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Abstract A significant performance boost has been
achieved in point cloud semantic segmentation by
utilization of the encoder–decoder architecture and
novel convolution operations for point clouds. However,
co-occurrence relationships within a local region which
can directly influence segmentation results are usually
ignored by current works. In this paper, we propose
a neighborhood co-occurrence matrix (NCM) to model
local co-occurrence relationships in a point cloud. We
generate target NCM and prediction NCM from
semantic labels and a prediction map respectively. Then,
Kullback–Leibler (KL) divergence is used to maximize
the similarity between the target and prediction NCMs
to learn the co-occurrence relationship. Moreover, for
large scenes where the NCMs for a sampled point cloud
and the whole scene differ greatly, we introduce a
reverse form of KL divergence which can better handle
the difference to supervise the prediction NCMs. We
integrate our method into an existing backbone and
conduct comprehensive experiments on three datasets:
Semantic3D for outdoor space segmentation, and
S3DIS and ScanNet v2 for indoor scene segmentation.
Results indicate that our method can significantly
improve upon the backbone and outperform many
leading competitors.
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1 Introduction
With advances in scanning devices, much 3D data
has been produced and widely used in augmented
and virtual reality, 3D games, and robotics. As a
basic form of 3D data, the point cloud is very popular
and can be easily converted into meshes or voxels [1].
Semantic segmentation of point clouds is an essential
3D scene comprehension task yet remains challenging
due to its inherent irregularity [2].

PointNet [3] was the first neural network to directly
process point clouds for 3D segmentation. They
proposed to apply shared multi-layer perceptrons
(MLPs) to point clouds to learn point-wise features
and utilized max/mean pooling to aggregate global
features. These were concatenated with point-wise
features before a few MLPs were used for final
semantic segmentation. Later, PointConv [4] and
KPConv [5] used novel 3D convolution operations to
extract informative point features and achieved good
performance in 3D scene segmentation. An encoder–
decoder framework is usually used to gradually
extract global features and fuse them with local
features to predict the semantic labels. While global
contextual information and local region information
are both used for point-wise labeling, local co-
occurrence relationships are usually ignored or used
in a implicit way.

In spite of the rich categories of objects in real
world, there is a strong relation between the categories
of neighboring objects (i.e., occurrence of specific
category pairs). We note that this neighborhood co-
occurrence relationship can be used during semantic
prediction to rule out neighboring pairs that cannot
co-occur in a local region. For example, whiteboards
are always adjacent to walls, and chairs are usually
close to tables as shown in Fig. 1. These category
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Fig. 1 Co-occurring category pairs in local regions from scenes in S3DIS Area-5.

pairs of objects can co-occur in a local region of real
scene while other pairs (e.g., whiteboards and tables)
cannot. However, this idea is usually ignored in point
cloud segmentation.

Patch-level co-occurrence relationships have been
exploited and used to optimize semantic labeling
results, but optimization problems had to be solved
in the testing stage [6]. In order to obtain
segmentation results which follow real-world co-
occurrence relationships without extra computations
during inferencing, we propose a neighborhood co-
occurrence matrix (NCM) to model this relation.
The NCM is a two-dimensional matrix. Each row
represents one category of center points, and each
column represents one category for the neighbors of
center points. Each element (i, j) of the NCM shows
the probability that the semantic label of the center
point is i and the semantic label of neighboring points
is j. Based upon this definition, the whole NCM is a
joint distribution over categories of center points and
neighbors.

In our method, the network can directly learn
the local co-occurrence relationship from the
neighborhood co-occurrence matrix. In the training
stage, we randomly sample points from the original
point cloud as center points for simplicity and lack of
bias, and collect the category labels of these center
points and their K nearest neighbors. Next, these
category labels are used to generate the target NCM.
Meanwhile, prediction maps of center points and their

neighbors will be collected to generate the prediction
NCM. To learn the local co-occurrence relationship
and make the prediction NCM approximate to
target NCM, we introduce Kullback–Leibler (KL)
divergence to estimate the distance between these
two distributions.

