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Abstract 

Dilute inorganic acids hydrolysis is one of the most promising pretreatment strategies with high recovery of fermenta-
ble sugars and low cost for sustainable production of biofuels and chemicals from lignocellulosic biomass. The diverse 
phenolics derived from lignin degradation during pretreatment are the main inhibitors for enzymatic hydrolysis and 
fermentation. However, the content features of derived phenolics and produced glucose under different conditions 
are still unclear due to the highly non-linear characteristic of biomass pretreatment. Here, an artificial neural network 
(ANN) model was developed for simultaneous prediction of the derived phenolic contents (CPhe) and glucose yield 
(CGlc) in corn stover hydrolysate before microbial fermentation by integrating dilute acid pretreatment and enzymatic 
hydrolysis. Six processing parameters including inorganic acid concentration (CIA), pretreatment temperature (T), 
residence time (t), solid-to-liquid ratio (RSL), kinds of inorganic acids (kIA), and enzyme loading dosage (E) were used as 
input variables. The CPhe and CGlc were set as the two output variables. An optimized topology structure of 6–12-2 in 
the ANN model was determined by comparing root means square errors, which has a better prediction efficiency for 
CPhe (R2 = 0.904) and CGlc (R2 = 0.906). Additionally, the relative importance of six input variables on CPhe and CGlc was 
firstly calculated by the Garson equation with net weight matrixes. The results indicated that CIA had strong effects 
(22%-23%) on CPhe or CGlc, then followed by E and T. In conclusion, the findings provide new insights into the sustain-
able development and inverse optimization of biorefinery process from ANN modeling perspectives.
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Introduction
Nowadays, the concerns over climate change, especially 
the increasing greenhouse gases (GHGs) emissions, have 
necessitated a rethinking of traditional methods for fuels 
production (Field et  al. 2020; Solarte-Toro et  al. 2019). 
According to the statistics, about 25% of the total GHGs 
emission was contributed by transportation (Keasling 
et  al. 2021). Reducing GHGs emissions and enhancing 
carbon capture/sequestration (CCS) are global concerns 
(Ishaq et al. 2021). To this end, one avenue is to produce 
advanced transportation fuels from atmospheric carbon 
resources (mainly CO2) or renewable biomass grown by 
fixing CO2 to partially replace fossil resources (Liu et al. 
2020).

In the past decades, utilization of lignocellulosic bio-
mass from non-food crops for production of fuels and 
fine chemicals has gained much attention (Luo et  al. 
2021a; Rajan et al. 2020) because their net carbon foot-
print is neutral. Lignin (15–30 wt%), cellulose (30–50 
wt%), and hemicellulose (20–35 wt%) are three main 
components in lignocellulose (Schutyser et  al. 2018). 
The structure of lignocellulose is complex since cel-
lulose and hemicellulose are enwrapped by lignin, and 
hemicellulose is also interlaced with cellulose fibers 
(Liu et al. 2021), resulting in the biomass recalcitrance 
and low enzymatic efficiency for hydrolysis. Depolym-
erization of lignocellulose to obtain fermentable sugars 

(mainly glucose) is the key for production of fuels (Luo 
et al. 2018). Thus, decreasing biomass recalcitrance and 
structural complexity via efficient pretreatments is gen-
erally required (Liu et al. 2021).

To disrupt the close inter-component association 
between cellulose, hemicellulose, and lignin, various 
pretreatment strategies including acid-, alkaline-, ionic 
liquid-, and organic solvent-based methods have been 
developed (Hijosa-Valsero et  al. 2017; Jönsson and 
Martín 2016; Xia et  al. 2021). Among those pretreat-
ment strategies, dilute inorganic acids hydrolysis is one 
of the most promising methods with high recovery of 
fermentable sugars and low cost (Jönsson and Martín 
2016), which is beneficial for the production of biofu-
els and chemicals. Nevertheless, during acid pretreat-
ment of biomass, hemicellulose and lignin are partially 
solubilized, which result in the degradation of these 
fragments under an acidic environment (Zhang et  al. 
2021). Generally, three kinds of inhibitors, includ-
ing weak organic acids (acetic acid, formic acid, etc.), 
furan derivatives, and phenolics (phenolic acids, and 
phenolic aldehydes) are derived during pretreatment, 
which affect enzymatic and fermentation efficiency 
(Chen et al. 2020; Yao et al. 2021). Especially, the phe-
nolic compounds derived from lignin degradation dur-
ing pretreatment characterized by complex structure, 
diversity, low water solubility, and low hydrophobicity 
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were reported as the main limiting factor to the indus-
trial biofuel production (Gu et al. 2019).

