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1 Introduction

In the late seventies there were attempts to construct unified theories with matter [1]
using the superconformal algebra su(2, 2|N). Such algebra is the symmetry algebra of N -
extended conformal supergravity in four dimensions, which contains the conformal algebra
o(4, 2) ∼ su(2, 2), and u(N) as subalgebras [2]. The conformal superalgebras are also
crucial for the construction of superconformal super Yang-Mills theories [3]. In [1], it was
pointed out that technical problems inherent to higher derivative actions appear when
models that realize local scale, chiral, proper conformal, supersymmetry and internal SU(N)
transformations are constructed.

In this paper we introduce a generalized dual operator that allows us to construct
geometric actions that correspond to a generalization of Yang-Mills theories for a dual
operator that breaks certain symmetries of the (super-)algebra. Such operator can be found
naturally in the superconformal algebra. These algebras have been used to construct related
theories of matter [4] and extended MacDowell-Mansouri supergravities [5].
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Moreover, super Yang-Mills theories have received renewed attention recently due to
their applications when computing scattering amplitudes [6, 7]. It is therefore interesting
to formulate theories in terms of a generalized dual operator so that it becomes possible
to transfer some of the tools that are used in the computation of scattering amplitudes of
super Yang-Mills theories [8].

Grand unified theories, with or without supersymmetry, based on the SU(N) group,
require N > 5. The simplest example is the Georgy-Glashow SU(5) model [9, 10]. An SU(5)
model with softly broken supersymmetry was also proposed in [11] and, in order to solve
the proton decay and the doublet-triplet splitting problems of the Georgy-Glashow SU(5)
model, the flipped SU(5) model was proposed in [12]. Some years later, it was introduced
the supersymmetric flipped SU(5) model that produce hierarchical neutrino masses [13–16].

Attempts of embedding supersymmetric SU(N) GUT models in the conformal super-
algebra have to deal with the technical difficulties encountered in [1]. In this paper we
define a dual operator embedded in SU(2, 2|N) that allows us to construct unified theories
of gravity, Yang-Mills and matter. We study the field equations, integrability conditions
and symmetry conditions. We also provide an explicit definition of the dual operator and
we introduce the notion of self-dual forms with respect to the dual operator. In section 3
we provide the explicit form of the action. In section 4 we summarize our results.

2 The model

We formulate the model purely in terms of a SU(2, 2|N) connection. Following the procedure
of [4, 5, 17], we gauge and break some of the SU(2, 2|N) symmetries explicitly in the action.
The generators of the ordinary conformal group, Ja,Ka,Jab and D, together with internal
generators TI and Z of SU(N) and U(1) respectively, form the bosonic algebra. We have
additionally N complex spinorial supercharges, Qα

i and Q
i
α (for the representation see

appendix A). It is convenient for us to work with such Dirac supercharges because they
make the full R-symmetry manifest [18], when the R-symmetry has been identified with
the internal SU(N)×U(1). The gauge connection is given by

A = Ω + Q
i
α/eψ

α
i + ψ

i
α/eQ

α
i , (2.1)

where
Ω = 1

2ω
abJab + faJa + gaKa + hD +AITI +AZ . (2.2)

Curvatures are defined as usual,

F = dA + A ∧A , (2.3)

where
F = 1

2F
abJab + FaJa + GaKa +HD + FITI + FZ + QX + XQ , (2.4)

and the explicit form of the curvature components are given in appendix B.
The action can be formulated as a generalization of the MacDowell-Mansouri action [19]

S = −
∫
〈F~ F〉 . (2.5)

It is sufficient to have a dual operator ~ with the following requirements:
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i. it is demanded to have similar properties to the usual Hodge dual operator: linearity,
parity odd and that ~ maps 2-forms valued on the algebra on to 2-forms valued on the
algebra or in the complexified algebra at most.

ii. That the operator ~ introduces a grading among the bosonic spacetime generators.
We will denote the operator behind this grading by S, which is independent of the
grading Γ, that defines fermionic and bosonic operators. The dual operator must satisfy
~2 = −1 when projected to the corresponding subspace of the superalgebra. Below,
in (2.31), we will make use of the latter property in order to uniquely define S.

These properties will allow us to define actions with a gauge symmetry G+ ⊂ SU(2, 2)×
SU(N)×U(1), where G+ is the group generated by the S-grading even generators. The
symmetries generated by the S-grading odd generators, and the supersymmetries are going
to be on-shell symmetries. These on-shell symmetries were discussed in [5], where for a
supergravity model with G+ ⊂ SU(2, 2)× SU(2)× U(1), where we pointed out that it is
sufficient to demand a condition that is, in principle, weaker than the on-shell condition.
See section 2.1.

Additionally, a geometric coupling with matter can be implemented if the S-grading odd
generators are dual to a set of fields that can be identified with a set of orthonormal frames.
By geometric we mean that the spin-1/2 fields carrying a representation of the G group
are going to be included in the gauge potential (2.1). The resulting action (2.5) contains
the minimal coupling plus some extra gravitational nonminimal couplings that are tipically
suppressed by powers of M−2

P .
A dual operator with properties i and ii can be implemented in the conformal superal-

gebra su(2, 2|N). In order to do so we will use the spinor representation of the conformal
group, where D ∼ γ5, Ja ∼ γa, Ka ∼ εa

bcdγbcd and Jab ∼ Σab, see appendix A. We will
define the operator S ∼ γ5 that introduces the following grading among bosonic generators

Even generators Odd generators
[Jab, S] = 0 {Ja, S} = 0
[Z, S] = 0 {Ka, S} = 0
[TI , S] = 0
[D, S] = 0

(2.6)

where Z is the central generator of the superconformal group and TI are the generators
of SU(N). Moreover, the use of the spinor representation and the existence of S-grading
odd generators is crucial to include matter fields in a geometric way. This is so because the
fields dual to Ja and Ka generators can be identified with the orthonormal frames,

fa = ρea , ga = σea , (2.7)

where ρ and σ are integration constants. The identificaction is possible because the S-
grading odd fields play the role of auxiliary fields in the action which can be fixed by
solving their field equations and inserted back in the action. As shown in section 3.2, the
identification (2.7) corresponds to AdS or dS (or even Minkowski) vacua.
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gradding domain
γ5 Ja,Ka,Jab,D

↓
S Ja,Ka,Jab,D,Z,TI

↓
~ Ja,Ka,Jab,D,Z,TI ,Q,Q

Table 1. Underlined are the odd generators w.r.t. each gradding operator. The spin 1/2 represen-
tation of the conformal algebra (su(2, 2)) has a natural gradding defined by γ5. This embedding
allows us to construct the grading S of su(2, 2)× su(N). With S we can define the gradded dual
operator ~ that acts on su(2, 2|N), that introduces the grading (2.8)–(2.10).

