put another way,
even though according to (3.25) the charges associated with lower dimensional branes are
scaled up in the large volume limit, the charge is spread out over the higher dimensional
brane so that the charge density remains finite. The comments below (3.25) also show
that in terms of the barred variables, only the one associated with the highest dimensional
brane contributes in the large volume limit. Therefore, the surviving contribution can be
obtained by starting with a single D-brane and switching on gauge fields on the brane,
keeping FijF

ij on the brane finite as we take the large volume limit.
Even though by varying the fa’s we can vary the charges carried by a system, we do not

have enough variables to vary all charges independently. For example, if we begin with a
D5-brane alongY, we have h1,1 fa’s and p̄0 which cannot be used to vary all 2h1,1+2 charges
independently. This can be rectified by allowing the gauge fields to take more general form
than the restriction of faωa to the brane, but we shall now argue that in the natural large
volume limit these additional charges will not scale up appropriately so as to be able to
contribute to the D-instanton amplitude. For this let us again consider the case where the
parent brane is a D5-brane (p̄0 = 1). In the presence of a background 2-form field, the U(1)
gauge field on the brane is known to have a non-commutative instanton solution [24] that
carries D1-brane charge and is localized with finite width on a codimension 4 subspace.
In this case we expect supersymmetry to require this codimension 4 subspace to be a
supersymmetric cycle. In principle, the D1-brane charge induced this way can be varied
independently by varying the number of non-commutative instantons. However, since the
D1-brane charge is localized on the D5-brane, if we want to scale it up by λ2/3 as will be
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required to be able to contribute to the instanton amplitude, we need to have large localized
D1-brane charge density on the D5-brane. This is not a natural large volume limit. For
this reason, we stick to the limit (3.25) even though in this limit not all components of
charge contribute to the amplitude.
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A Manifestly S-duality invariant metric

In this paper we expressed the moduli space metric in terms of the NSNS axion σ, identical
to the one used in the type IIA formulation, and the RR scalar fields (2.6) that are period
integrals of the RR p-form potentials. This choice is particularly convenient for comparison
with calculations based on string amplitudes since these are the potentials C(p) that enter
the expressions for the RR vertex operators, see appendix E. However, under the S-duality
group the fields c̃a, c̃0 and σ transform in a very complicated way, making it hard to see
the S-duality invariance of the metric (2.8). For this reason, usually the metric is expressed
in terms of a somewhat different set of fields. If one introduces [5, 25]

ca = − c̃a + 1
2 κabcb

bcc, c0 = −c̃0 + bac̃a −
1
3 (b2c),

ψ =− 1
2 σ + 1

2 c
0c̃0 −

1
2 c

ac̃a + 1
6 (bc2),

(A.1)

and defines τ = c0 + iτ2, then the classical metric (2.8) takes the form (see, e.g., [8, 26])

ds2
cl = 1

τ2
2

(
2dτ2 + τ2

2V κabt
adtb

)2
+ (dc0)2

τ2
2

+Gabdt
adtb

+ Gab
τ2

2
(dca − τdba)(dcb − τ̄ dba) + Gab

τ2
2V

2 ∇ca∇cb

+ 1
τ4

2V
2

[
|dψ + τdc0|2 +

∣∣∣(ca − τ̄ ba)∇̂ca∣∣∣2]
− 1
τ4

2V
2

[
(dψ + τdc0)(ca − τ̄ ba) + (dψ + τ̄ dc0)(ca − τba)

]
∇̂ca,

(A.2)

where

∇ca = dca + 1
2κabc(c

bdbc − bbdcc),

∇̂ca = dca + 1
6κabc(c

bdbc − bbdcc).
(A.3)
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Except the first line, (A.2) is manifestly invariant under the following SL(2,R) transfor-
mations

τ → aτ + b

cτ + d
, ta → |cτ + d| ta,(

ca

ba

)
→
(
a b

c d

)(
ca

ba

)
,

(
c0
ψ

)
→
(
d −c
−b a

)(
c0
ψ

)
.

(A.4)

In particular, the variable τ is the usual complexified coupling constant on which SL(2,R)
acts by the familiar fractional-linear transformations. The first line in (A.2) can also be
rewritten in manifestly invariant way as follows:

|dτ |2

τ2
2
− 1
τ2V

κabd(√τ2t
a)d(√τ2t

b) + 1
2τ2V 2 (κabtad(√τ2t

b))2. (A.5)

Thus, this set of fields is adapted for studying S-duality of the hypermultiplet moduli space
in the type IIB formulation and has been widely used in this context. However, in this
paper S-duality is not used and therefore we prefer to work in terms of c̃a, c̃0 and σ.

B Kähler moduli space and holomorphic cycles

In this appendix we collect various useful relations that hold on the Kähler moduli space
of a CY threefold.

First of all, note that for the classical prepotential (2.15), one finds the following
expressions for the matrix of its second derivatives

ReFΛΣ =
(

(t2b)− 1
3 (b3) 1

2 κabc(bbbc − tbtc)
1
2 κabc(bbbc − tbtc) −κabcbc

)
,

NΛΣ = − 2 ImFΛΣ =
(

2κcdbcbd − 4V −2κacbc
−2κbcbc 2κab

)
,

NΛΣ = − 1
4V

(
1 ba

bb −2V κab + babb

)
.