To counteract the toxic effect of phenolics on the 
enzymatic and fermentation process, detoxification 
of lignocellulosic hydrolysates and slurries with over-
liming, activated carbon, or water washing is widely 
implemented (Sivagurunathan et  al. 2017). However, 
fermentable sugars were also partially removed, and the 
treatment of generated wastewater would further dete-
riorate techno-economic performance. Additionally, the 
construction of robust strains by elucidating the response 
mechanism to phenolics could also weaken the inhibi-
tory effect (Kumar et al. 2020; Luo et al. 2021b; Luo et al. 
2020). For example, Jiménez-Bonilla et al. (2020) reported 
that overexpressing efflux pump gene srpB from Pseu-
domonas putida is beneficial to improve the tolerance of 
Clostridium saccharoperbutylacetonicum to 1.2 g/L feru-
lic acid (Jiménez-Bonilla et  al. 2020). Although systems 
metabolic engineering and adaptive evolution strategies 
could improve the robustness of microbes under bio-
mass-derived inhibitors stress, the derived concentration 
feature of inhibitors in biomass hydrolysate under pre-
treatment process should be firstly considered.

Optimization of pretreatment conditions by evaluat-
ing glucose hydrolysis efficiency and derived phenolics 
was carried out using different lignocellulose such as 
rice straw (Lee et  al. 2012), sugarcane bagasse (Lv et  al. 
2017), etc. The content of lignin-derived phenolics in 
hydrolysate before fermentation is mainly attributed to 
pretreatment conditions, such as biomass species, pre-
treatment temperature, reaction time, solid-to-liquid 
ratio, etc. (Bhatia et al. 2020; Jönsson and Martín 2016), 
and also changed during enzymatic hydrolysis (Yao et al. 
2021). Implementing numerous experiments for pre-
treatment of biomass could achieve a sub-optimal result, 
it would unavoidably increase the operation complexity 
and time-consuming. Loading of high-cost cellulase also 
largely improves the total biorefinery cost. Furthermore, 
the relationship between pretreatment, enzymatic condi-
tions, and derived features of phenolics content was still 
unclear. Hence, it remains challenging to systematically 
analyze the effects on derived phenolics and glucose yield 
concerning both biomass characteristics, pretreatment, 
and enzymatic conditions.

Development of bioprocess modeling for the non-lin-
ear lignocellulosic bioprocessing is an efficient strategy 
enabling the success of biorefinery and bio-based circular 
economy (Unrean 2016). Recently, artificial intelligence 
(AI) technology, mainly machine learning (ML) algo-
rithms, is competent for predicting/confirming relative 
importance between input and output variables (Li et al. 
2021). The effectiveness of ML methods for predicting 
pyrolytic gas yield and compositions was verified (Tang 

et  al. 2021), which could benefit to better understand 
biomass pyrolysis and syngas upgrading. An artificial 
neural network (ANN) model with a multilayer archi-
tecture (3-15-1) was optimized and predicted the biogas 
production curve from cattle under mesophilic and ther-
mophilic conditions (Ghatak and Ghatak 2018). An ANN 
model was built to predict sugar yields of pretreated rice 
straw during hydrolysis by considering three factors of 
biomass loadings, particle size, and reaction time (Vani 
et  al. 2015). Recently, Moodley et  al. (2019) found that 
sugar yield from sugarcane leaf waste was sensitive to the 
alkali and salt concentrations by establishing two ANN 
tools in inorganic salt pretreatment process (Moodley 
et al. 2019). The above reports clearly show that ANN can 
be trained with experimental data to generate efficient 
models of non-linear multivariate processes. To the best 
of our knowledge, prediction of lignin-derived phenolics 
content and glucose concentration from inorganic acid 
pretreatment of biomass with advanced modeling tech-
nology was not reported thus far.

Focusing on above-mentioned issues, in this study, we 
aim to develop an ANN model for elucidating the derived 
feature of phenolics from corn stover by integrative 
investigating typical three inorganic acids (HCl, H2SO4, 
and H3PO4) pretreatment and enzymatic hydrolysis pro-
cesses. Furthermore, the relative importance of pretreat-
ment conditions (i.e., input variables) on phenolic and 
glucose concentrations (i.e., output variables) was also 
first elucidated by considering the neural net weights in 
the developed ANN model. The results would provide 
new insights into the biorefinery process for biofuels 
production.