After the fixing of the auxiliary fields, the resulting kinetic term for fermionic matter
are Dirac (for ρ, σ arbitrary), or chiral (when σ = ±ρ, chiral in the sense that only one
chirality is present). The explicit calculation is shown in section 3.3.

Before defining the dual operator explictly, let us remark that the action (2.5) can be
thought of a Yang-Mills theory for an embedding G+ ↪→ SU(2, 2|N), where the horizontality
condition is satisfied by the S-grading even generators only [18], denoted by G+. To this
end is crucial the existence of a dual operator with the following properties of the supertrace

〈E~O〉 = 0 = 〈O~ E〉 , (2.8)
〈E1 ~ E2〉 = 〈E2 ~ E1〉 , (2.9)
〈O1 ~O2〉 = −〈O2 ~O1〉 , (2.10)

where O represents two forms valued on ~-grading odd generators and E represents two
forms valued on ~-grading even generators, the latter being the S-grading even bosonic
generators plus the supercharges, see table 1.

The reason behind the cancellation of the kinetic term for fa and ga can be attributed
to (2.10), that implies

〈F− ~ F−〉 = 0 , (2.11)

where F− are components of the curvature along the S-grading odd generators,

F− = FaJa + GaKa . (2.12)

An important consequence of (2.8) is the fact that

〈(F− F−) ~ F−〉 = 0 = 〈F− ~ (F− F−)〉 , (2.13)

where (F − F−) contains all the components of the curvature except the S-grading odd
generators. From (2.10), we get

〈F−1 ~ F−2 〉+ 〈F−2 ~ F−1 〉 = 0 . (2.14)

In fact (2.14) can be seen as a consequence of (2.11) when F−1 = F− and F−2 = δF−.
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Using (2.11), (2.13) and (2.14), it is easy to compute the change of the lagrangian (2.5)
under a general variation of the gauge connection,

δ(−〈F~ F〉) = −2d〈δA~ (F− F−)〉 − 2〈δADA ~ (F− F−)〉 . (2.15)

The first term on the r.h.s. of (2.15) is a boundary term, that in fact provides the
appropriate counter terms for defining charges in gravity. The second term provides the
field equations of the model, which provided the fact that the supertrace is nondegenerate
(see appendix A, eqs. (A.33)–(A.36)), can be stated simply as

DA ~ (F− F−) = 0 . (2.16)

From (2.16) we can see that the fields in Ω− are auxiliary fields. The fact that (2.7) is a
consistent choice can be worked out by inspecting the explicit form of (2.16). Integrability
conditions come from applying a covariant derivative to the three-form (2.16), where
DAω

(3) ≡ dω(3) + {A, ω(3)} and D2
Aω

(2) = [F, ω(2)]. Therefore the integrability condition is
given by

[F,~(F− F−)] = 0 . (2.17)

These conditions determine relations between ~-odd curvatures and the fermionic curvatures
that are satisfied on-shell. Relations (2.17) do not impose restrictions on the S-grading even
curvatures. As it is usual in Yang-Mills, gravity and supergravity theories, the integrability
conditions are intimately related to the gauge invariance and therefore, in section 2.1, we
will provide the explicit form of the integrability conditions.

2.1 Symmetries of the model

The grading S implies the splitting in unbroken and broken symmetries. Let us write the
bosonic gauge connection as

Ω = Ω+ + Ω− , (2.18)

where
Ω+ = 1

2ω
abJab + hD +AITI +AZ , Ω− = faJa + gaKa . (2.19)

The gauge symmetries associated to the S-grading even generators are going to be genuine
gauge symmetries, while the transformations associated to the S-grading odd generators
are going to be conditional symmetries [5]. Under a gauge transformation of the gauge
potential, δA = DAG, where

G = G+ +G− + Qε− εQ , (2.20)

the lagrangian changes by

δ(−〈F~F〉) =−2d〈DAG~(F−F−)+GDA~(F−F−)〉+2〈G[F,~(F−F−)]〉 . (2.21)

Thanks to the nondegenerate supertrace, the last term gives the same condition as the
integrability conditions (2.17), which can be seen as a generalization of an identity in
Yang-Mills theories,

[F, ∗F] = 0 , (2.22)
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to a model with certain number of broken symmetries. In a conventional Yang-Mills
theory, the absence of S-grading odd generators means that (2.22) is identically satisfied and
therefore the whole symmetry group is gauged. In the present model the term [F,~(F−F−)]
expands along the S-grading odd generators and the supercharges only and therefore those
symmetries are not gauge symmetries while the G+ are going to be gauge symmetries. Note,
however, that the condition [F,~(F−F−)] coincides with the integrability condition of the
field equations, and therefore G− ⊗ (Qε− εQ) are going to be on-shell symmetries.

When computing (2.17) the following splitting of terms appear

[F,~(F− F−)] = [F+,~F+] + [F−,~F+] + [X,~X]
+ [(F−X),~X] + [X,~F+] , (2.23)

where X are the fermionic components of the curvature and F+ = (F−F− −X) is a linear
combination of curvatures along the S-grading even bosonic generators. Let us comment
on the possible terms that appear in (2.23). Terms of the form

[F+,~F+] ≡ 0 (2.24)

can be checked to vanish identically thanks to the properties of the ~ operator along F+, as
it happens to the usual Yang-Mills term and the gravity term in the MacDowell-Mansouri
action.

Terms of the form
[X,~X] (2.25)

pose some danger to the G+ symmetries in the sense that they may contain S-grading even
generators if the action of the operator ~ acting on fermionic components is not chosen
appropriately. Using the embedding S ∼ γ5 of S in the superconformal algebra and the
fact that

[{Q,Q}, γ5] ∼ B− , (2.26)
where B− represents a linear combination of the S-grading odd generators, we can see that
the definition

~ (QX ) ∼ ±(Qiγ5X ) , (2.27)
prevents the appearance of F+ terms on the r.h.s. of (2.25). Thus the choice (2.27), which
is based on properties i and ii, implies

[X,~X] ∼ B− . (2.28)

From (2.24) and the absence of B+ terms in (2.28), we can see that symmetries generated by
G+ are gauge symmetries. From (2.26) we also see that terms of the form [X,~X] contribute
to the conditions on the G− transformations. Conditions on the G− transformations also
come from [F−,~F+] terms.