For large-scale scenes, especially outdoor scenes,
the neighborhood co-occurrence matrix of a sampled
point cloud may not fully reflect the real-world
neighbor relationships, and this can be treated as
noise in the target NCM. Therefore, we introduce the
reverse form of KL divergence into NCM learning to
handle the scalar difference between sampled point
clouds and whole scenes. In this way, the network
can learn to make predictions that are in better
accordance with local co-occurrence relationships in
real world.

Our major contributions can be summarized as
follows:
• a neighborhood co-occurrence matrix to model

local co-occurrence of point-wise semantic labels,
utilizing KL divergence to minimize difference
between the prediction NCM and target NCM;

• introduction of the reverse form of KL divergence
into NCM learning to handle the difference
between the target NCM generated from sampled
data and the real-world NCM for large-scale
scenes;

• integration of our method into an existing
backbone and experiments on three challenging
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benchmark datasets demonstrating significantly
improved performance over the backbone for point
cloud segmentation task, and outperformance of
many state-of-the-art competitors.

2 Related work
2.1 Semantic segmentation of point clouds
PointNet [3] proposed use of shared multi-layer
perceptrons (MLPs) to extract point-wise features
and pooling to obtain global features. Then, global
features would be duplicated and concatenated with
point features before using a few MLPs for semantic
segmentation. Later, PointNet++ [7] introduced
the encoder–decoder architecture into the point
cloud segmentation problem to better fuse local
and global information. GACNet [8] utilized graph
convolution and paid more attention to neighbors
with similar features during feature aggregation.
Later, KPConv [5] mapped features of neighboring
points onto anchored points, and implemented
convolution on those points. RandLA [9] utilized a
random sampling strategy which is more efficient for
large-scale point cloud segmentation. JSNet [10] and
JSIS [11] took instance segmentation and semantic
segmentation as joint tasks for improved semantic
segmentation. JSENet [12] and BAGEM [13] intro-
duced boundary information into the semantic
segmentation task for better contours in the
prediction map. Fusion-Aware Conv [14] extracted
semantic features both spatially and temporally from
RGBD scans for online scene segmentation. On the
other side, patch-based methods were proposed to
cluster patches with similar features to segment point
clouds [15]. However, these methods usually ignored
the category-based co-occurrence relationship in point
cloud segmentation.

Compared to the methods aforementioned, we
propose a neighborhood co-occurrence matrix (NCM)
to model the neighborhood co-occurrence relationship.
Then, two forms of KL divergence are introduced to
minimize the difference between prediction NCM and
target NCM, leading to predictions that are more
consistent with realistic neighborhood co-occurrence
relationships.

2.2 Neighborhood context learning
Neighborhood contexts in the vicinity of an object
have proved useful for 2D semantic segmentation [16].

RMI [17] utilized region mutual information to
model the local relationship between neighboring
pixels, and achieved high consistency in the final
predictions for image segmentation. Conditional
random fields (CRF) were introduced into point cloud
segmentation to model the relationships between
neighboring labels [18], leading to better segmen-
tation. However, CRF is a post-processing method
and extra computations are required during infer-
encing. In point cloud segmentation, 3P-RNN [19]
utilized RNNs to explore long-range spatial context.
HPEIN [20] extracted features of edges between neigh-
boring points to implicitly model the neighborhood
relation. Region similarity loss was proposed to
propagate distinguishing features of center points
to neighbors with the same categories in a local
neighborhood [2].

Compared to these methods, our method focuses
on explicitly learning the neighborhood category co-
occurrence relationship for point cloud segmentation.

2.3 Co-occurrence modeling
Given the target features, CFNet [21] predicted the
probability of co-occurring features and used them
as weights to fuse co-occurrent contexts. A global
co-occurrence constraint was introduced by Ref. [22]
to eliminate configurations that violate common
sense or physical law. However, these methods
failed to exploit the semantic label co-occurrence
relationship in a neighborhood. Segment-based and
patch-based contextual relationships were exploited
to optimize the label assignment problem for semantic
labeling during inferencing [6, 23]. However, extra
time is needed then to obtain the segmentation
results. Co-occurrence matrices have usually been
used to describe the co-occurrence of words in natural
language processing [24].

Unlike previous methods, we design a neighborhood
co-occurrence matrix to directly model the local
category co-occurrence relationship to eliminate
impossible neighboring pairs in point cloud segmenta-
tion. Additionally, our method can train the network
in an end-to-end manner, and it does not require
extra time during inferencing.