Materials and methods
Materials and chemicals
The corn stover was collected from Lianyungang City, 
China. It was firstly cut and sieved to a particle size 
of ~ 0.4  mm. The fine corn stover was then dried in an 
oven (GZX-9140MBE, Shanghai Boxun Medical Biologi-
cal Instrument Corp., China) at 60 °C for 12 h to remove 
the moisture and stored in plastic bags at 4  °C. Three 
kinds of inorganic acids, including dibasic acid (hydro-
chloric acid, 37 wt%), binary acid (sulfuric acid, 98 wt%), 
and ternary acid (phosphoric acid, 85 wt%) were used 
as pretreatment agents for corn stover depolymeriza-
tion. The inorganic acids were purchased from Sinop-
harm Chemical Reagent Co., Ltd. All of the chemicals 
were used as received without other specified purifica-
tion. A commercial cellulase Cellic CTec2 (enzyme blend, 
SAE0020-50  mL solution) was obtained from Sigma-
Aldrich (St. Louis, MO, USA), and used for hydrolyzing 
the pretreated corn stover to obtain glucose.
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Dilute inorganic acid pretreatment and enzymatic 
hydrolysis
To systematically investigate the effects of pretreatment 
conditions on the derived phenolic compounds and glu-
cose hydrolysis yield, six key parameters including inor-
ganic acid concentration (CIA), pretreatment temperature 
(T), residence time (t), solid-to-liquid ratio (RSL), kinds 
of inorganic acids (kIA), and enzyme loading dosage (E) 
were considered in this study. The acid pretreatment pro-
cess of corn stover was carried out in a 250-mL vertical 
reactor (TGYF-B, Gongyi Yuhua Instrument Co., Ltd., 
China) with an electrically magnetic stirrer and a tem-
perature controller. Firstly, the dried corn stover, inor-
ganic acid, and 150 mL water were added into the reactor 
simultaneously. The experimental parameter ranges for 
corn stover pretreatment, and enzymatic hydrolysis were 
carefully designed and also summarized in Table 1, con-
taining the raw data for training, validation, and testing 
the following ANN model. After acid hydrolysis, the pH 
of the pretreated mixture was regulated to 5.0 by 8 mol/L 
NaOH solution. The overall effects of biomass-derived 
phenolic compounds on enzymatic hydrolysis were also 
considered due to the interaction of phenolics with cel-
lulase. Thus, the pretreated mixture was not filtrated, and 
directly used for enzymatic hydrolysis by adding cellulase 
with 10–20 FPU/g corn stover (Table 1). The reaction was 
conducted at 50 °C in a water bath at 150 rpm. After 72 h 
enzymatic hydrolysis, the pretreated mixture was firstly 
boiled at 95–100 °C for 5 min to terminate the reaction. 
Then, the liquid fraction of the mixture (i.e., hydrolysate) 
was separated by vacuum filtration for determining phe-
nolics and glucose contents.

Development of ANN model
Selection of input variables and experimental data
Different kinds of biomass (corn stover, rice straw, 
switchgrass, sugarcane straw, etc.) have different ratios 
of cellulose, hemicellulose, and lignin, which result in 
various features of the derived phenolics and glucose 

yield even under the same pretreatment and enzymatic 
hydrolysis conditions (Pratto et  al. 2020; Solarte-Toro 
et al. 2019). Among these lignocellulosic biomasses, corn 
stover is the largest crop residue in China (Yang et  al. 
2020b); thus, it was selected as the model biomass for the 
pretreatment experiments in this study.

The formation of the biomass-derived phenolic com-
pounds content and glucose hydrolysis yield in hydro-
lysate is a complex and non-linear process, which is 
difficult to directly predict the derived features with 
traditional constructive mathematical models. Thus, we 
tried to use ANN modeling to predict derived phenolic 
compounds content and glucose yield after pretreatment 
and enzymatic hydrolysis processes. As described in 
above section, six key parameters of CIA, T, t, RSL, kIA, and 
E (Table 1) were considered as the input variables for the 
development of ANN model. The output variables were 
glucose concentration (CGlc) and phenolic content (CPhe) 
in biomass hydrolysate after 72  h enzymatic hydrolysis. 
To better perform the ANN model, 77 runs experiments 
were carried out according to the design of input vari-
ables shown in Table 1.

Data preprocessing, and the topology of ANN model
Figure 1A shows the step-by-step scheme of ANN model 
development to predict CPhe and CGlc from corn stover 
under different operation conditions. The ANN model 
was developed by using Matlab R2019a (The MathWorks, 
Inc., USA). It has one multiple layer neural network with 
interconnected neurons arranged in three layers of input, 
hidden, and output layers (Fig. 1B). The ANN model pro-
posed in present study consists in: (1) two parameters of 
CGlc and CPhe were considered the output variables; (2) 
six variables of CIA, T, t, RSL, kIA, and E in one input layer 
were fully connected to the hidden layer; (3) one hidden 
layer had n neurons; and (4) bias of b1,j (the bias of inputs, 
j = 1, 2, 3, …, n) and b2,k (the bias of output layer, k = 1, 2) 
were used for training the network.

Table 1  The design of operating conditions to perform the dilute acid pretreatment of lignocellulosic biomass for the development of 
ANN model

The pretreatment experiments with specified conditions were all carried out with three replicates. The raw data used for ANN development were the means and the 
detailed means ± SD values are shown in Table S1

Three kinds of inorganic acid including dibasic acid (HCl), binary acid (H2SO4), and ternary acid (H3PO4) were used
a The k value for HCl, H2SO4 and H3PO4 was set as 1, 2, and 3, respectively, which was used as one input parameter for the development of ANN model

Lignocellulose Kinds of acids (kIA)a Acid 
concentration (CIA, 
mol/L)

Pretreatment 
temperature (T, ℃)

Residence 
time (t, min)

Solid to liquid 
ratio (RSL)

Enzyme loading 
dosage (E, 
FPU/g)