Terms of the form
[(F−X),~X] + [X,~F+] , (2.29)

impose conditions along the susy transformations, which are generated by Qε− εQ. In the
next section we will define the operator ~ explicitly and derive the explicit form of the
conditions (2.23).
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2.2 Explicit form of the dual operator

It is in our interest to keep the internal symmetry group, generated by TI and Z, unbroken.
This means that the right choice for the dual operator is the usual Hodge dual when acting
on the FI components of the curvature 2-form, where

~
(
FITI

)
= ∗

(
FITI

)
= ∗FITI . (2.30)

In order to determine the form of the dual operator acting on the spacetime components
of the curvature we need to introduce the S-grading. For the sake of definiteness let us
define in the meantime the S-grading operator by

S = i(γ5)AB , (2.31)

where A,B are indices in the superalgebra representation, see appendix A. It can be
checked that S2 = −(1)AB, when A,B ∈ α, β are projected in the spacetime block of the
superalgebra, and that S defines a grading (2.6) among spacetime generators. Therefore
a dual operator acting as S in the spacetime block will imply properties (2.11)–(2.14)
on the bilinear invariants. Therefore, an appropriate choice for the action of ~ along
1
2F

abJab + FaJa + GaKa is

~
(1

2F
abJab + FaJa + GaKa

)
= S

(1
2F

abJab + FaJa + GaKa

)
= 1

2F
abSJab + FaSJa + GaSKa . (2.32)

The action of the dual operator on the components HD + FZ can be determined by
demanding properties i and ii. From property i we can discard the option ~ ∼ S and
therefore,

~ (HD + FZ) = ∗ (HD + FZ)
= ∗HD + ∗FZ . (2.33)

Finally, the action of the dual operator on the fermionic components QX +XQ can be
defined as either ∼ iγ5 or ∼ ∗ since both operators satisfy properties i and ii,

~
(
QX + XQ

)
= ∗

(
QX + XQ

)
= Q ∗ X + ∗XQ , (2.34)

or

~
(
QX + XQ

)
= iQγ5X + iXγ5Q . (2.35)
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The fact that the action of S and ∗ is the same when actiong on eaebΣab is a crucial property
in order to construct the fermionic kinetic term. One advantage of using the representation
iγ5 of the dual operator is that it makes the separation of unbroken and broken symmetries
manifest by implying properties (2.8) and (2.10), also see next section. Another reason for
choosing (2.35) is of dynamical character, see discussion around (2.37).

There is only one ambiguity left by properties i and ii, which is the sign choice of the
action of ~ along the different components of the curvature. Therefore we will define the
dual operator as

~F = (εsS)
(1

2F
abJab + FaJa + GaKa

)
+ (ε1∗)HD + (ε2∗)FITI + (ε3∗)FZ + Q(−iεψγ5)X + X (−iεψγ5)Q . (2.36)

In (2.36) εs, ε1, ε2, ε3 and εψ take the values +1 or -1. The ambiguity in εs, ε1, ε2 and ε3
can be removed by demanding the correct sign of the kinetic terms of the bosonic fields in
the action, however the fermionic kinetic term do not have definite sign and therefore the
ambiguity in εψ cannot be removed by such requirement. The choice of sign in ε1, ε2 and
ε3 will depend on the details of the superalgebra representation, and in the more subtle
case of εs, the sign choice will also depends on the sector of the gravity theory that is going
to be used as vaccuum, see section 3.2. The choice of sign in εψ though will imply the exact
cancellation or not of Pauli-like couplings with the bosonic curvatures Rab, H, F I and F .
A Pauli-like coupling with the curvature Rab induce a direct coupling of matter with the
Riemann tensor.

Let us discuss now certain dynamical aspects. With (2.31), we can see that the term

〈
(1

2F
abJab + FaJa + GaKa

)
S

(1
2F

abJab + FaJa + GaKa

)
〉 , (2.37)

where 〈 · 〉 stands for a supertrace. The choice (2.31) in (2.37) cancels out the kinetic
terms of fields fa and ga and therefore these fields become auxiliary fields. A posteriory
inspection of field equations shows that the fixing (2.7) is in fact a consistent choice. In the
gravity sector, after fixing the auxiliary fields by (2.7) in (2.37), we recover Einstein-Hilbert,
cosmological constant and Gauss-Bonnet terms.

It is noteworthy that the fermion kinetic term will depend on the action of ~ after
auxiliary fields are fixed by (2.7), and therefore it dependes on the action of ~ on the
subspace of two forms valued on the antisymmetric Clifford algebra γab, so (2.34) and (2.35)
give the same result,

∗ (/e/e) = iγ5/e/e . (2.38)

However, extra terms with respect to the Dirac term and a different structure of nonminimal
couplings could appear. This reason adds weight to the choice (2.35).
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With the definition of ~ we can carry out the explicit calculation of (2.23) us-
ing (2.36)gives

[F,~(F− F−)] = (Ga(ε1∗)H− εs
1
2ε

a
bcdF bFcd + Xγa(−iεψγ5)X )Ja

+ (Fa(ε1∗)H− εs
1
2ε

a
bcdGbFcd −X γ̃a(−iεψγ5)X )Ka

+ [(F−X),~X] + [X,~F+] . (2.39)

The last line is proportional to fermionic terms only (see (2.29)),

[(F−X),~X] + [X,~F+] = Q
(
Frρ(Br) ~ X −~((F+)rρ(B+

r ))X
)

+ C.C. , (2.40)

where C.C. stands for complex conjugated, Br represents all the bosonic generators, Fr the
curvature components along Br and (B+)r the S-grading even generators. The notation
ρ(Br) corresponds to the spin-1/2 representation if the generator Br. The term in parenthesis
in (2.40) is given by,(

Frρ(Br) ~ X −~((F+)rρ(B+
r ))X

)
=
[
((−iεψγ5)− (iεsγ5))

(1
2F

abΣab

)]
X

+
[
((−iεψγ5)− (ε1∗))

(1
2Hγ5

)]
X

+
[
((−iεψγ5)− (ε2∗))

(
− i2F

IλI

)]
X

+ [((−iεψγ5)− (ε3∗)) (−iz(4/N − 1)F)]X

+
(1

2F
aγa + 1

2G
aγ̃a

)
(−iεψγ5)X . (2.41)

No conditions appear along the S-grading even generators thanks to the fact that (2.39)
expands along Ja, Ka, Q and Q only. As mentioned above, the meaning of this is that
G+ are gauge symmetries of the model. However, in (2.39) individual components of
the F+ curvatures do appear multiplying components of F− and X curvatures to form
quadratic combinations. Therefore we can see that G− transformations and supersymmetric
transformations can be symmetries if the bosonic background vacuum is flat

F+ = 0 , when Ψ = 0 . (2.42)

Besides (2.42), there are a few noteworthy facts that stem from (2.39). Firstly, there may
exist bosonic backgrounds such that F− = 0 with or without vanishing F+ that are G−
and susy invariant. Secondly, there may exist backgrounds with vanishing F+ but non
vanishing F− such that the last line of (2.41) vanishes, that condition can be satisfied if
(−iεψγ5)X lives in the kernel of the linear operator

(
1
2F

aγa + 1
2G

aγ̃a
)
. Thirdly, εψ can be

chosen such that one or more lines of the 1st to 4st lines of (2.41) identically vanish, and
therefore opening the possibility of realizing susy on non-flat F+ background curvatures.