3 Method
In this section, we first introduce the overall
architecture of our method in Section 3.1. Then, we
describe the proposed neighborhood co-occurrence
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matrix (NCM) used to model local co-occurrence
relationships in Section 3.2. Finally, we describe how
the target NCM supervises the output prediction
and makes the network learn local co-occurrence
relationships as well as the reverse form of KL
divergence in Section 3.3.
3.1 Overview
Figure 2 shows the overall framework of our method.
First of all, we use a common encoder–decoder
network to extract features and make category
predictions. Then, ground truth semantic labels are
directly used to supervise the segmentation results
through cross entropy loss. Meanwhile, we generate
the prediction neighborhood co-occurrence matrix
(prediction NCM) from the prediction maps and
generate the target NCM from point-wise semantic
labels. Later, KL divergence is used to supervise
the prediction NCM and make it approximate the
target NCM. In this way, anomalous co-occurring
neighboring pairs will be punished and the co-
occurrence relationships in our prediction will be
more reasonable.
3.2 Neighborhood co-occurrence matrix
Co-occurrence relationships in the local neighborhood
can directly influence the results of point cloud
semantic segmentation. For instance, a whiteboard
usually co-occurs with a wall in a local region and
is unlikely to be adjacent to other categories such

as the ceiling or floor (see Fig. 1). Based upon this
observation, we hope our final semantic prediction to
accord with real-world neighborhood co-occurrence
relationships.

While co-occurrence relationships are seldom
explicitly exploited in segmentation tasks, they
are usually modeled by a co-occurrence matrix in
natural language processing to find co-occurring
words within a sentence. Inspired by the design
of co-occurrence matrices for words, we propose a
neighborhood co-occurrence matrix to model the
relationship of neighboring co-occurring categories in
local regions of point clouds. Here, we attempt to
exploit the category relationship between a randomly
selected point (referred to as the center point) and
its neighbors. For a semantic segmentation task
where we need to categorize each point as one of
C classes, our designed NCM will be a C × C matrix.
Each row of NCM represents a category for center
points and each column represents a category of their
neighboring points. Specifically, the ij-th element
indicates the probability that the center point belongs
to the i-th class and a neighboring point belongs to
the j-th class.

In order to effectively utilize computational
resources and storage, we only sample a fixed ratio of
center points from the original point clouds, naming
N ′ = αN as shown in Fig. 2. To generate the
target NCM, we first collect the one-hot labels of

Fig. 2 Architecture of our proposed method. An encoder–decoder network is used to produce the prediction map. Then, prediction NCM and
target NCM are generated from the prediction map and ground truth respectively. The KL divergence of these two distributions is minimized
to learn local co-occurrence relationships in the real world.
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these center points, denoted Ac ∈ RN ′×C . Then,
for each center point, we search for its K nearest
neighbors and collect their corresponding one-hot
labels. The collected neighbors’ one-hot labels are
denoted An ∈ RN ′×K×C . Then, the target NCM
M ∈ RC×C is given by

M [i, j] =
1

N ′K

N ′∑
n

K∑
k

Ac[n, i]An[n, k, j] (1)

Note that
∑C

m

∑C
n M [m, n] = 1, so M is a normalized

probability density function which models the target
co-occurrence relationship in local regions of real 3D
scenes.

3.3 Learning neighborhood co-occurrence
relationship

In order to learn the real-world neighborhood co-
occurrence relationship, we directly utilize the target
NCM M to supervise the prediction NCM generated
from the output prediction maps. Our prediction
NCM will approach the target NCM to learn a more
reasonable co-occurrence relationship in the local
region.

Unlike generating the target NCM, we directly
utilize the prediction map of these N ′ center points
Âc ∈ RN ′×C where Âc[n, i] represents the predicted
probability that the n-th center point belongs to the
i-th category. As in the counterpart of target NCM,
we also aggregate the prediction maps of center points’
neighbors Ân ∈ RN ′×K×C where K is the number of
neighbors. The prediction NCM can be calculated by
the following formula:

M̂ [i, j] =
1

N ′K

N ′∑
n

K∑
k

Âc[n, i]Ân[n, k, j] (2)

We again have that
∑C

i

∑C
j M̂ [i, j] = 1 because

C∑
i

Âc[n, i] = 1 and
C∑
j

Ân[n, k, j] = 1 (3)

according to the definition of probability distribution.
In order to make the prediction NCM approach the
target NCM, KL divergence, which measures the
distance between two probability distributions, is
introduced to narrow the difference between target
NCM and prediction NCM.