Corn stover Hydrochloric acid (HCl) 0.05–0.6 120–200 20–60 10–15% 10–20

Sulfuric acid (H2SO4) 0.05–0.6 120–200 20–60 10–15% 10–20

Phosphoric acid (H3PO4) 0.05–0.6 120–200 20–60 10–15% 10–20



Page 5 of 13Luo et al. Bioresources and Bioprocessing           (2021) 8:134 	

Firstly, the whole datasets were split as training, vali-
dation, and testing groups with a ratio of 75:15:10. The 
input dataset is normalized in the range of [− 1 1] before 
training the network to obtain an accurate model. The 
inbuilt ‘mapminmax’ function is used for the normaliza-
tion of experimental data, which is equivalent to Eq. (1):

where V′, V, Vmax, Vmin, V′max, and V′min represented the 
new value, the original value, the original maximum limit, 
original minimum limit, the new maximum limit (i.e., 1), 
and the new minimum limit (i.e., − 1), respectively.

The ANN model was trained by the Adam optimizer, 
with a learning rate of 0.001, and training batches of size 

(1)V ′
=

V − Vmin

Vmax − Vmin

(

V ′
max − V ′

min

)

+ V ′
min,

2. The neurons (n) in the hidden layer were determined by 
an empirical equation Eq. (2) (Yang et al. 2020a). The root 
means square error (RMSE) obtained from different neu-
rons and iterations were used to evaluate the accuracy of 
model predictions, which was calculated by Eq. (3). Based 
on RMSE results, an optimized ANN model with bet-
ter performance was developed to predict CGlc and CPhe 
(Fig. 1A):
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√
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(h)
exp

)

,

Start Selection of input & 
output variables

Input 
variables

Output 
variables

Data 
preprocessing, 

collection, 
normalization

Training data

A
Training model

If NP > TP Test ing
Yes

Retrain NN 
Model

No

Trained 
model

End

Validation

T

t

RSL

kIA

CIA

E

j=1

j

j=n

. . .
. . .

CGlc

CPhe

IWj,i: Weights of inputs to hidden layers

Importance 
analysis

Test ing 
data

B

Change number 
of neurons

Inorganic acid 
concentration

Pretreatment 
temperature

Residence t ime

Solid to liquid ratio

Kinds of inorganic 
acids

Enzyme loading 
dosage

CIA LWk,j: Weights  o f neurons in hidden 
layers to output layers

IWj,i

LWk,j

b1,j

b2,k

Input Layer                                         Hidden Layer                                   Output Layer

i=1

i=2

i=3

i=4

i=5

i=6

Fig. 1  The flow diagram of the development of ANN model (A) and the topology structure of ANN model (B) to predict the glucose concentration 
(CGlc) and total phenolic content (CPhe) in biomass hydrolysate after dilute inorganic acid pretreatment and 72 h enzymatic processes. A NP, network 
performance; TP, target performance of network; NN, neural network. B b1,j, the bias of inputs (j = 1, 2, 3, …, n); b2,k, the bias of output layer (k = 1, 2)
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where n is the number of neurons in hidden layer; i is 
the number of input variables; k is the number of out-
put variables; α is a constant range of 1–10; ypre

(h) is the 
predicted output value of CPhe; ŷ exp

(h) is the experimental 
value of the output variable of CPhe; and m is the number 
of the samples for training, validation, or testing of ANN 
models.

Analysis of relative importance of input variables
The parameters of IWj,i, LWk,j, b1,j, and b2,k in the devel-
oped ANN model could be used to simulate the output 
variables (CGlc, CPhe). In addition, to evaluate the rela-
tive importance of the input variables on the two output 
variables, the process was based on the neural net weight 
matrixes (IWj,i, and LWk,j, Fig. 1B) and Garson equation 
(Puig-Arnavat et  al. 2013; Sunphorka et  al. 2017). Gar-
son equation was based on the partitioning of connec-
tion weights in the network. The numerator presents 
the total of absolute products of weights for each input 
(i = 1, 2…6) while the denominator represents the total of 
the absolute values of all weights feeding into the hidden 
layer (j = 1, 2…n). The Garson equation is presented in 
Eq. (4) for adapting the ANN topology:

where Ii is the relative importance of the ith input vari-
able on output variables of CGlc, and CPhe; IWj,i is the neu-
ral net weight to jth neuron of the hidden layer from ith 
input variable; and LWk,j is the weight to kth output vari-
able from jth neuron of the hidden layer, respectively.

Analytical methods
The glucose concentration in corn stover hydrolysate 
(CGlc) was determined by a biosensor analyzer (S-10, Sie-
man Technology, China) (Luo et  al. 2019). Determina-
tion of total phenolic content (CPhe) in the hydrolysate 
was based on the Folin–Ciocalteu assay with gallic acid 
as the standard (Xu et al. 2021) with some modifications. 
Briefly, 0.4 mL sample was mixed with 2.6 mL water and 
0.5  mL Folin–Ciocalteu reagent (1.0  mol/L, Sinopharm 
Chemical Reagent Co., Ltd., Shanghai). After 5  min, 
5.0 mL water and 1.5 mL Na2CO3 solution (20%, w/v) was 
added simultaneously. Then, the mixture oscillated under 
a dark environment at 40 °C for 1 h. Finally, the absorb-
ance of the reaction mixture was analyzed at 760 nm by a 
UV–Vis spectrophotometer (UV-2100, Unico Instrument 
Co., Ltd., China). As a result, the CPhe (g/L) was calcu-
lated by Eq. (5):

(4)
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n
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∣

∣

)

×
∣
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∣

∣

)

} × 100%,

where a is the linear coefficient of standard curve; A760 is 
the absorbance of reaction mixture at 760 nm; VS is the 
volume of reaction mixture; and N is the dilution ratio, 
respectively.