It is noteworthy that conditions (2.39) can be obtained also after a lengthy computation
based on the symmetry transformations acting on the fields (given in appendix D) and the
explicit form of the action (2.5). However the usage of the properties of the dual operator
greatly simplifies the computation.
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2.3 Self-dual two-forms

Lastly, the definition of the dual operator provides us with a concrete notion of self dual or
anti-self dual solutions,

~ (F− F−) = ±(F− F−) . (2.43)

Such self-duality condition is motivated on the definition of the operator ~ and the form of
the field equations, see (2.16). We can see that such self dual curvature is a solution of the
field equations. Condition (2.43) along the components of the curvature gives

1
2εsε

ab
cdFcd = ±1

2F
ab , (2.44)

ε1 ∗ H = ±H , (2.45)
ε2 ∗ FI = ±FI , (2.46)
ε3 ∗ F = ±F , (2.47)

(−iεψγ5)X = ±X , (2.48)
X (−iεψγ5) = ±X . (2.49)

Conditions (2.48) and (2.49) can be satisfied for fermions with well defined chiral handedness.
In a purely bosonic background the self dual and anti-self dual conditions reduce to

1
2εsε

ab
cdRcd = ±1

2R
ab , (2.50)

ε1 ∗ (H + faga) = ±(H + faga) , (2.51)
ε2 ∗ F I = ±F I , (2.52)
ε3 ∗ F = ±F . (2.53)

3 Explicit form of the action

Using the properties of the supertrace (2.11)–(2.14) we can expand the lagrangian as

− 〈F~ F〉 = −〈F+ ~ F+〉 − 〈X~X〉 . (3.1)

In this section we will describe the physical content of (3.1).

3.1 Field equations

Field equations can be obtained by direct variation of the Lagrangian (3.17) with respect
to the fundamental fields δωab, δh, δAI , δA, δfa, δga, δ(/eψ) and, δ(ψ/e) or, equivalently, by
using expression (2.16),

0 = D ~ (F− F−) ≡ d~ (F− F−) + [A,~(F− F−)]
= DΩ ~ F+ +DΩ ~X + [Ψ,~F+] + [Ψ,~X] , (3.2)
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where Ψ = Q/eψ + ψ/eQ. Along the generators Jab, D, TI , Z, Ja, Ka and Q, we obtain,

0 = 1
2εsε

ab
cdDωFcd−X (−iεψγ5)

(
−1

2Σab
)
/eψ+ψ/e

(
−1

2Σab
)

(−iεψγ5)X , (3.3)

0 = d(ε1∗H)−X (−iεψγ5)
(1

2γ5

)
/eψ+ψ/e

(1
2γ5

)
(−iεψγ5)X , (3.4)

0 =D(AJTJ )(ε2∗FI)−X (−iεψγ5)(−iλI)/eψ+ψ/e (−iλI)(−iεψγ5)X , (3.5)

0 = d(ε3∗F)−X (−iεψγ5)
(
− i

4z

)
/eψ+ψ/e

(
− i

4z

)
(−iεψγ5)X , (3.6)

0 = ga(ε1∗H)− 1
2εsε

a
bcdf

bFcd−X (−iεψγ5)
(1

2γ
a
)
/eψ+ψ/e

(1
2γ

a
)

(−iεψγ5)X , (3.7)

0 = fa(ε1∗H)− 1
2εsε

a
bcdg

bFcd−X (−iεψγ5)
(
−1

2 γ̃
a
)
/eψ+ψ/e

(
−1

2 γ̃
a
)

(−iεψγ5)X , (3.8)

0 =DΩ(−iεψγ5)X−
(1

2F
ab(iεsγ5)Σab+

1
2γ5(ε1∗H)

− i2λI(ε2∗FI)−iz
( 4
N
−1
)

(ε3∗F)
)
/eψ , (3.9)

respectively. In (3.3) we used SJab = (1/2)εabcdJcd. The field equation along the Q generator
is the complex conjugate of (3.9).

In a purely bosonic background the field equations take the simplified form

0 = DΩ ~ F+ . (3.10)

Along the Jab, D, TI , Z, Ja and Ka generators we obtain,

0 = 1
2εsε

ab
cdDωRcd , (3.11)

0 = d(ε1 ∗ (H + f bgb)) , (3.12)
0 = D(AJTJ )(ε2 ∗ F I) , (3.13)
0 = d(ε3 ∗ F ) , (3.14)

0 = ga(ε1 ∗ (H + f bgb))−
1
2εsε

a
bcdf

bRcd , (3.15)

0 = fa(ε1 ∗ (H + f bgb))−
1
2εsε

a
bcdg

bRcd . (3.16)

The field equations are solved in flat backgrounds and self dual backgrounds when the self
duality condition (2.43) can be satisfied. As an illustration and as a viability test towards
the construction of quasi-realistic models, in the next section we will make contact with
General Relativity.

3.2 Gravity terms and background vacuum

Working with the representation given in appendix A the lagrangian (3.1) can be written as

−〈F~F〉 = 1
4εsεabcdF

abFcd− ε1H∗H−
1
2ε2FI ∗FI −4z2

( 4
N
− 1

)
ε3F ∗F −2iεψXγ5X .

(3.17)
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The bosonic sector of the theory is given by setting ψ = 0 on (3.17),

Lbos = 1
4εsεabcdR

abRcd− ε1(H + faga) ∗ (H + f bgb)−
1
2ε2F

I ∗F I − 4z2
( 4
N
− 1

)
ε3F ∗F .

(3.18)
We can fix ε1 = +1 = ε2, but keeping them helps in tracking down the origin of terms. The
value of ε3, however, depends on N

ε3 =

+1 for N < 4
−1 for N > 4

. (3.19)

Variations of (3.18) with respect to fa and ga give us
δLbos
δfa

= εsεabcdf
bRcd − 2ε1ga ∗ (H + f bgb) , (3.20)

δLbos
δga

= −εsεabcdgbRcd + 2ε1fa ∗ (H + f bgb) , (3.21)

from which we see that fa ∼ ga, H = 0 and Rab = 0 solves the equations. Using (2.7) with
constant ρ and σ (but ρ 6= σ) in Rab we can see that AdS or dS vacua,

Rab ± `−2eaeb = 0 , (3.22)

are recovered, where,

`−2 = |ρ2 − σ2| , ± =

+1 for ρ > σ

−1 for ρ < σ
. (3.23)

The sign εs and the scale of ρ and σ are fixed by comparing with the Einstein-Hilbert
term and the cosmological constant term,

εs
4

∫
εabcdRabRcd = 1

16πGN

∫
d4x|e|(R− 2Λ) . (3.24)

From here we read Newton constant and the cosmological constant
1

16πGN
= εs(ρ2 − σ2) , (3.25)

Λ = −3(ρ2 − σ2) . (3.26)

If we take εs = +1, positivity of Newton constant implies ρ > σ and therefore Λ < 0, that
is AdS vacuum. For εs = −1, the same argument implies ρ < σ and therefore Λ > 0, that
is dS vacuum. The present model provides an example of a model with benign ghosts, since
for a given value of εs = +1 (−1) there is always a ghost free sector of the theory based on
the right choice for the auxiliary fields (see review [20]).