(B.1)

Next, let ωa ∈ H1,1(Z,Y) be a basis of harmonic (1,1)-forms and ω̃a ∈ H2,2(Z,Y) be
a basis of harmonic (2,2)-forms such that they satisfy the following relations [27]

ωa ∧ ωb = κabc ω̃
c , ωa ∧ ω̃b = δba ωY , (B.2)

where ωY is a 6-form normalized as
∫
Y ωY = 1 and κabc are intersection numbers introduced

in (2.9). This implies
ωa ∧ ωb ∧ ωc = κabc ωY . (B.3)

The Kähler form ω expanded in this basis gives rise to the moduli ta: ω = taωa, and
measures the volume of the CY threefold

V = 1
6

∫
Y
ω ∧ ω ∧ ω = 1

6 κabct
atbtc. (B.4)
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The action of the Hodge operator on this basis is [28]

?ωa = −ω ∧ ωa + κabtb

4V ω ∧ ω = VGab ω̃
b, (B.5)

? ω̃a = −κabωb + ta

2V ω = V−1Gab ωb, (B.6)

?ωY = V−1, (B.7)

where κab = κabctc, the metric Gab is given by

Gab ≡ −
1
V

(
κab −

1
4V κactcκbdtd

)
, (B.8)

and Gab is its inverse. A particular case of these relations is

? ω = 1
2 ω

2, ?ω2 = 2ω. (B.9)

Since for any two p-forms one has

α ∧ ?β = (α, β) VωY, (B.10)

where we defined the inner product on p-forms

(α, β) = 1
p! αi1···ipβ

i1···ip , (B.11)

the relations (B.9) and (B.3) imply

(ωa,ω) = ωa ∧ ω2

2VωY
= 1

2V κabctbtc. (B.12)

Note that this relation implies that the quantity on the l.h.s. is constant on Y.
Let us consider a 2n-dimensional holomorphic cycle L(2n)

γ with the volume form v
(2n)
γ

given in (3.3) and a Poincaré dual form ω
(6−2n)
γ given in (6.5). For any 2n-form α(2n), one

has the obvious identity ∫
L

(2n)
γ

v(2n)
γ

(
v(2n)
γ , α(2n)

)
=
∫
L

(2n)
γ

α(2n) . (B.13)

Then we also have the relation

ωn ∧ ω(6−2n)
γ = n!VγωY , (B.14)

where Vγ is the volume of L(2n)
γ defined in (4.4). To prove this, we first note that it follows

from (6.5), (B.2) and (B.3) that the left hand side of (B.14) is proportional to ωY with the
proportionality factor being a constant on Y. We can then integrate both sides over Y.
The left hand side takes the form

∫
L

(2n)
γ

ωn which evaluates to n! Vγ due to (3.3). On the
right hand side

∫
Y ωY gives 1. This fixes the constant of proportionality to be n!Vγ .

We now claim that for any 2n-form α(2n) on Y one has(
α(2n), v(2n)

γ

)
= V

Vγ

(
α(2n), ? ω(6−2n)

γ

)
on L(2n)

γ . (B.15)
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To prove this relation, note that we can write∫
L

(2n)
γ

α(2n) =
∫
Y
α(2n) ∧ ω(6−2n)

γ = V
∫
Y
ωY

(
α(2n), ? ω(6−2n)

γ

)
= V
n!Vγ

∫
Y
ωn ∧ ω(6−2n)

γ

(
α(2n), ? ω(6−2n)

γ

)
,

= V
Vγ

∫
L

(2n)
γ

v(2n)
γ

(
α(2n), ? ω(6−2n)

γ

)
,

(B.16)

where we used (B.10) and (B.14). One the other hand, the original integral can also be
rewritten as ∫

L
(2n)
γ

v(2n)
γ

(
α(2n), v(2n)

γ

)
. (B.17)

Hence, the integrals (B.16) and (B.17) must be equal. But in fact, since α(2n) is arbitrary
and, in particular, can be multiplied by any function on Y, the equality holds for the
integrands as well. This proves (B.15).

Next, let ωγ denote the Kähler form projected along the cycle. It should not be
confused with ω(6−2n)

γ appearing above. It turns out that the mixed components of ωγ are
proportional to those of the projector Pγ on the cycle L(2n)

γ . Indeed,

ωst̄γ = (Pγ)ss′(Pγ)t̄t̄′ω
s′ t̄′ = −iP st̄γ , (B.18)

where we used ωst̄ = −igst̄.
Now we claim that for any (1,1)-form α one has

αst̄P
st̄
γ = i

(n− 1)!(α ∧ ω
n−1, v(2n)

γ ). (B.19)

Indeed, for n = 1 it is a direct consequence of (B.18):

i(α, v(2)
γ ) = iαst̄ω

st̄
γ = αst̄P

st̄
γ . (B.20)

For n = 2, similarly we have

i(α ∧ ω, v(4)
γ ) = i 62

2 · 3 · 4! αijωkl
(
ωij
γ ω

kl
γ + 2ωik

γ ω
lj
γ

)
= − i

2 αst̄
(
2P st̄γ (ωuv̄ P uv̄γ ) + 2P sūγ ωūv P

vt̄
γ

)
= αst̄P

st̄
γ ,

(B.21)

where we again used (B.18) and that for 2n-dimensional cycle, (Pγ)ss = n. Finally, for
n = 3 there is no projection and we find

P st̄γ = gst̄, (B.22)

so that
i

2 (α ∧ ω2, v(6)
γ ) = i

12 · 15 · 6!

(6!
8

)2
αijωklωmn

(
ωijωklωmn + 4ωik ωljωmn

+2ωijωkmωnl + 8ωikωmjωnl
)

= 1
16 αst̄g

st̄ 2
(
62 − 24− 12 + 8

)
= αst̄P

st̄
γ .

(B.23)
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C Boundary condition on spin fields

In this appendix we shall discuss the choice of boundary conditions on the spin fields. We
shall work in background with vanishing NSNS 2-form field. When this field is present in
the background, (C.1) remains unchanged but (C.2) and subsequent equations are modified
in a way described in section 6.