Statistical analysis
The experimental data of CPhe and CGlc for development 
of ANN model are represented as the mean ± standard 
deviation (SD) of three independent experiments. Signifi-
cant differences were confirmed with a two-tailed Stu-
dent’s t-test aided by Microsoft Excel 2016.

Results
Effects of inorganic acid pretreatment/enzymatic 
hydrolysis on the content of derived phenolics and glucose
For efficient production of biofuels and fine chemicals 
from lignocellulosic biomass via microbial fermenta-
tion, an optimized pretreatment process featured with a 
high glucose yield from feedstock and a low derived con-
centration of inhibitors is crucial (Liu et al. 2021). Inor-
ganic acid-based pretreatment is applied to efficiently 
solubilize hemicellulose from lignocellulose and it also 
improves the cellulose digestibility (Jönsson and Martín 
2016; Zabed et al. 2016). Therefore, dilute inorganic acids 
hydrolysis is widely used in biorefinery process. In this 
study, focusing on dilute inorganic acid pretreatment of 
corn stover, the overall effects of pretreatment conditions 
on phenolics and glucose concentration after 72 h enzy-
matic hydrolysis were studied, and the results are shown 
in Fig.  2. Three typical inorganic acids, including HCl 
(dibasic acid), H2SO4 (binary acid), and H3PO4 (ternary 
acid) were used as the pretreatment reagent. It should 
be noted, in these cases, the solid-to-liquid ratio (RSL), 
and cellulase loading dosage (E) was kept at 10% and 20 
FPU/g corn stover, respectively.

When pretreating corn stover with 0.05 mol/L of HCl 
under 160  °C for 60  min, the derived phenolic com-
pounds concentration in hydrolysate (CPhe) was 1.13 g/L, 
and glucose content (CGlc) reached 22.8  g/L. Under 
the same condition of H2SO4 pretreatment, CGlc were 
increased by 12.3% (25.6  g/L), and CPhe was also ele-
vated to 1.34 g/L with significant differences (p < 0.05) to 
the HCl pretreatment process. Whereas, in the case of 
0.05 mol/L H3PO4 pretreatment with 160 °C for 60 min, 
the glucose yield was only 20.3  g/L with a higher level 
of CPhe (1.97  g/L, Fig.  2). The results indicated that cel-
lulase might tolerate a low concentration of CPhe. For 
the HCl pretreatment of corn stover, CPhe was increased 
to 1.64 g/L when elevating acid concentration from 0.05 
to 0.1  mol/L, but the phenomenon was not found in 

(5)CPhe =
a× A760

Vs
× N ,
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H2SO4 and H3PO4 pretreatment processes. In addition, 
the effects of different RSL and E on CGlc and CPhe were 
also studied and the detailed experimental data are also 
shown in Additional file  1: Table  S1. Since glucose and 
derived phenolic contents are mainly attributed to com-
plex pretreatment conditions and enzymatic process with 
multivariate non-linear features (Huang et  al. 2007), it 
is still challenging to speculate the changing patterns of 
CGlc and CPhe by only implementing numerous experi-
ments. Hence, it is necessary to explore advanced meth-
ods for elucidating the relative importance of operational 
conditions on CGlc or CPhe for further optimizing the lig-
nocellulose pretreatment process.

Optimization and determination of key parameters in ANN 
model
As shown in Fig. 1B, the multilayer ANN model for the 
prediction of CGlc and CPhe consisted of 6 neurons in one 
input layer, one hidden layer, and one output layer. Since 
the number of neurons in the hidden layer is a key param-
eter in ANN model, and trial–error approach was applied 
to ensure a relatively fast and good convergence of RMSE 
(Puig-Arnavat et  al. 2013). The obtained results of 11 
ANN models under different neuron numbers (n) with 
500 iterations are exhibited in Table 2. Here, an empiri-
cal equation Eq.  (2) was used to determine the range of 
neuron numbers (from 3 to 13) in the hidden layer (Yang 
et al. 2020a). As shown in Table 2, when the neurons in 

the hidden layer was 3, RMSE for CGlc reached 7.16 in the 
training dataset and 7.12 in the validation dataset. For 
the RMSE of CPhe, a range of 0.41–0.54 was obtained in 
the case of 3 neurons. When changing the neurons from 
3 to 13 in the hidden layer, RMSE varied due to the dif-
ferent parameters while developing ANN models. By 