The sector in which ρ and σ are constant is the analogous of the “unitary” gauge of
finite superconformal theories, that permits to recover Einstein gravity [2]. It is interesting
to consider a more general sector in which ρ and σ are scalar fields whose expectation value
breaks spontaneously the conformal symmetry [21, 22]. Such sector contains a term in the
lagrangian |e|ρ2R ⊂ L typical of scalar-tensor theories in the Jordan frame, and this term
induces a kinetic term for the scalar in the Einstein frame. Spontaneous breaking of Weyl
invariance requires the absence of conformal canomalies, the study of which is beyond the
scope of this paper but we consider an interesting study for the future.
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3.3 Matter action

The fermion kinetic term is contained in the last term of (3.1), which comes from −〈X~X〉.
Let us use the covariant derivative for the Ω connection to rewrite this term as follows,

−〈X~X〉 = 2X (−iεψγ5)X

= −2(ψ/e)
←−
DΩ(−iεψγ5)DΩ(/eψ) . (3.27)

As stated in section 2, the operator ~ = (−iεψγ5) satisfy properties i and ii, and the
fields dual to the S-grading odd generators can be identified with a set of orthonormal
frames. Such identificaction, provided in (2.7), is compatible with the structure of the gauge
symmetries G+.

The term (3.27) contains quadratic derivatives of the spinor which is problematic from
the dynamical point of view. However, the fact that ~ defines S-grading even generators
implies that such quadratic derivatives form a boundary term. There remain first order
derivatives of the spinor that provide the conventional kinetic term with minimal coupling
of a spinor when (2.7). In order to appreciate these facts it is convenient to express (3.27)
using DΩ = D+ + Ω−, where D+ = d+ Ω+ and Ω+ is defined in (2.18). After rearranging
terms we obtain

2X (−iεψγ5)X = −2iεψ
[
ψ(←−D+/eγ5Ω−/e − /eΩ−γ5/eD

+)ψ

+ ψ(/Tγ5Ω−/e + /eΩ−γ5 /T )ψ

+ψ/eγ5(D+)2/eψ + ψ/eΩ−γ5Ω−/eψ
]

− 2iεψd[ψ/eγ5D
+/eψ] . (3.28)

The first line produces minimal coupling terms provided (2.7). Second and third lines are
nonminimal coupling terms, which are provided in tensor notation in section 3.4.

In the first line of (3.28) we can use

ψ(←−D+/eγ5Ω−/e − /eΩ−γ5/eD
+)ψ = ψ(←−D/eγ5Ω−/e − /eΩ−γ5/eD)ψ (3.29)

where D = d + W , where W = Ω+ − hD, since the h terms cancel out from such term
thanks to the fact that [γ5,D] = 0. The resulting covariant derivative for the spinor includes
only W terms

W = 1
2ω

abJab +AITI +AZ . (3.30)

The r.h.s. of (3.29) is invariant under dilatation transformations thanks to the fact that Ω−
transforms non trivially under G = τD transformations. Such symmetry though, is broken
in a background vacuum with constant ρ and σ. In a dilatation symmetry broken phase we
can express (3.28) in terms of the covariant derivative for the W connection for simplicity.

Provided the auxiliary fields are given by (2.7), we get

Ω− = /eΠ(α, β) , Π(α, β) = αPR + βPL , (3.31)
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where PR,L = 1
2(1± γ5) are right or left chiral projectors, and

α = ρ+ σ

2 , β = ρ− σ
2 . (3.32)

Using (3.31), the first line in (3.28) is given by

− 2iεψψ(←−D/eγ5Ω−/e − /eΩ−γ5/eD)ψ = εψ
2 |e|d

4xψ
′(
←−
/∇ − /∇)ψ′ (3.33)

where ψ′ = ψ′L + ψ′R is a four component Dirac spinor with canonical physical units, and

ψ′L =
√

24αPLψ , ψ′R =
√

24βPRψ , (3.34)

are four component chiral fermions (one for each i index that is hidden). The Dirac adjoint
spinor is given by ψ′ = ψ

′
R + ψ

′
L, where

ψ
′
L =
√

24αψ′PR , ψ
′
R =

√
24βψ′PL . (3.35)

Our conventions are consistent with ψ′R,L ≡ ψ′R,L. In (3.33) we have the covariant derivatives

(∇µ)αjiβ = δji δ
α
β∂µ + 1

2ω
ab
µ δ

j
i (Σab)αβ −

i

2A
I
µ(λI) j

i δ
α
β − iz

( 4
N
− 1

)
Aµδ

j
i δ
α
β , (3.36)

(←−∇µ)αjiβ =←−∂ µδji δαβ −
1
2ω

ab
µ δ

j
i (Σab)αβ + i

2A
I
µ(λI) j

i δ
α
β + iz

( 4
N
− 1

)
Aµδ

j
i δ
α
β . (3.37)

Before finishing this section let us give the form of certain nonminimal coupling terms
of the spinor contained in (3.17).

LNMC(ψ2) = −2iεψψ(/Tγ5Ω−/e + /eΩ−γ5 /T )ψ
+ i(εψ − εs)ψ(faf b + gagb)γ5Σab/e/eψ + i(εψ + ε1)fagaψ/e/eψ

+ 2iψγ5/e

(1
2(εψ + εs)RabΣab −

i

2(εψ − ε2)F IλI

−iz(εψ − ε3)
( 4
N
− 1

)
F + 1

2(εψ − ε1)Hγ5

)
/eψ . (3.38)

These terms come from the quadratic terms of the form F+
r ~ (ψρ(B+

r )ψ) that are contained
in the F+ curvatures and from the second and third line of (3.28). We kept the parameters
εx that help in tracking down the origin of each term.

In (3.17) we also have quartic fermion terms. Such terms take the form

const× |e|d4x φUIφUI

where φUI = ψγUλIψ, where γU is an element of Clifford algebra. These terms come
from (ψρ(B+

r )ψ) ~ (ψρ(B+
r )ψ) that are contained in 〈F+ ~ F+〉. Collecting all such terms

we obtain,

L(ψ4)/(|e|d4x) = 1
2

(
ε3

( 4
N
− 1

)
− ε1

)
φabφab + 6εs(φ2 + φ2

5) + 2ε2φ
abIφabI . (3.39)
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3.4 Summary of the model

In this section we provide a general procedure to obtain a phenomenological action in the
sector (2.7) with constant ρ and σ. It can be summarized by the following four steps: firstly,
we set conditions (2.7) with constant ρ and σ. Secondly, we pass to the physical gauge
fields by canonically normalizing their kinetic terms. Thirdly, we define the physical spinors
by implementing the scalings (3.34) and (3.34). Finally, we introduce a global rescale of the
action with a phenomenological parameter.