We begin with the operator product expansions:

e−φψM (z) e−φ/2Sα(w) = i

2 (z − w)−1 (ΓM )αβe−3φ/2 Sβ(w) + · · · , (C.1a)

e−3φ/2Sα(z) e−φ/2Sβ(w) = (z − w)−2 δαβ e
−2φ(w) + · · · , (C.1b)

e−φ̄ψ̄M (z̄) e−φ̄/2S̄α(w̄) = i

2 (z̄ − w̄)−1 (ΓM )αβe−3φ̄/2 S̄β(w̄) + · · · , (C.1c)

e−3φ̄/2S̄α(z̄) e−φ̄/2S̄β(w̄) = (z̄ − w̄)−2 δαβ e
−2φ̄(w̄) + · · · , (C.1d)

where · · · denote less singular terms. We also consider the possible choice of boundary
conditions on the real axis:

e−φ̄ψ̄M⊥(z̄) = −e−φψM⊥(z), e−φ̄ψ̄M‖(z̄) = e−φψM‖(z) (C.2a)

e−φ̄/2S̄α(z̄) = ε

(2k)! vM1···M2k(ΓM1···M2k) β
α e−φ/2Sβ(z) , (C.2b)

e−3φ̄/2S̄α(z̄) = ε′

(2k)! vM1···M2k(ΓM1···M2k)αβ e−3φ/2Sβ(z) , (C.2c)

e−2φ̄(z̄) = e−2φ(z) , (C.2d)

where ε and ε′ are possible phases that we want to determine and vM1···M2k is the volume
form along the Euclidean D(2k− 1)-brane. Even though we have displayed the arguments
of holomorphic fields as z and the anti-holomorphic fields as z̄, we must remember that on
the real axis z = z̄. In (C.2a), M⊥ and M‖ denote directions transverse and tangential to
the D-brane, respectively.

Using (C.2), we can express (C.1c) as

− e−φψM⊥(z) ε

(2k)! vM1···M2k(ΓM1···M2k) β
α e−φ/2Sβ(z)

= i

2 (z − w)−1 (ΓM⊥)αβ
ε′

(2k)! vM1···M2k(ΓM1···M2k)βγ e−3φ/2Sγ(z) .
(C.3)

Manipulating the left hand side using (C.1a), we get

− ε vM1···M2kΓM1···M2kΓM⊥ = ε′ vM1···M2kΓM⊥ΓM1···M2k ⇒ ε = −ε′ . (C.4)

Note that in type IIA string theory 2k is replaced by 2k + 1 and we would get an extra
minus from the gamma matrix commutators, giving ε = ε′.

Next we use the boundary conditions (C.2) in (C.1d) to get

ε′

(2k)! vM1···M2k(ΓM1···M2k)αγ e−3φ/2Sγ(z) ε

(2k)! vN1···N2k(ΓN1···N2k) δ
β e
−φ/2Sδ(w)

= (z − w)−2 δαβ e
−2φ(w).

(C.5)
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Using (C.1b), this gives

ε′

(2k)! vM1···M2k

ε

(2k)! vN1···N2k

[
(ΓM1···M2k)(ΓN1···N2k)T

]α
β

= δαβ ⇒ ε ε′ = 1 . (C.6)

Using (C.4) and (C.6), we see that we have ε = ±i, ε′ = ∓i. We shall choose ε = −i and
ε′ = i so that the boundary conditions (C.2b) and (C.2c) take the form:

e−φ̄/2S̄α(z̄) = − i

(2k)! vM1···M2k(ΓM1···M2k) β
α e−φ/2Sβ(z) ,

e−3φ̄/2S̄α(z̄) = i

(2k)! vM1···M2k(ΓM1···M2k)αβ e−3φ/2Sβ(z) .
(C.7)

D Normalization of the RR fields

In this appendix we shall fix the normalization of the RR fields by analyzing the two-
point function of the gauge invariant field strength. The results of this appendix will be
insensitive to the presence of a constant background NSNS 2-form field, since this does not
affect the closed string sector.

We introduce the off-shell level zero RR field in Siegel gauge in the (−1/2,−1/2)
picture:

|φR〉 =
∫

d10p

(2π)10 F
αβ(p) c c̄ e−φ/2Sα e−φ̄/2S̄β eip.X(0)|0〉 , (D.1)

and in the (−3/2,−3/2) picture

|φ̃R〉 =
∫

d10p

(2π)10 Aαβ c c̄ e
−3φ/2 Sα e−3φ̄/2 S̄β(0)eip.X(0)|0〉 . (D.2)

We have chosen to work in Siegel gauge for convenience; the two-point function of the
gauge invariant field strength will be independent of the choice of gauge. The quadratic
part of the string field theory action is given by [29]

SRR = 4
[
−1

2〈φ̃R|c
−
0 X0X̄0 (QB + Q̄B) |φ̃R〉+ 〈φ̃R|c−0 (QB + Q̄B) |φR〉

]
, (D.3)

where QB, Q̄B are the holomorphic and anti-holomorphic BRST operators and X0, X̄0 are
the zero modes of the holomorphic and anti-holomorphic picture changing operators. All
these operators have been reviewed in [1]. The overall normalization factor of 4 has been
chosen to ensure that the kinetic term in the NSNS sector has conventional normaliza-
tion [3], but once this has been fixed, we must use the same normalization in the RR
sector unless we change the rules for the interaction terms in string field theory. Using the
operator product expansions of the world-sheet fields which can also be found in [1], the
action (D.3) evaluates to

SRR =
∫

d10p

(2π)10

[
−1

8 Aαβ(−p)Aγδ(p) p2 6pαγ 6pβδ + p2Aαβ(−p)Fαβ(p)
]
. (D.4)
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We can eliminate Aαβ using its equation of motion and write the action as

SRR = 2
∫

d10p

(2π)10
1
p2 F

αβ(−p) 6pαγ 6pβδ F γδ(p) . (D.5)

From this action we can calculate the propagator of Fαβ :〈〈
Fαβ(p′)F γδ(p)

〉〉
= −(2π)10δ(10)(p+ p′) 1

4p2 6p
αγ 6pβδ, (D.6)

where 〈〈 · 〉〉 denotes expectation value in string field theory.
We now expand Fαβ as

Fαβ = i

2

4∑
k=0

1
(2k + 1)! F(2k+1)

M1···M2k+1
(ΓM1···M2k+1)αβ , (D.7)

where due to chirality of the spinors Sα, F(2k+1) satisfies a self-duality constraint

∗ F(2k+1) = (−1)k F(9−2k) . (D.8)