Fig. 2  Effects of dilute inorganic acid pretreatment of corn stover on the glucose concentration (CGlc) and derived phenolic concentration (CPhe) in 
hydrolysate after 72 h enzymatic hydrolysis. The typical 15 batch experiments results were selected from Table S1 with same values of the ratio of 
solid to liquid (RSL, 0.10) and cellulase loading dosage (E, 20 FPU/g corn stover)

Table 2  Computational results of RMSE during the training and 
validation processes with different neurons of hidden layer in 
ANN models. RMSE is the root means square error calculated by 
Eq. (3)

Neurons in 
hidden layer, n

RMSE for CGlc after 500 
iterations

RMSE for CPhe after 500 
iterations

Training 
dataset

Validation 
dataset

Training 
dataset

Validation 
dataset

n = 3 7.16 7.12 0.54 0.41

n = 4 9.35 8.51 0.87 0.42

n = 5 7.92 6.06 0.56 0.18

n = 6 6.71 6.41 1.37 1.05

n = 7 6.44 5.47 0.46 0.22

n = 8 7.53 5.84 0.46 0.46

n = 9 6.41 5.03 0.42 0.40

n = 10 6.40 5.20 0.43 0.28

n = 11 6.57 4.97 0.53 0.25

n = 12 6.38 4.73 0.43 0.24

n = 13 6.50 5.46 0.43 0.32
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combination analysis of the RMSE for CGlc and CPhe, the 
network performance of ANN model with 12 neurons 
was better which showed relative lower values of RMSE 
(Table 2). In addition, the effects of iterations on RMSE 
for CPhe when training and validation of the ANN mod-
els were also investigated. The RMSE changing patterns 
in Fig. 3 indicated that increasing iterations from 400 to 
800 could effectively decrease the RMSE of CPhe and then 
kept stable after 800 iterations. Therefore, an optimized 
iteration of 800 with the best network structure of 6-12-2 
was considered.

Training and testing of the ANN model
The best ANN structure was achieved after numerical 
experiments using training and validation datasets with 
a single hidden layer consisted of n = 12 neurons (Fig. 1B; 
Table  2). During the training process with 57 batches 
dataset (each including 6 input variables and 2 output 
variables, Additional file 1: Table S1), the predicted val-
ues of CGlc and CPhe are exhibited in Fig. 4. For the pre-
dicted values of CGlc during training process, the RMSE 
was 5.77 (Fig. 4A), and the corresponding result for CPhe 
reached a lower value of 0.44 (Fig.  4B). In addition, the 
optimized weights (IWj,i, and LWk,j) and biases (b1,j, and 
b2,k) of the proposed ANN model are listed in Table 3.

To verify the effectiveness of the proposed ANN model, 
a testing dataset with suitable ranges of input/output var-
iables was also used to predict CGlc and CPhe under dif-
ferent dilute inorganic acid pretreatment conditions. The 
fitting relationships between the predicted and experi-
mental values of CGlc and CPhe are plotted in Fig. 5. The 
slope of the fitting curve and the correlation coefficient 
of R2 value are the two key parameters for accurately 
evaluation of the proposed ANN model. In other words, 

a better fitting relationship between predicted values 
obtained from the developed model and experimental 
values generally featured with the slope and R2 nearing to 
1.0. As shown in Fig. 5, the diagonal of the plot (Y = X) 
was displayed with a slope of 1.0 for clearly comparison. 
It is indicated that the R2 of CGlc fitting curve was 0.906 
under the range of 7.5–25  g/L, with a slope of 0.86. In 
addition, the experimental values of CPhe were located at 
0.8–3.0  g/L. The ANN model obtained the fitting curve 
with a slope of 0.82 and a R2 of 0.904 for prediction of 
CPhe. Based on the fitting performance shown in Fig. 5, it 
is concluded that ANN modeling is an efficient tool for 
predicting CGlc and CPhe simultaneously from the non-
linearity and complexity of the input–output system con-
taining corn stover pretreatment/enzymatic processes.

Relative importance of input parameters on output 
variables
For the pretreatment of lignocellulosic biomass, eluci-
dating and understanding the influence of pretreatment 
or enzymatic conditions on glucose hydrolysis yield and 
inhibitors formation are beneficial for guiding the biore-
finery process (Bhatia et  al. 2020). Although numerous 
studies have investigated the effects of pretreatment and 
enzymatic methods on glucose yield and inhibitors for-
mation (Hassan et  al. 2018; Jönsson and Martín 2016), 
the quantitative relationship properties between opera-
tion variables and those derived contents in biomass 
hydrolysate before fermentation are still unclear.