The gauge couplings are defined once the Yang-Mills terms are canonically normalized,

− aF ∗ F = −1
2F
′ ∗ F ′ , (3.40)

implying that the physical gauge potential is A′ =
√

2aA. Assuming that the covariant
derivative acting on the spinor takes the form

D = d− ig0 ρ(Tr)Ar , (3.41)

where g0 are the coupling constants implied by the superconformal algebra, see (3.36), we
can deduce that with respect to the physical gauge potential A′, we have the coupling
constant g = g0/

√
2a. In the present model we obtain

g(SU(N)) = 1 , (3.42)

g(U(1)) = sign(N − 4)
√
ε3
8

( 4
N
− 1

)
, (3.43)

where ε3 is negative for N > 4 and positive for N < 4. The case N = 4 is special because the
superconformal algebra degenerates making the field AZ ⊂ A irrelevant, i.e. A completely
disappears from the action for N = 4.

Relations (3.34) and (3.34) scale each chiral components differently, implying that
spinor bilinears that do not mix chiralities remain invariant and bilinears that mix chiralities
scale according to the following rule

φU ≡ ψγUψ =

ψ
′
γUψ

′ if γU = γa, γ̃a
1

24
√
αβ
ψ
′
γUψ

′ if γU = 1, γ5, γab
(3.44)

Finally, a phenomenological parameter can be introduced by implementing a global
scaling of the action

L → L′ = ξL . (3.45)

Such parameter allows us to set the scale of the cosmological constant or the gauge couplings.
Under such scaling we need to rescale the gauge fields and the spinor, accordingto the rule

A′′ =
√
ξA′ , ψ′′ =

√
ξψ′ , ψ

′′ =
√
ξψ
′
. (3.46)

As a result the gauge couplings and the cosmological constant get rescaled. Nonminimal
couplings of the second line in (3.38) get rescaled and the rest do not get rescaled, see table 2.
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We present the action dropping primes for all fields, assuming that the action is written
in terms of the physical fields. The final action is given by

S =
∫
|e|d4x

[ 1
16πGN

(R− 2Λ)− 1
4H

µνHµν −
1
4F

IµνF Iµν −
1
4F

µνFµν

+1
2ψ(
←−
/D − /D)ψ + TNMC

]
(3.47)

where TNMC stands for nonminimal coupling terms and D is the covariant derivative for
the SO(3, 1)× SU(N)×U(1) gauge connection,

(D)αjiβ = δji δ
α
βd+ 1

2ω
abδji (Σab)αβ −

i

2g
(SU(N))AI(λI) j

i δ
α
β − ig(U(1))Aδji δ

α
β , (3.48)

(←−D)αjiβ =←−d δji δαβ −
1
2ω

abδji (Σab)αβ + i

2g
(SU(N))AI(λI) j

i δ
α
β + ig(U(1))Aδji δ

α
β . (3.49)

The sector with constant ρ and σ has broken dilatation symmetry and therefore is natural
to use such covariant derivatives.

In table 2 we summarize the values of the coupling constants present in the action.
Among the TNMC terms we have fermion quadratic terms that come from (3.38). After

applying the scaling (3.44), and the scalings (3.45) and (3.46), we obtain the following
phenomenological couplings

L(ψ2)/(|e|d4x) = −i
√

2
6MP

ψ FP-L
ab Σabψ

− i(εψ + εs)
√

2ξ
24MP

εab
cdRabcdψψ

− (εψ − εs)
MP

2
√

2
cosh 2λ√

ξ
ψψ , (3.50)

where

FP-L
ab = (εψ − ε2)F IabλI +

√
2(εψ − ε3)

(4/N − 1
ε3

)1/2
Fab − i

(εψ − ε1)
2 Habγ5 , (3.51)

(these are all the final physical fields). Second line in (3.50) gets a ∼
√
ξ scaling in

the numerator thanks to the chiral scaling (3.44) of the scalar term prior to the global
rescaling (3.45) and (3.46). This scaling comes from fact that the spin connection does not
scale in the same way as the other gauge fields that are contained in FP-L

ab . The last term
in (3.50) is an effective mass term for the fermion. Note that many terms in (3.50) may
cancel exactly as a result of a given choice of the ε-parameters. In the last line of (3.50) we
used the parametrization

ρ = 1√
2ξ

cosh λ MP , σ = 1√
2ξ

sinh λ MP , for εs = +1 , (3.52)

or
ρ = 1√

2ξ
sinh λ MP , σ = 1√

2ξ
cosh λ MP , for εs = −1 , (3.53)
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dual operator cases range of validity
ε1 = 1, ε2 = 1
ε3 = +1 or −1 for N < 4 or N > 4 respectively
εs = +1 or −1 then ρ > σ or ρ < σ respectively

coupling constant definition/ value
1

16πGN
= M2

p

2 εs(ρ2 − σ2) = MP
2

2ξ

Λ Λ = −εs
3M2

p

2ξ

g(SU(N)) g(SU(N)) = 1√
ξ

g(U(1)) g(U(1)) = sign(N − 4)
(
ε3
8ξ

(
4
N − 1

))1/2

TNMC, O(5)

meff ∼ MP cosh 2λ√
ξ

, see eqs. (3.55); and (3.52) or (3.53)

Pauli-like couplings ∼ 1
MP

F rabψρ(Tr)Σabψ see eq. (3.50)

torsion coupling ∼
√
ξ

MP
εabcdR

abcd see eq. (3.50)

TNMC, O(6)
gfqt ∼ 1

MP
2 , see eq. (3.55)

Table 2. Upper panel: defining parameters of the dual operator, see eq. (2.36). Middle panel:
gravity and gauge minimal couplings. Lower panel, dimension five operators: non minimal couplings
present in the model. Parameters ξ and λ are phenomenological. The pauli-like gravitational
coupling is proportional to the covariant derivative of the torsion 2-form, it vanish identically for
a Riemannian connection. These terms may cancel exactly or not depending on the choice of εs,
ε1, ε2, ε3 and εψ. The choice of such parameters also influences the susy conditions (2.41). Lower
panel, dimension six operators: fermion quartic terms.

where λ is an arbitrary parameter. Such parametrization produces the term ∼ cosh 2λ/
√
ξ

in the effective mass term of the third line in (3.50) and it allows us to tune the value of
the effective mass to a desired value. A relation emerges between meff and Λ,

m2
eff ∼ |Λ| cosh2 2λ . (3.54)

Therefore meff acquires an extremely small value meff ∼ Λ1/2 unless a high level of tuning
is invoked λ & 1. A further phenomenological constant can be introduced by including an
independent cosmological constant term in the action but we will not pursue this here.
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Fermion quartic terms are also present in TNMC.