Here we have used the following conventions

ε01···9 = 1, (Γ01···9) β
α = δ β

α . (D.9)

The reason for including the factor of i in (D.7) will become clear soon. The factor of 2 in
the denominator has been included to compensate for the fact that the contribution from
F(2k+1) and F(9−2k) in (D.7) are identical due to the self-duality constraint (D.8). With
this understanding, we have

F(2k+1)
M1···M2k+1

= − i

16 Tr (ΓM2k+1···M1F ) . (D.10)

For k = 2 there is a self-duality constraint on the field strength F(5). So even though
F(5) appears only once in the sum in (D.7), the same component F(5)

M1···M5
appears twice

in the sum: once as a coefficient of (ΓM1···M5)αβ and once more as a coefficient of Γ with
complementary indices. Therefore, in (D.10) we still get a factor of 2 that cancels the
factor of 2 in the denominator of (D.7). Using (D.6) and (D.10) we get〈〈

F(2k+1)
M1···M2k+1

(p′) F(2k+1)
N1···N2k+1

(p)
〉〉

= − 1
256

(
ΓM2k+1···M1

)
αβ

(
ΓN2k+1···N1

)
γδ

〈〈
Fαβ(p′)F γδ(p)

〉〉
= (2π)10δ(10)(p+ p′) 1

4p2
1

256 Tr (ΓM1···M2k+1 6pΓN2k+1···N1 6p)

= (2π)10δ(10)(p+ p′) 1
64p2

[
− p2δM1···M2k+1,N1···N2k+1

+ 2
(
pM1pN1 δM2···M2k+1,N2···N2k+1 + cyclic perm.

) ]
,

(D.11)

where the δ symbol can be defined as in (5.47) after suitable generalization to ten di-
mensions and ‘cyclic perm.’ include cyclic permutations of two sets, M1, · · · ,M2k+1 and
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N1, · · · , N2k+1, producing (2k+1)2 terms. Note that only the second term produces a pole
in the propagator.

We shall now compare this with the two-point function constructed from the action

S = − ak
2 · (2k + 1)!

∫
d10xF(2k+1)

M1···M2k+1
F(2k+1)M1···M2k+1 , (D.12)

where ak is a constant and

F(2k+1)
M1···M2k+1

= ∂M1C(2k)
M2···M2k+1

+ cyclic perm. with sign . (D.13)

Our goal will be to compute the two-point function of F(2k+1) in this theory. Since it is
gauge invariant, we can use the harmonic gauge:

∂M1C(2k)
M1···M2k

= 0 . (D.14)

In this gauge the action takes the form

S = ak
2 · (2k)!

∫
d10xC(2k)

M1···M2k
∂M∂

MC(2k)M1···M2k

= − ak
2 · (2k)!

∫
d10p

(2π)10 C(2k)
M1···M2k

(−p) p2 C(2k)M1···M2k(p).
(D.15)

From this we get〈〈
C(2k)
M1···M2k

(p′) C(2k)
N1···N2k

(p)
〉〉

= (2π)10δ(10)(p+ p′) 1
akp2 δM1···M2k,N1···N2k , (D.16)

and hence〈〈
F(2k+1)
M1···M2k+1

(p′) F(2k+1)
N1···N2k+1

(p)
〉〉

= (2π)10δ(10)(p+ p′) 1
akp2

(
pM1pN1 δM2···M2k+1,N2···N2k+1 + cyclic perm.

)
.

(D.17)

Let us now compare the pole terms in (D.11) and (D.17). The reason that we can only
compare the pole terms is that off-shell, the string field theory action is different from the
one given in (D.12), (D.13). This will become clear in appendix E, where we shall see that
in string field theory the field strength F(2k+1) is given both in terms of a 2k-form potential
and a dual (8− 2k)-form potential, and therefore the propagator of the field strength off-
shell is not expected to agree with the one computed from the action (D.12), (D.13) where
we use only the 2k-form potential. Comparison of the pole terms in (D.11) and (D.17)
gives

ak = 32 . (D.18)

Therefore, the action for C(2k) is

S = − 16
(2k + 1)!

∫
d10xF(2k+1)

M1···M2k+1
F(2k+1)M1···M2k+1 = −16

∫
F(2k+1) ∧ ∗F(2k+1) . (D.19)

Note that we could also formulate the theory in terms of the dual fields, e.g. C(2k)

could have been traded for C(8−2k) by replacing k by 4− k in (D.19). Either action could
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be used to compute the propagator of the field strength as well as its dual, and we shall
get the same result for the residue at the pole even though the finite parts will in general
differ. However, we need to use only one of the two actions and not add them.

Finally, note that for k = 2 the action (D.19) vanishes if we impose the self-duality
constraint from the beginning. However, we can still use (D.19) with the understanding
that we first use this to calculate two-point function of F(5) and then use it only for self-
dual F(5). If on the other hand we want to couple the action to gravity and compute
the energy-momentum tensor, then we get a double counting since the energy momentum
tensor will receive a particular contribution twice — once from the field and once more
from the dual, while in actual practice we should have this contribution only once. In this
case we need to include an extra factor of 1/2 compared to (D.19). Therefore such an
action has the form:

S = −8
∫

F(5) ∧ ∗F(5) . (D.20)

E Vertex operator for the RR fields and string field theory action

In this appendix we shall describe the construction of the on-shell vertex operators of the
RR fields in different pictures in ten-dimensional type IIB string theory. The results of this
appendix will also be insensitive to the presence of background NSNS 2-form field. Most
of them follow from the results of appendix D in [1] after exchange of chiral and anti-chiral
spinor indices in the anti-holomorphic sector.