A high KL divergence indicates a large difference
between two distributions. A common way of
formulating KL divergence is

D(p||q) =
∫

x
p(x)log

(
p(x)
q(x)

)
(4)

where p and q are two distributions over variable
x. In our method, integration over continuous x is
replaced by summation over the discrete pairs (i, j).
According to the choice of p and q, we have two forms
of KL divergence loss.

In the common form of KL divergence, we can
simply set M to be p and M̂ to be q. Based upon
this, we can reformulate the KL divergence of these
two NCM distributions as

D(M ||M̂) =
C∑
i

C∑
j

(M [i, j]logM [i, j] −

M [i, j]logM̂ [i, j]) (5)
Note that M [i, j]logM [i, j] is not differentiable with
respect to hidden parameters in the network because
the category labels of points are fixed. Thus we only
need to optimize the second term to minimize the KL
divergence. Thus, our loss for NCM is

Lco = −
C∑
i

C∑
j

M [i, j]log(M̂ [i, j] + ε) (6)

where ε is a small quantity to prevent invalid
numerical operations.

In order to handle the difference between the target
NCM generated from the sampled point cloud and the
real-world NCM, especially for large-scale scenes, we
treat this difference as a kind of noise and introduce
the reverse form of KL divergence which conversely
sets M̂ to be p and M to be q; we call this the reverse
KL divergence. Then, the loss for the neighborhood
co-occurrence matrix can be reformulated as

Lco =
C∑
i

C∑
j

(M̂ [i, j]log(M̂ [i, j] + ε) −

M̂ [i, j]log(M [i, j] + ε)) (7)
where both terms are differentiable with respect to
hidden parameters in this case.

Compared to Eq. (6), this form of KL divergence is
more complex because both terms are differentiable.
The first term maximizes the entropy of the prediction
NCM which can be treated as a constraint to give a
prior on a uniform distribution. The second term is
the reverse cross entropy which has been shown to be
more tolerant to noise in labels [25]. The differences
in performance between these two forms of loss and
analysis of KL divergence will be discussed in detail
in Section 4.3.

The total loss for the network consists of two parts:
Lseg and Lco:

L = Lseg + λLco (8)
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where Lseg represents the cross entropy loss for point-
wise segmentation.

In our implementation, α is set to 0.3, and 8 nearest
neighbors are collected to generate the target NCM
and prediction NCM. ε and λ are set to 10−8 and 1
respectively, giving good results.

4 Experiments
Our experiments consist of five parts. First, we
test our method on the large-scale outdoor semantic
segmentation task Semantic3D reduced-8 [26] in
Section 4.1. Then, we evaluate the performance of our
method on the indoor scene semantic segmentation
benchmarks S3DIS [27] and ScanNet v2 [28] in
Section 4.2. Next, we conduct studies to analyze
the two forms of KL divergence in Section 4.3. Later,
we analyse the influence of number of neighbor and
sampling density on segmentation performance in
Section 4.4. Finally, we visualize the prediction NCMs
and target NCMs for some real scenes in Section 4.5.

4.1 Large-scale outdoor space semantic seg-
mentation

4.1.1 Dataset
We evaluate the effectiveness of our method for
outdoor space semantic segmentation on the
Semantic3D task [26]. This dataset contains 15
large-scale outdoor areas for training and another
15 areas for testing. There are more than 4 billion
points in this dataset and all points can be divided
into 8 categories. For easier evaluation, Semantic3D
proposed another segmentation task with fewer points
in the test set: Semantic3D reduced-8. Only labels
for training data are available, and predictions on the
test set must be submitted to their online servers for
evaluation.