L(ψ4)/(|e|d4x) =

(
ε3
(

4
N −1

)
−ε1

)
144M2

P

φabφab+
εs

12M2
P

(φ2+φ2
5)+ ε2

36M2
P

φabIφabI . (3.55)

There terms do not exhibit special cancellation for any particular choice of the ε-parameters,
however they are highly suppressed and do not get contributions from the phenomenological
parameter ξ.

4 Summary

In this paper we have defined a dual operator that allowed us to construct unified theories
of gravity and matter. The appropriate definition of the dual operator allows us to:

1. Prevent the appearance of ghosts in the U(1) sector. Such technical difficulty is
prevalent in models that gauge the full superconformal algebra.

2. Use the tools of differential geometry in the study of the on-shell conditions of the
broken symmetries, see eqs. (2.39) and (2.41). Such analysis greatly simplifies the
study of symmetries using the field transformations given in appendix D. Such dual
operator simplifies the field equations for the study of solutions.

3. Introduce a natural notion of self duality in the context of this models, see eq. (2.43).

In section 3.4 we gave details of the phenomenological parameters of the model in a
sector of theory in which General Relativity is recovered. The promotion of ρ and σ to
fields correspond to a sector of the theory with Weyl invariance (assuming for the moment
the absence of conformal anomaly). Such sector of the theory correspond to a model where
GN is not a fundamental scale, in the same spirit of Kaluza-Klein inspired solutions to the
hierarchy problem where a Pati-Salam SU(4)× SU(2)× SU(2) gauge symmetry is invoked
in the bulk [23, 24]. We will study the phenomenology of the scalar modes ρ and σ; and the
embedding of the Pati-Salam or the SU(5) GUT gauge groups in the present framework in
a future work.

Note added in proof. After the submission of this article, it was brought to our attention
a related work by A.H. Chamseddine and P. West [25].
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A Fundamental representation of SU(2, 2|N)

Let us consider the following representation of SU(2, 2|N)

Ja =

 s
2γa 04×N

0N×4 0N×N

 , or (Ja)AB = s

2(γa)αβδAαδ
β
B = s

2(γa)AB , (A.1)

Jab =

 1
4 [γa, γb] 04×N

0N×4 0N×N

 , or (Jab)AB = 1
4[γa, γb]AB = (Σab)AB , (A.2)

Ka =

 1
2 γ̃a 04×N

0N×4 0N×N

 , or (Ka)AB = 1
2(γ̃a)AB , (A.3)

D =

 1
2γ5 04×N

0N×4 0N×N

 , or (D)AB = 1
2(γ5)AB , (A.4)

TI =

 04×4 04×N

0N×4
i
2λ

t
I

 , or (TI)AB = i

2(λtI)AB , (A.5)

(Qα
i )AB =

 04×4 04×N

δAi δ
α
B 0N×N

 = δAi δ
α
B , (A.6)

(Qi
α)AB =

 04×4 δAα δ
i
B

0n×4 0N×N

 = δAα δ
i
B , (A.7)

ZAB = z

 iδαβ 04×N

0n×4
4
N iδ

i
j

 = z

(
iδAα δ

α
B + 4i

N
δAi δ

i
B

)
, (A.8)

where γ5 = iγ0γ1γ2γ3, (γ5)2 = 1,

γabc = γ[aγbγc] = 1
3!

∑
Π(a,b,c)

sign(Π(a, b, c))γaγbγc = iεabcdγ5γ
d .

and
γ̃a = i

3!εabcdγ
bcd = −γ5γa ,

The γ-matrices are in a 4 × 4 spinor-representation (α, β, · · · run from 1 to 4). The
indexes of the tangent space a, b = 0, 1, 2, 3. Indexes in the adjoint representation of su(N)
take values I, J = 1, 2, . . . , N2− 1, and in the fundamental take the values i, j = 1, 2, . . . , N .
The γ-matrices are endomorphisms and they act on spinors

ψα
γa−→ (γa)αβψβ . (A.9)

These γ-matrices satisfy {γa, γb} = 2ηab, where the metric η is given by η = diag(−,+,+,+).
The spinor indexes will be often omitted.

In a similar way the λ-matrices are also endomorphisms and they act on spinors as

ψαi
λI−→ (λI) j

i ψ
α
j . (A.10)
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The λ-matrices satisfy [λI , λJ ] = f IJKλK , where indexes are raised/lowered with an
Euclidean metric δIJ . Indexes of the representation are A,B = 1, · · · , N + 4, so we have
a N + 4×N + 4 representation. We find convenient to split A = (α, i). All the possible
products that mix spaces like piAqAα are trivial. Thus, the following relations are understood

(γa)AB = δAα (γa)αβδ
β
B , (A.11)

CαA = Cαβδ
β
A , (A.12)

The generators Ja and Jab form a adS4 algebra,

[Ja,Jb] = s2Jab , (A.13)
[Ja,Jbc] = ηabJc − ηacJb , (A.14)

[Jab,Jcd] = −(ηacJbd − ηadJbc − ηbcJad + ηbdJac) . (A.15)

The parameter s2 can take values s2 = +1,−1 for Anti de Sitter or de Sitter algebras
respectively.

Among D and Ka they form the conformal algebra,

[Ka,Kb] = −Jab . (A.16)
[Ja,Kb] = sηabD . (A.17)

[Ka,Jbc] = ηabKc − ηacKb . (A.18)
[D,Ka] = −s−1Ja . (A.19)
[D,Ja] = −sKa . (A.20)

For the internal generators we have the su(N) algebra

[TI ,TJ ] = fIJ
KTK , (A.21)

and they are anti-hermitian T
†
I = −TI (also Z† = −Z).

Inlcuding Qα
i and Q

i
α the commutators close in a su(2, 2|N) superalgebra

[Ja,Q
i
α] = s

2Q
i
β(γa)βα , [Ja,Qα

i ] = −s2(γa)αβQ
β
i , (A.22)

[Jab,Q
i
α] = Q

i
β(Σab)βα , [Jab,Qα

i ] = −(Σab)αβQ
β
i , (A.23)

[Ka,Q
i
α] = 1

2Q
i
β(γ̃a)βα , [Ka,Q

α
i ] = −1

2(γ̃a)αβQ
β
i , (A.24)

[D,Qi
α] = 1

2Q
i
β(γ5)βα , [D,Qα

i ] = −1
2(γ5)αβQ

β
i , (A.25)

[TI ,Q
i
α] = − i2Q

j
α(λI) i

j , [TI ,Qα
i ] = i

2(λI) j
i Q

α
j , (A.26)

[Z,Qi
α] = −iz(4/N − 1)Qi

α , [Z,Qα
i ] = iz(4/N − 1)Qα

i , (A.27)

{Qα
i ,Q

j
β} =

( 1
2s(γa)αβJa −

1
2(Σab)αβJab −

1
2(γ̃a)αβKa + 1

2(γ5)αβD
)
δji

+ δαβ

(
−i(λI) j

i TI −
i

4z δ
j
iZ

)
. (A.28)
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Traces. The graduation operator is given by