In the (−1/2,−1/2) picture, the off-shell RR field at level 0, describing massless fields,
is given by a state |φR〉 satisfying the conditions b−0 |φR〉 = 0, L−0 |φR〉 = 0. The general
form of |φR〉 is:

|φR〉 =
∫

d10p

(2π)10 F
αβ(p) c c̄ e−φ/2Sα e−φ̄/2S̄β eip.X(0)|0〉 , (E.1)

for some set of functions Fαβ(p). This has the same form as (D.1) since there are no
additional states at level zero even after relaxing the Siegel gauge condition. Acting with
the BRST operator, we find

(QB + Q̄B)|φR〉 =
∫

d10p

(2π)10 F
αβ(p)

[
p2

4 (∂c+ ∂̄c̄) c c̄ e−φ/2Sα e−φ̄/2S̄β eip.X(0)|0〉

− 1
4( 6p)αγc c̄ η eφ/2Sγe−φ̄/2S̄β eip.X(0)|0〉+ 1

4( 6p)βδ c c̄ e−φ/2Sαη̄ eφ̄/2S̄δ eip.X(0)|0〉
]
.

(E.2)

Therefore, BRST invariance of the vertex operator will require

p2 Fαβ(p) = 0, Fαβ(p)( 6p)αγ = 0, Fαβ(p)( 6p)βδ = 0 , (E.3)

where 6p ≡ pMΓM . We now expand Fαβ as in (D.7). Substituting this into (E.3) we get:

p2F(2k+1)
M1···M2k+1

(p) = 0, pM1F(2k+1)
M1···M2k+1

= 0, p[M0F(2k+1)
M1···M2k+1] = 0 . (E.4)
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These are the usual on-shell conditions for a (2k+ 1)-form field strength. F(5) also satisfies
a self-duality constraint.

We will also need the BRST invariant vertex operator for these states in the (−1/2,−3/2)
picture. To find it, we begin with the general form of level zero string field in the
(−3/2,−3/2) picture:

|φ̃R〉=
∫

d10p

(2π)10

[
Aαβ c c̄ e

−3φ/2Sαe−3φ̄/2 S̄β(0) + E β
α (∂ c+ ∂̄ c̄) c c̄ e−3φ/2 Sα ∂̄ξ̄ e−5φ̄/2S̄β(0)

+Dα
β (∂ c+ ∂̄ c̄) c c̄ ∂ξ e−5φ/2Sα e

−3φ̄/2 S̄β(0)
]
eip.X(0)|0〉 . (E.5)

From this we get

(QB + Q̄B)|φ̃R〉 =
∫

d10p

(2π)10

[
p2

4 Aαβ −
1
4 E

γ
α ( 6p)γβ + 1

4 D
γ
β( 6p)γα

]
× (∂c+ ∂̄c̄) c c̄ e−3φ/2Sα e−3φ̄/2 S̄β eip.X(0)|0〉 ,

(E.6)

|φ̃−1/2,−3/2〉 ≡ X̄0 |φ̃R〉 =
∫

d10p

(2π)10

[1
2 Aαβ ( 6p)βγ c c̄ e−3φ/2 Sα e−φ̄/2 S̄γ(0)

− 1
2 E

β
α c c̄ e−3φ/2Sα e−φ̄/2 S̄β(0)

+ 1
2 D

α
β ( 6p)βγ(∂ c+ ∂̄ c̄) c c̄ ∂ξ e−5φ/2Sα e

−φ̄/2 S̄γ(0)

− 1
2 D

α
β c c̄ ∂ξ e

−5φ/2Sα η̄ e
φ̄/2 S̄β(0)

]
eip.X(0)|0〉 ,

(E.7)

and the (−1/2,−1/2) picture string field

|φR〉 = X0 |φ̃−1/2,−3/2〉 =
∫

d10p

(2π)10

[1
4 Aαβ ( 6p)βγ( 6p)αδ − 1

4 E
γ
α ( 6p)αδ + 1

4 D
δ
β ( 6p)βγ

]
× c c̄ e−φ/2 Sδ e−φ̄/2 S̄γ eip.X(0)|0〉 .

(E.8)

Comparison of (E.1) and (E.8) leads to the identification

Fαβ = 1
4 ( 6pA 6p−6pE +D6p)αβ . (E.9)

Also (E.6) leads to the on-shell condition

p2A− E 6p+ 6pD = 0 , (E.10)

which implies (E.3).
From (E.9) we see that the description in terms of the matrices A, E and D provides

a redundant description of the field strength Fαβ . Indeed, Fαβ is invariant under the
transformation

A→ A+ Λ, E → E + Λ′6p , D → D+ 6p (Λ′ − Λ) . (E.11)

The redundant degrees of freedom are related to gauge transformation parameters in the
(−3/2,−3/2) picture. We shall choose a particular gauge in which A = 0. Therefore, we
have on-shell

F = 1
4 (D 6p−6pE) , 6pD = E 6p . (E.12)
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We can decompose E β
α and Dα

β as:

E β
α = 1

2

5∑
k=0

1
(2k)! E

(2k)
M1···M2k

(ΓM1···M2k) β
α , Dα

β = 1
2

5∑
k=0

1
(2k)! D

(2k)
M1···M2k

(ΓM1···M2k)αβ ,

(E.13)
with the coefficients satisfying the self-duality constraints

∗ E(2k) = (−1)k+1E(10−2k), ∗D(2k) = (−1)kD(10−2k) . (E.14)

Using (D.10), (E.12), (E.13) and (E.14), we get

F(2k+1)
M1M2M2k+1

= − i

16 Tr (ΓM2k+1M2k···M1F ) = i

4p
M
(
D(2k+2) + E(2k+2)

)
MM1···M2k+1

− i4
[
pM1

(
D(2k) − E(2k)

)
M2···M2k+1

(E.15)

+cyclic perm. of M1, · · · ,M2k+1 with sign
]
.

Also, multiplying the second equation in (E.12) by ΓM1···M2k+1 and taking the trace, we get

pM
(
D(2k+2) + E(2k+2)

)
MM1···M2k+1

= −
[
pM1

(
D(2k) − E(2k)

)
M2···M2k+1

+ cyclic perm. of M1, · · · ,M2k+1 with sign
]
.
(E.16)

Using this, we can express (E.15) as

F(2k+1)
M1···M2k+1

=− i

2

[
pM1

(
D(2k) − E(2k)

)
M2···M2k+1

+ cyclic perm. of M1, · · · ,M2k+1 with sign
]
. (E.17)

One can check that (E.15)–(E.17) are consistent with the duality relations given in (D.8)
and (E.14).