Focusing on this concern, the relative importance (Ii, 
i = 1, 2…6) of the six input variables on the two output 
variables of CGlc and CPhe were analyzed (Fig.  6). The Ii 
was calculated by the Garson equation Eq.  (4) with the 
weight matrixes of IWj,i and LWk,j in the developed ANN 
model, which are listed in Table 3. As shown in Fig. 6A, 
the six input variables strongly influenced CGlc with the 
range of 12–23%. The five parameters included in the 
pretreatment process (CIA, T, t, RSL, and kIA) represent up 
to 79% importance, and enzyme dosage (E) accounts for 
21% importance on CGlc. Interestingly, the highest impor-
tance (I1 = 23%) on CGlc is the concentration of inorganic 
acid (CIA), which is even higher than that of enzyme dos-
age (21%). The results revealed that an efficient pretreat-
ment strategy is beneficial for glucose hydrolysis, which 
is mainly attributed to the improved accessibility of cel-
lulose during pretreatment process (Siqueira et al. 2017; 
Xu et al. 2016). The relative importance of T, RSL, and kIA 
on CGlc is around 14%-16%, while in this case, the I3 (t) is 
the lowest index (Fig. 6A). In addition, the relative impor-
tance of input variables on CPhe is plotted in Fig.  6B. 
Similarly, inorganic acid concentration (CIA) also has the 
strongest importance of 22% on CPhe. It is indicated that a 
severe acidic environment with a higher concentration of 

0 200 400 600 800 1000
0

2

4

6

8

400 600 800
0.4

0.5

0.6

fo
ES

M
R

C
Ph

e
noitadilav

dna
gniniart

gnirud

Iterations

RMSE for training
RMSE for validation

R
M

SE

Iterations

Keeping stable after 800

Fig. 3  The changing patterns of RMSE (CPhe) during training and 
validation with 1000 iterations for the development of ANN models. 
The subplot is the enlarged visualization of RMSE under 400–900 
iterations



Page 9 of 13Luo et al. Bioresources and Bioprocessing           (2021) 8:134 	

0 10 20 30 40 50 60
0

10

20

30

40

0 10 20 30 40 50 60
0

1

2

3

4

Predicted value of CGlc

Experimental value of CGlc
C

G
lc

)L/g(
A RMSE=5.77

 Predicted value of CPhe

 Experimental value of CPhe

C
Ph

e
)L/g(

Samples for training of ANN models

B RMSE=0.44
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Table 3  Weights and biases of the hidden and output layers used in the developed ANN model for the prediction of CGlc and CPhe

j is the neuron node in the hidden layer (from j = 1 to 12). IWj,i (i = 1, 2, 3, 4, 5, and 6) is the neural net weight to jth neuron of the hidden layer from ith input variable; 
and LWk,j (k = 1 and 2) is the neural net weight to kth output variable from jth neuron of the hidden layer. b1,j is the bias of input variables, and b2,k is the bias of output 
layer

Node, j Weights and biases of the hidden layer Weights and biases of the output 
layer

IWj,1 IWj,2 IWj,3 IWj,4 IWj,5 IWj,6 b1,j LW1,j LW2,j b2,k

1 0.4211 0.5806 0.1236 0.2909 0.1691 0.5445 − 0.0095 0.0448 0.4378 − 0.0381

2 0.3931 0.1473 0.2595 0.4280 0.2980 0.4272 − 0.0393 0.3972 0.4253 − 0.0051

3 0.3056 0.1740 0.3713 0.1522 0.1229 0.1367 − 0.0287 0.0356 0.2299

4 0.5184 0.0507 0.2491 0.0508 0.3027 0.4435 − 0.0379 0.6842 0.1607

5 0.3112 0.4807 0.7085 0.2731 0.3305 0.6146 0.0394 0.2159 0.0281

6 0.1854 0.5232 0.0776 0.4782 0.3439 0.1783 − 0.0306 0.1249 0.4419

7 0.0370 0.2334 0.0454 0.3650 0.2354 0.4857 0.0372 0.3608 0.0639

8 0.2985 0.2512 0.3173 0.1907 0.1834 0.5006 0.0361 0.5057 0.4299

9 0.3070 0.4097 0.0005 0.5172 0.3769 0.2365 − 0.0184 0.0140 0.3469

10 0.3136 0.2505 0.1438 0.0805 0.0552 0.1178 − 0.0320 0.2159 0.6152

11 0.6273 0.0770 0.3091 0.3422 0.3044 0.3722 0.0394 0.6076 0.3147

12 0.5133 0.5409 0.0001 0.4964 0.2515 0.1423 0.0371 0.5611 0.2426
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H+ could improve the efficiency of lignin deconstruction 
coupling with phenolics formation (He et al. 2020). The 
other four variables in the pretreatment process occu-
pied 60% importance on CPhe (i.e., T for 19%, t for 11%, 
RSL for 17%, and kIA for 13%, Fig. 6B). It should be noted 
that enzyme dosage (E) still kept higher importance of 
18% on CPhe (Fig. 6B), with a relatively lower importance 
of 21% on CGlc (Fig. 6A). The obtained results of the rela-
tive importance of enzyme dosage on CPhe reflected that 
the derived phenolic contents would change in biomass 
hydrolysate during enzymatic hydrolysis.