4.1.2 Implementation
We utilize KPConv deform [5] as our backbone and
embed our method into it. In the training stage,
we randomly sample spheres of 3 m in radius from
the outdoor scenes and feed them into the network
for training following Refs. [5, 29]. Eqs. (1) and (2)
are used to generate the target NCM and prediction
NCM. Eq. (8) is used to optimize the whole network,
and Eq. (7) is used as the KL divergence loss for
NCM. In the test stage, we utilize the trained model
to predict the results on all points in the test set and
submit the results to the Semantic3D server [26] for
evaluation. The momentum optimizer is utilized to
train the network, and the batch size is set to 10 on
a single GTX 1080Ti GPU.

4.1.3 Results
We report the mean IoU (mIoU) over categories
and IoUs for different categories on Semantic3D
reduced-8 task in Table 1. Our method achieves
76.6% mIoU in this task, outperforming many existing
methods. Our method also brings a satisfying 3.5%
mIoU improvement over the backbone which shows
its effectiveness. We also provide the category-
wise IoUs, but IoUs for KPConv deform are not
listed because they are not available in their paper
and the benchmark. Figure 3 visualizes outdoor
segmentation results of KPConv deform and our
method on the validation set of Semantic3D reduced-
8 split by KPConv deform [5]. The red dashed-dotted
circles indicate obvious qualitative improvements,
more clearly seen in the close-up views.

4.2 Indoor scene semantic segmentation
4.2.1 Dataset
We evaluate the performance of our method for
indoor semantic segmentation on the S3DIS [27] and

Table 1 Results of outdoor space semantic segmentation on Semantic3D (reduced-8)

Method mIoU (%) man-made. natural. high veg. low veg. buildings hard scape scanning. cars

SegCloud (’17) [30] 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

RF MSSF (’18) [31] 62.7 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

SPG (’18) [32] 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2

ShellNet (’19) [33] 69.4 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2

GACNet (’19) [8] 70.8 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

KPConv deform (’19) [5] 73.1 — — — — — — — —

FGCN (’20) [34] 62.4 90.3 65.2 86.2 38.7 90.1 31.6 28.8 68.2

PointGCR (’20) [35] 69.5 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3

Ours 76.6 95.8 91.7 82.6 50.6 94.8 40.0 75.4 81.7



Neighborhood co-occurrence modeling in 3D point cloud segmentation 309

Fig. 3 Visual results for semantic segmentation on the validation set of Semantic3D.

ScanNet v2 [28] datasets.
S3DIS contains 271 rooms in 6 large indoor areas

from three different buildings. About 273 million
points are collected and annotated in this dataset;
all points are categorized into 13 classes. Following
previous work [5, 13, 36], we take rooms in Area-5 as
the test set and samples from the other areas as the
training set.

ScanNet v2 contains 1513 cluttered indoor scenes
with annotations. 1201 scenes are used for training
and 312 scenes are used for validation. All annotated
points are categorized into 20 classes or unlabeled.
Additionally, another 100 scenes are published
without label annotations as the test set.

4.2.2 Implementation
We apply our method to KPConv deform [5] and
take it as our baseline. Following KPConv deform,
we randomly sample spheres with a 2 m radius from
rooms in the training set and feed them into the
network for training. Again, Eqs. (1) and (2) are

used to generate the target NCM and prediction
NCM. Eq. (8) is used to optimize the whole network.
However, Eq. (6) is used as the KL divergence loss
for NCM. In the testing stage, spheres are sampled
regularly and all points are included in at least one
sphere. The network is trained by a momentum
optimizer, with batch size 5 for S3DIS and 10 for
ScanNet v2, using a single GTX 1080Ti GPU.

4.2.3 Results
We report the results of our method and many state-
of-the-art competitors on S3DIS Area-5 in Table 2;
mean IoU (mIoU) is taken as a metric to evaluate
segmentation performance. Our method achieves a
68.29% mIoU (1.19% higher than the backbone) and
outperforms many existing methods. We also list the
IoU scores for different categories in this table. No
methods perform well in the beam category because
beams in S3DIS Area-5 are tilted while beams in
other areas are horizontal. Our method improves
IoU for most categories except the sofa class. This
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Table 2 Indoor semantic segmentation results on S3DIS Area-5

Method mIoU (%) ceil. floor wall beam col. wind. door chair table book. sofa board clut.