Let us now define
C(2k) = 1

2
(
E(2k) −D(2k)

)
. (E.18)

Then the fields C(2k) have no self-duality constraint and we have, using (E.14),

∗C(10−2k) = 1
2 (−1)k

(
E(2k) +D(2k)

)
, (E.19)

which gives

E(2k) = C(2k) + (−1)k ∗C(10−2k), D(2k) = −C(2k) + (−1)k ∗C(10−2k) . (E.20)

Also (E.13) may be expressed as,

E β
α =

5∑
k=0

1
(2k)! C(2k)

M1···M2k
(ΓM1···M2k) β

α , Dα
β = −

5∑
k=0

1
(2k)! C(2k)

M1···M2k
(ΓM1···M2k)αβ .

(E.21)
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Due to the absence of self-duality constraint on C(2k), the two expressions in (E.21) are
not simply related despite the similarity in their appearance, since the Γ matrices in the
two expressions are different. Eq. (E.17) now gives

F(2k+1)
M1···M2k+1

= i

[
pM1

(
C(2k)

)
M2···M2k+1

+ cyclic perm. of M1, · · · ,M2k+1 with sign
]
.

(E.22)
Note that while the zero modes of the fields C(2k) are all independent, their field

strengths are related due to the self-duality constraint (D.8) on F(2k+1). This is reflected
in (E.16), which can be written in terms of C(2k) using (E.21). In our analysis we shall
need to consider the fields C(2k)

m1···m2k along the internal directions of Y with the only
non-vanishing components of fields strengths proportional to F(2k+1)

µm1···m2k+1 = ipµC(2k)
m1···m2k .

Self-duality constraint (D.8) on F(2k+1) relates these components to different components
F(9−2k)
νρσn1···n6−2k . Therefore, we can treat the F(2k+1)

µm1···m2k+1 given above as independent and
replace F(9−2k)

νρσn1···n6−2k in terms of these components to express (D.7) as

Fαβ = −
3∑

k=0

1
(2k)! pµC(2k)

m1···m2k (Γµm1···m2k)αβ . (E.23)

Eqs. (E.7) with Aαβ = 0 and (E.21) with the components along Y can be used to read out
the vertex operator of the (2k)-form field C(2k)

m1···m2k in the (−1/2,−3/2) picture, while (E.1)
and (E.23) may be used to read out the same vertex operator in the (−1/2,−1/2) picture.

It is instructive to express (E.15) and (E.16) in position space using the language of
differential forms. We have

F(2k+1) = 1
4 ∗ d ∗

(
D(2k+2) + E(2k+2)

)
− 1

4 d
(
D(2k) − E(2k)

)
,

∗ d ∗
(
D(2k+2) + E(2k+2)

)
= −d

(
D(2k) − E(2k)

)
.

(E.24)

Using the self-duality constraints (E.14), we can rewrite these relations as

F(2k+1) = (−1)k+1 1
4 ∗ d

(
D(8−2k) − E(8−2k)

)
− 1

4 d
(
D(2k) − E(2k)

)
,

(−1)k+1 ∗ d
(
D(8−2k) − E(8−2k)

)
= −d

(
D(2k) − E(2k)

)
.

(E.25)

Using (E.18), we can express (E.25) as

F(2k+1) = 1
2 dC(2k) + (−1)k

2 ∗ dC(8−2k) (E.26)

and
dC(2k) = (−1)k ∗ dC(8−2k) . (E.27)

Let us compare these with the equations of motion derived from the string field theory
action (D.3) in the Aαβ = 0 gauge. The action takes the form:

4∑
k=0

∫ (
F(2k+1) − 1

4 dC(2k) − (−1)k
4 ∗ dC(8−2k)

)
∧ ∗
(
dC(2k) − (−1)k ∗ dC(8−2k)

)
, (E.28)
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up to a constant of proportionality. Here F(2k+1) is subject to the algebraic constraint (D.8).
The equation of motion of F(2k+1) leads to (E.27) and the equation of motion of C(2k) leads
to the exterior derivative of (E.26). Therefore, the solutions to string field theory equations
of motion contain additional degrees of freedom. As has been discussed in detail in [29], the
extra modes describe free fields and decouple from the theory even after adding interaction
terms to the action, which involve F(2k+1) but not C(2k). Note that C(10) does not appear in
the action since dC(10) vanishes, but we include this as a field in the theory. This demands
that in a consistent theory the one-point function of C(10) on the disk must vanish. This
is part of the tadpole cancellation constraint in the theory.

Note that while C(2k)’s for different k are independent fields to begin with, (E.27)
puts a constraint on their field strengths so that on-shell we only have half the number of
degrees of freedom. In perturbation theory this can be made explicit by restricting k to
be in the range 0 to 2, but this will allow us to couple these fields only to Dp-branes for
p ≤ 5. When we compactify the theory so that the ten-dimensional Lorentz invariance is
broken, we could also use C(2k) for certain components of the fields and C(8−2k) for the
other components. We make use of this explicitly in our analysis where instead of dualizing
C(2)
µν to a scalar field in four dimensions, we directly use the components of C(6) along the

Calabi-Yau threefold to describe the same scalar. In this way we can ensure that we have
all the components of C(2k) that couple to at least those D-branes that do not extend along
the non-compact spacetime directions. This is captured in (E.23).

F Normalization of the hypermultiplet moduli

In this appendix we shall describe the normalization of the various hypermultiplet moduli
fields in our conventions and find their relations to those appearing in section 2 and section 3
by comparing the tree level kinetic terms and the D-brane actions.