Discussion
Optimization of biorefinery process can lead to highly 
efficient production of biofuels from renewable resources 
such as lignocellulosic biomass. Traditional optimization 
method called “one variable at time” (OVAT) is time-
consuming and requires a large number of experiments. 
To circumvent the limitation, experimental models are 
used to elucidate the relationship between operating 
parameters and final outcomes. Recently, various models 
such as response surface methodology (RSM) and ANN 
were reported (Das et  al. 2015; Fernandes et  al. 2020; 
Sewsynker-Sukai and Gueguim Kana 2018). The obsta-
cle of RSM is the limitation to the hypothesis of quad-
ratic correlation between conditions because it assumes 
the second-order polynomial equation (Fernandes et  al. 
2020). Therefore, ANN modeling was used to build effi-
cient models to predict CPhe and CGlc.

Some ANN models were recently developed to assess 
the biomass pretreatment for the production of biofuels 
and fine chemicals (Moodley et al. 2019; Sunphorka et al. 
2017; Vani et  al. 2015). Compared with those models, 
the proposed ANN model in this study possessed three 
advantages. Firstly, the derived feature of the diversity of 
phenolic compound content from dilute inorganic acid 
pretreatment of lignocellulosic biomass, which is one of 
the most promising approaches to industrial implemen-
tation, was clarified when using corn stover as the feed-
stock for the first time. Secondly, the dilute inorganic acid 
pretreatment and enzymatic hydrolysis processes were 
considered from a systematic perspective. It is because 
CPhe and CGlc in biomass hydrolysate are the key factors 
affecting the overall fermentation performance. Lastly, 
the relationship of relative importance between operation 

CIA T t
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18%
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17%
11%

19%

22%

A BImportance of input variables on CGlc Importance of input variables on CPhe

21%

14%

16% 12%

14%

23%

CIA T         t
RSL kIA E

Fig. 6  Relative importance of six input parameters on CGlc (A) and CPhe (B), which calculated by Eq. (4) with the detailed weights of the developed 
ANN model shown in Table 3

Fig. 5  Experimental validation and fitting relationship of CGlc and 
CPhe based on the developed ANN model. CExp

Glc, experimental values 
of CGlc; CExp

Phe, experimental values of CPhe; CPre
Glc, predicted values of 

CGlc obtained by the developed ANN model; CPre
Phe, predicted values 

of CPhe obtained by the developed ANN model. The experimental 
values of CGlc and CPhe are presented as the means ± SD (n = 3) in 
Fig. 5
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variables and output variables (CPhe and CGlc) was clearly 
elucidated by the weight matrixes in the developed ANN 
model. It should be noted that although ANN models 
could not accurately calculate/predict results beyond 
the range of operational parameters in training/valida-
tion datasets, it can still provide an estimation of param-
eters in an uncharted workspace by catching the trends 
during the training process (Rashid et  al. 2021). Collec-
tion of previously reported data for the development of 
advanced ANN models would be an efficient strategy. 
Therefore, it is concluded that ANN modeling is a pow-
erful tool for predicting key parameters in some crucial 
multivariate non-linear bioprocesses. The relative impor-
tance analysis also provides new insights into the bio-
chemical process assessment and optimization.

Although the phenolic compounds were directly 
formed by lignin degradation during pretreatment pro-
cess, some studies found that the content (CPhe) still 
changes during the enzymatic hydrolysis process. It is 
mainly attributed to the interactions effect between cel-
lulase and lignin-derived phenolics (Yao et al. 2021; Zhao 
et al. 2021). In addition, the water-soluble lignin-derived 
phenolics were adsorbed by cellulase and inhibit the 
enzymatic efficiency (Yuan et  al. 2021). Those findings 
could explain the result that the enzyme dosage has a 
high importance of 18% on CPhe (Fig. 6B).

Although dilute inorganic acid pretreatment was 
selected to elucidate the derived feature of phenolic con-
tent from corn stover, some other indispensable factors 
should also be considered to further improve the sus-
tainability of biorefinery process. Different pretreatment 
methods have various solubilization abilities of lignin, 
cellulose, and hemicellulose. For the removal efficiency 
of lignin, the alkaline-based hydrolysis is generally higher 
than that of dilute acid-based methods (Zabed et  al. 
2016). If the aim is only to investigate lignin removal 
efficiency from lignocellulosic biomass, alkaline-based 
pretreatment might be a better choice. In addition, the 
operation parameters including the particle size and 
biomass species also influenced the fermentable sugars 
and derived phenolic contents (Vani et  al. 2015), which 
should be explored in the future.

Conclusions
An artificial neural network (ANN) model was developed 
to simultaneously predict the derived feature of phenolic 
compounds content (CPhe) and glucose yield (CGlc) in bio-
mass hydrolysate from dilute inorganic acid pretreatment 
and enzymatic hydrolysis. Five pretreatment and enzyme 
dosage parameters were used as the input variables in the 
optimized ANN model, which has one hidden layer with 
12 neurons. Results indicated that the developed ANN 
model has a good fitting performance (R2 > 0.90) for the 

prediction of CPhe and CGlc. The relative importance of 
six variables on CPhe and CGlc was also calculated to pro-
vide new insights for optimizing biorefinery to produce 
biofuels.
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