PointNet (’17) [3] 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

RSNet (’18) [37] 51.93 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64

KPConv deform (’19) [5] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

FPConv (’20) [38] 62.8 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9

Point2Node (’20) [39] 62.96 93.88 98.26 83.30 0.00 35.65 55.31 58.78 79.51 84.67 44.07 71.13 58.72 55.17

SegGCN (’20) [36] 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3

DCM-Net (’20) [40] 64.0 92.1 96.8 78.6 0.0 21.6 61.7 54.6 78.9 88.7 68.1 72.3 66.5 52.4

FusionNet (’20) [41] 67.2 — — — — — — — — — — — — —

JSENet (’20) [12] 67.7 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4

Ours 68.29 94.43 98.25 83.60 0.00 25.74 62.01 70.32 91.51 82.58 75.98 73.04 69.51 60.81

is because NCM learning punishes those pairs that
seldom appear, thus making the network less likely
to categorize a point into a minor class. Thus, we do
not observe score improvement for the sofa category
which has least points. Additionally, we visualize the
improvement over our backbone (KPConv deform) in
Fig. 4, with yellow dashed-dotted circles indicating
obvious improvements.

For ScanNet v2, we report the results in Table 3,
and mean IoU over category is also used to estimate
the performance. In this dataset, our method
achieves 69.0% mIoU which is 0.6% higher than our
backbone, and our method achieves a state-of-the-art
performance in this benchmark. Category-wise scores
are also shown in this table. We can also see that our

method improves the performance for most categories,
but degrades the performance for categories with
few points like sofa and refrigerator. The reason
is the same to S3DIS that NCM learning punishes
pairs that appear less frequently, thus degrading the
performance of minor categories.

4.3 Choice of KL divergence
In this section, we conduct experiments to compare
the difference in performance between the usual and
reverse forms of KL divergence for both indoor scene
and outdoor area semantic segmentation.

As shown in Section 3.3, there are two forms of KL
divergence for NCM learning. Although both forms
lead the prediction NCM to approximate the target

Fig. 4 Visual results for semantic segmentation on S3DIS Area-5.
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Table 3 Semantic segmentation results on ScanNet v2

Method mIoU (%) bth. bed bksf. cab. chair ctr. curt. desk door floor oth. pic. ref. shw. sink sofa tab. toil. wall win.

PointNet++ (’17) [3] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2

PointCNN (’18) [42] 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5

TextureNet (’19) [43] 56.6 67.2 66.4 67.1 49.4 71.9 44.5 67.8 41.1 39.6 93.5 35.6 22.5 41.2 53.5 56.5 63.6 46.4 79.4 68.0 56.8

HPEIN (’19) [20] 61.8 72.9 66.8 64.7 59.7 76.6 41.4 68.0 52.0 52.5 94.6 43.2 21.5 49.3 59.9 63.8 61.7 57.0 89.7 80.6 60.5

KPConv deform (’19) [5] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2

SPH3D-GCN (’20) [44] 61.0 85.8 77.2 48.9 53.2 79.2 40.4 64.3 57.0 50.7 93.5 41.4 4.6 51.0 70.2 60.2 70.5 54.9 85.9 77.3 53.4

FAConv (’20) [14] 63.0 60.4 74.1 76.6 59.0 74.7 50.1 73.4 50.3 52.7 91.9 45.4 32.3 55.0 42.0 67.8 68.8 54.4 89.6 79.5 62.7

FPConv (’20) [38] 63.9 78.5 76.0 71.3 60.3 79.8 39.2 53.4 60.3 52.4 94.8 45.7 25.0 53.8 72.3 59.8 69.6 61.4 87.2 79.9 56.7

DCM-Net (’20) [40] 65.8 77.8 70.2 80.6 61.9 81.3 46.8 69.3 49.4 52.4 94.1 44.9 29.8 51.0 82.1 67.5 72.7 56.8 82.6 80.3 63.7

PointASNL (’20) [45] 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3

FusionNet (’20) [41] 68.8 70.4 74.1 75.4 65.6 82.9 50.1 74.1 60.9 54.8 95.0 52.2 37.1 63.3 75.6 71.5 77.1 62.3 86.1 81.4 65.8