We begin by comparing the D-brane actions. We see from (3.5) and (3.9) that for
B = 0, the real part of the action for an Euclidean Dp-brane (p = 1, 3, 5) wrapped on a
cycle Lγ is given by:

p = 1 p = 3 p = 5
−T R

γ = −2πτ2|qata| −2πτ2|(pt2)/2| −2πτ2V
(F.1)

On the other hand, T R
γ should be given by the product of the tension of the brane times

the volume of the wrapped cycle, as in (4.3). Since the volume form on the holomorphic
cycle is given by (3.3) where the Kähler form is parametrized by ω = taωa, the volume is
found to be

p = 1 p = 3 p = 5
|Vγ | = |qata| |(pt2)/2| V

(F.2)

where V = 1
6 (t3) is the volume of Y. Multiplying by the tension (2π)−pτ2 and comparing

with (F.1), we find that the two forms of the action coincide provided

ta = (2π)2ta. (F.3)
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The relation (F.3) also implies

κab = (2π)2κab, Gab = (2π)−4Gab, Gab = (2π)4Gab, V = (2π)6 V . (F.4)

Let us now find the relative normalization of the moduli associated with the internal
components of the 2-form field. In ten dimensions we begin with the action

− 1
6

∫
d10xHMNPH

MNP , HMNP = ∂MBNP + ∂NBPM + ∂PBMN . (F.5)

BMN normalized this way has its vertex operator normalized as in (5.3) [1]. Upon com-
pactification we introduce the moduli ba via (2.22). Using (B.5) and (B.12), it is easy to
check that the kinetic term of these moduli takes the form

−
∫
d4x

∫
Y
∂µB ∧ ∂µ?B = −

∫
d4x

V
4κ2 Gab ∂µba∂µbb, (F.6)

where Gab has been defined in (B.8). However, this result is derived in the string frame
when the Einstein-Hilbert action is multiplied by V/(2κ2). We need the result in the
canonical frame in which the Einstein-Hilbert action is multiplied by 1. This requires us to
redefine the four-dimensional spacetime metric by a multiplicative factor of 2κ2/V, which
in turn multiplies the kinetic term of the scalar fields by 2κ2/V. This converts the kinetic
term to

− 1
2

∫
d4xGab ∂µba∂µbb. (F.7)

On the other hand, according to (2.7), (2.8) the kinetic term for ba is given by

− 1
2

∫
d4xGab ∂µb

a∂µbb . (F.8)

Comparing the two kinetic terms and using (F.4), we get

ba = (2π)2ba , (F.9)

up to a sign.
Next, we determine the normalization of the scalar field σ dual to the NSNS 2-form

B. With the standard normalization of string theory, its kinetic term is given by (see [1],
eq. (6.21))

−
∫
d4x

κ2

2V2 ∂µσ ∂
µσ , (F.10)

where we have used the normalization in which the background canonical metric is set to
ηµν . Comparing this with the kinetic term for σ in (2.7), (2.8) and using (F.4), we get

σ = −(2π)6

2κτ2
2
σ, (F.11)

where the sign has been chosen to match the result (3.23).
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Finally, we consider the moduli associated with the RR fields C(2k) whose kinetic term
appears in (D.19). Upon compactification on a Calabi-Yau manifold and conversion to the
canonical frame, it becomes

−
∫
d4x

32κ2

V

∫
Y
∂µC(2k) ∧ ? ∂µC(2k). (F.12)

On the other hand, due to (2.6), (B.2), (B.5), (B.6) and (F.4), the kinetic terms for the
RR scalars c0, ca, c̃a and c̃0 in (2.7), (2.8) can be rewritten as

−
∫
d4x

(2π)4k

2τ2
2 V

∫
Y
∂µC

(2k) ∧ ? ∂µC(2k). (F.13)

This result is valid even when the background ba are non-zero as long as they are constants.
Thus, we conclude that

C(2k) = sk
(2π)2k

8κτ2
C(2k) = sk

(2π)2k

26π7/2 C
(2k), (F.14)

where sk = ±1 is a sign remaining undetermined at this stage.
In principle, the signs left undetermined by the above analysis can be fixed, up to

symmetry transformations, by comparing the tree level S-matrix computed from the world-
sheet theory to those obtained from the action (2.8). Once this is done, we can compute the
disk one-point functions of various fields and check that they agree with the ones obtained
from the e−Tγ factor in the instanton amplitude. We shall not do this. Instead we shall
use the disk one-point functions to fix the signs. The agreement between the magnitudes
of these normalization constants computed using the two approaches can be regarded as a
check on our computation.

Let us compute the one-point function of C(2k) on the disk, and compare with the
imaginary part −2πiΘγ of the D(2k − 1)-instanton action. For this we need to use the
vertex operator of the 2k-form field in the (−1/2,−3/2) picture. Using (E.7) with Aαβ = 0
and (E.21), we see that the relevant part of the vertex operator is given by

Ṽ =− 1
2 · (2k)! C(2k)

M1···M2k

[
(ΓM1···M2k) β

α c c̄ e−3φ/2Sαe−φ̄/2S̄β

− (ΓM1···M2k)αβ c c̄ ∂ξ e−5φ/2Sα η̄ e
φ̄/2 S̄β

]
eip.X ,

(F.15)

where we have dropped the term in the third line of (E.7) since it does not satisfy the ξ-η
charge conservation and therefore will have vanishing one-point function on the disk. Also
for this computation we can drop the eip.X factor. Due to (5.1), the disk one-point function
of C(2k) takes the form

A =− κT2k−1
2 · (2k)!

1
2

1
2 C(2k)

M1···M2k

[
(ΓM1···M2k) β

α

〈
(∂c− ∂̄c̄) c c̄ e−3φ/2Sαe−φ̄/2S̄β(i)

− (ΓM1···M2k)αβ 〈(∂c− ∂̄c̄)c c̄ ∂ξ e−5φ/2Sα η̄ e
φ̄/2 S̄β(i)

〉]
.

(F.16)
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Using the D(2k − 1)-brane boundary condition (C.7), the doubling trick and the operator
product expansion (C.1), the correlation function becomes

A = − κT2k−1
8 · (2k)! C(2k)

M1···M2k
× 1

(2k)! v
M1···M2k×(−4i)×(−1)k(2k)!×16×(2π)2k δ(2k)(0) . (F.17)

Here the factor (−4i) represents the equal contribution from the two terms inside the square
bracket, the 16 comes from the trace of the identity operator in the spinor representation
and the (−1)k(2k)! comes from contraction of the gamma matrices:

Tr
(
ΓM1···M2kΓN1···N2k

)
= 16 δM1···M2k

N1···N2k(−1)(2k−1)(2k)/2 . (F.18)

Interpreting the (2π)2k δ(2k)(0) factor as the integral of over the (2k)-cycle Lγ , we get

A = (−1)k 8iκ T2k−1

∫
Lγ

C(2k) . (F.19)

On the other hand, this one-point function can be extracted from the −2πiΘγ term
in the instanton action, where Θγ is specified in (3.5). Since the boundary condition (C.7)
that we have used to arrive at (F.19) is valid in the absence of background B field, we need
to consider

− 2πi
∫
Y
γ ∧ Ceven = 2πi

3∑
k=0

(−1)k
∫
Lγ
C(2k), (F.20)

where we used (3.1) and (3.2). Comparing with (F.19), one finds

C(2k) = π

4κT2k−1
C(2k) = (2π)2k

26π7/2 C
(2k), (F.21)

which agrees with (F.14) for sk = 1 for all k.
Note that our results (F.5)–(F.14), involving purely the closed string sector, are valid

whether or not a background NSNS 2-form field is present, provided (F.3), (F.4) hold.
However (F.1)–(F.4) and (F.16)–(F.21) involve the open string sector and therefore are
valid only when the background NSNS 2-form field is absent. Since (F.3), (F.4) were used
in finding the relations between variables given in (F.5)–(F.14), these relations should also
be regarded as proven only in the absence of background B field. However, we have verified
in appendix G that (F.3), (F.9), (F.21) correctly reproduce the disk one-point functions
even when the B field is switched on. Therefore, these relations, as well as (F.11), remain
valid in the presence of the background B field.

G D-instanton action in the presence of NSNS 2-form field

In this appendix we shall compute the D-brane action in the presence of a constant back-
ground B field and compare the result with (3.5). First, we shall compute the imaginary
part, which involves the disk amplitude with just one RR vertex operator in the presence
of a background B field. We take the RR vertex operator in the (−1/2,−3/2) picture as
in appendix F and follow the procedure described in section 6.1 to study the effect of the
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background B field. The net result is the same as in section 6.1, namely that we replace the
charges by the effective charges given in (3.8). Therefore, (F.19) is replaced by the sum:

A =
3∑

k=0
(−1)k 8iκ T2k−1

∫
L

(2k)
γ̌

C(2k) = 2πi
3∑

k=0
(−1)k

∫
Y
ω

(6−2k)
γ̌ ∧ C(2k) = −2πiΘγ , (G.1)

where we used the relation (F.21), (3.10) and that∑
k

(−1)kω(6−2k)
γ̌ = −

∑
k

(−1)kω(2k)
γ̌ = −ι(ωγ̌) = −γ̌ (G.2)

as remarked below (6.5). The right hand side of (G.1) is precisely the imaginary part of
−Tγ given in (3.5).

Next we shall compute the real part of the action of Euclidean Dp-branes in the
presence of background B field. Such action is given by

T R
γ = T2n−1

∣∣∣∣∣
∫
L

(2n)
γ

v(2n)
γ

√
det(g‖ + 2κB‖)

/√
detg‖

∣∣∣∣∣ . (G.3)

To evaluate the integrand, let Mij be a rank two tensor in Y with only mixed compo-
nents, i.e. Mst = Ms̄t̄ = 0, and suppose further that Mst̄ may be expanded as Ma(ωa)st̄.
Then its pullback M‖ on L

(2n)
γ will also be a matrix with only mixed components in the

holomorphic coordinates, i.e. (M‖)ab = (M‖)āb̄ = 0, and its determinant factorizes into(
det(M‖)b̄a

)(
det(M‖)ab̄

)
, where the indices a, b now label holomorphic coordinates on L(2n)

γ .
We shall use the notation deth(M‖) to denote the determinant of the matrix (M‖)ab̄. Let
N be another rank two covariant tensor with similar properties. Then we have on L(2n)

γ

deth(M‖)
deth(N‖)

= deth(MP )
deth(NP ) = (Mn, v

(2n)
γ )

(Nn, v
(2n)
γ )

= Mn ∧ ω(6−2n)
γ

Nn ∧ ω(6−2n)
γ

=



1 n = 0,
qaMa

qaNa n = 1,
(pM2)
(pN2) n = 2,
(M3)
(N3) n = 3,

(G.4)

where the first equality follows from the identities M‖ = WMP W̄
T , N‖ = WNP W̄

T as
stated above (6.16), the second equality follows from the definition of the determinant,
and we used (B.15), (B.10), (6.5), (B.2) and (B.3) for the rest of the equalities. Note that
while in the first two expressions we need to pullback / project M and N onto L(2n)

γ before
computing the determinant, in the later expressions no such projection is needed. Applying
this result to the integrand in (G.3) where the matrices M = g + 2κB and N = g satisfy
the above assumptions, one finds

√√√√det(g‖ + 2κB‖)
detg‖

=



∣∣∣ qazaqata

∣∣∣ n = 1,∣∣∣ (pz2)
(pt2)

∣∣∣ n = 2,∣∣∣ (z3)
(t3)

∣∣∣ n = 3.

(G.5)

Since this quantity is constant on Y, the integral in (G.3) gives rise just to the factor of |Vγ |.
Therefore, the net effect of the background B field on T Rγ is to give an extra multiplicative
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factor given by the r.h.s. of (G.5). Since we have already verified in appendix F that in the
absence of B field the T Rγ computed from the D-brane action agrees with the results given
in (F.1), we can now use (3.4) to conclude that in the presence of the background B field,
the real part of the action is given by

T R
γ = 2πτ2|Zγ | (G.6)

consistently with (3.5).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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