Ours 69.0 85.3 75.5 78.9 66.0 80.5 47.1 79.3 61.8 59.6 94.7 47.9 22.5 56.3 84.5 68.2 74.9 61.3 89.6 82.7 63.9

NCM, the gradients are quite different. Thus, we
conduct a study to analyze the difference between
these two forms of KL divergence on Semantic3D
reduced-8 and S3DIS Area-5 tasks. The results are
reported in Table 4. It demonstrates that these two
forms of KL divergence achieve similar improvements
on the S3DIS Area-5 task. However, reverse KL
divergence achieves a 0.8% higher mIoU on the
Semantic3D reduced-8 task. This results from
differences between the target NCM generated
from the sampled data and the real-world NCM.
Specifically, the scale of the whole scene is much
greater than that of the sampled point cloud in the
Semantic3D dataset. The second term in Eq. (7),
−M̂ [i, j]log(M [i, j] + ε), is the reverse cross entropy
which is more tolerant to such discrepancy noise [25],
thus providing better performance. Furthermore,
the first term M̂ [i, j]log(M̂ [i, j] + ε) is the negative
entropy, and minimizing it will maximize the entropy
of the prediction NCM. This will give a preference to
a uniform distribution over the prediction NCM, thus
alleviating imbalance between the number of points
in each category during NCM learning.

4.4 Hyper-parameter analysis
Here, we first conduct experiments to analyse the
influence of number of neighbor used for NCM
generation. Then, we study how the sampling density
impacts segmentation performance, using the Seman-
tic3D reduced-8 task and reverse KL divergence.

Table 4 Comparison of forms of KL divergence used as loss function

Method Semantic3D S3DIS

Ours (using Eq. (6)) 75.8 68.29

Ours (using Eq. (7)) 76.6 68.22

4.4.1 Number of neighbors in NCM
In this section, we conduct a study on changing
the number of neighbors in the neighborhood co-
occurrence matrix (NCM), which affects the size of
neighborhood. We set the number of neighbors to
4, 8, and 12, respectively, with all other settings
remaining unchanged from our original method. The
experimental results are reported in Table 5 which
shows the neighborhood consisting of 8 nearest
neighbors brings the largest improvement to point
cloud segmentation.
4.4.2 Sampling density in NCM
We also conduct experiments to study the influence of
sampling density on segmentation performance. We
attempt to control the sampling density by changing
the hyper-parameter α. We set α to 30%, 10%, and
3% in turn, with all other settings remaining the same.
Results are reported in Table 6. A higher sampling
density results in better segmentation results because
more samples in the NCM lead to more stable co-
occurrence relationship learning.

4.5 Visualization of NCM
In order to reflect the improvement of segmentation
performance in NCM, we visualize target NCMs and
prediction NCMs of our baseline and our method
for some scenes of S3DIS in Fig. 5. It shows that

Table 5 Effect of number of neighbors used to generate NCM

Neighbors 4 8 12

mIoU (%) 75.8 76.6 75.9

Table 6 Effect of varying sampling density α

α 30% 10% 3%

mIoU (%) 76.6 75.7 75.4
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Fig. 5 Visualization results of NCM for scenes in S3DIS.

our method removes many impossible pairs in the
scenes as reflected by the NCM and improves the
segmentation performance. For instance, there are no
column–clutter pairs in the scenes and this is reflected
in the NCM where segmentation improvement is
achieved.

5 Conclusions
In this paper, we propose a neighborhood co-
occurrence matrix to model the local category co-
occurrence relationship and introduce it into the point
cloud segmentation task. KL divergence is used to
maximize the similarity of target NCM and prediction
NCM. For better learning of local co-occurrence
relationship for large-scale areas, we introduce the
reverse form of KL divergence to NCM learning which
is more robust to the difference between the NCM
of a sampled point cloud and that of a whole scene.
Additionally, our proposed method achieves state-
of-the-art performance on Semantic3D for outdoor
space segmentation as well as S3DIS and ScanNet v2
for indoor scene segmentation. Finally, we compare
and analyze the difference in performance between
the two forms of KL divergence used in our method,
and conduct experiments to analyse the influence of
number of neighbors and sampling density in NCM
generation.
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