GAB = δAα δ
α
B − δAi δiB , (A.29)

it classifies generators in bosonic B = {Ja,Jab,Ka,D,TI ,Z} or fermionic F = {Qαi ,Q
i
α},

by [B,G] = 0 = {F,G}, and it squares to one G2 = 1. With the graduation operator we can
define an invariant supertrace

〈G〉 ≡ Tr(GG) = 0 . (A.30)

The supertrace have the following properties

〈B1B2〉 = 〈B2B1〉 , 〈BF 〉 = 〈FB〉 , 〈F1F2〉 = −〈F2F1〉 . (A.31)

All the generators G in the representation are s-traceless

〈G〉 = 0 , G = {Ja,Jab,Ka,D,TI ,Z, Q
α
i ,Q

i
α} . (A.32)

The quadratic combinations that give nontrivial traces are

〈JaJb〉 = s2ηab , 〈JabJcd〉 = −(ηacηbd − ηbcηad) , (A.33)
〈KaKb〉 = −ηab , 〈D2〉 = +1 , (A.34)

〈TITJ〉 = 1
2δIJ , 〈Z2〉 = 4z2(4/N − 1) , (A.35)

〈Qα
i Q

j
β〉 = −δαβ δ

j
i = −〈Qj

βQ
α
i 〉 , (A.36)

and

S-grading operator. The S operator is fundamental in getting the usual expressions
for the kinetic terms, the nontrivial traces are

〈SD〉 = 2iεs , (A.37)
〈SJabJcd〉 = −εsεabcd = 〈JabSJcd〉 , (A.38)
〈JaSKb〉 = −iεssηab = −〈KaSJb〉 , (A.39)
〈ZSD〉 = −2zεs = 〈DSZ〉 . (A.40)

B SU(2, 2|N) curvatures

Here we give the explicity expresions of the curvatures.
The field strength is defined by

F = 1
2F

abJab + FaJa + GaKa +HD + FITI + FZ + Q
i
αXαi + X iαQα

i , (B.1)

Fab = Rab − ψi/eΣab/eψi (B.2)

Fa = Dfa + 1
s
gah+ 1

2sψ
i
/eγa/eψi , (B.3)

Ga = Dga + sfah− 1
2ψ

i
/eγ̃a/eψi , (B.4)

H = H + sfaga + 1
2ψ

i
/eγ5/eψi , (B.5)
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FI = F I − iψi/e(λI) j
i /eψj , (B.6)

F = F − i

4zψ
i
/e/eψi , (B.7)

Xαi = D(/eψi)α + s

2f
a(γa/eψi)α + 1

2g
a(γ̃a/eψi)α + 1

2h(γ5/eψi)α , (B.8)

X iα = −(ψi/e)α
←−
D + s

2(ψi/eγa)αfa + 1
2(ψi/eγ̃a)αga + 1

2(ψi/eγ5)αh , (B.9)

where

H = dh , (B.10)
Rab = Rab + s2faf b − gagb , (B.11)
Rab = dωab + ωacω

cb , (B.12)

F I = dAI + 1
2f

I
JKA

JAK , (B.13)

F = dA , (B.14)
D(Lorentz)-vectorV

a = dV a + ωabV
b (B.15)

Dspinorψ
α = dψα + 1

2ω
ab(Σabψ)α − i

2A
I(λIψ)αi − iz(4/N − 1)Aψαi . (B.16)

The covariant derivative D is defined for the SO(1, 3)× SU(N)×U(1) connection. The
left-acting exterior derivative satisfies Ωm←−d = (−1)mdΩm for an m-form, in the spinor
representation we get relations (3.48).

C Bianchi identities

Splitting along S-grading even, odd and fermionic parts we obtain

DF = DΩF
+ +DΩF

− + [Ψ,X] +DΩX− [F+ + F−,Ψ] . (C.1)

The component expansion of DF ≡ 0 (along Jab, Ja, Ka, D, TI , Z, and Q respectively)
give us

0 ≡ DωFab + f [aF b] − g[aGb] −X
(
−Σab

)
/eψ + ψ/e

(
−Σab

)
X , (C.2)

0 ≡ DωFa −Fabf b − Gah+Hga −X
(1

2γ
a
)
/eψ + ψ/e

(1
2γ

a
)
X , (C.3)

0 ≡ DωGa −Fabgb −Fah+Hfa −X
(
−1

2 γ̃
a
)
/eψ + ψ/e

(
−1

2 γ̃
a
)
X , (C.4)

0 ≡ dH+ Gafa −Faga −X
(1

2γ5

)
/eψ + ψ/e

(1
2γ5

)
X , (C.5)

0 ≡ D(AJTJ )FI −X (−iλI) /eψ + ψ/e (−iλI)X , (C.6)

0 ≡ dF − X
(
− i

4z

)
/eψ + ψ/e

(
− i

4z

)
X , (C.7)

0 ≡ DΩX − ρ(Fbos)/eψ , (C.8)

plus the complex conjugate of the last expression times Q, where

ρ(Fbos) = 1
2F

abΣab + 1
2F

aγa + 1
2G

aγ̃a + 1
2γ5H−

i

2λIF
I − iz(4/N − 1)F . (C.9)
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In a purely bosonic background vacuum we have

0 ≡ DωRab + f [a(Dωf
b] + gb]h)− g[a(Dωg

b] + f b]h) , (C.10)
0 ≡ Dω(Dωf

a + gah)−Rabf b − (Dωg
a + fah)h+ (H + f bgb)ga , (C.11)

0 ≡ Dω(Dωg
a + fah)−Rabgb − (Dωf

a + gah)h+ (H + f bgb)fa , (C.12)
0 ≡ d(H + faga) + (Dωg

a + fah)fa − (Dωf
a + gah)ga , (C.13)

0 ≡ D(AJTJ )F
I , (C.14)

0 ≡ dF , (C.15)

that greatly simplifies to

0 ≡ DωR
ab , (C.16)

0 ≡ Dω(Dωf
a)−Rabf b , (C.17)

0 ≡ Dω(Dωg
a)−Rabgb , (C.18)

0 ≡ d(H + faga) + (Dωg
a)fa − (Dωf

a)ga , (C.19)
0 ≡ D(AJTJ )F

I , (C.20)
0 ≡ dF . (C.21)

D Symmetry transformations

The symmetry transformations acting of the field components can be computed by using

δA = DAG , (D.1)

where
G = 1

2λ
ab + Jab + ρaJa + σaKa + τD + θITI + θZ + Qε+ εQ . (D.2)

From (D.1) we obtain

δωab = Dωλ
ab + 2f [aρb] − 2g[aσb] −

(
εΣab/eψ + ψ/eΣabε

)
, (D.3)

δfa = Dωρ
a − λabf b + τga − σah+ 1

2
(
εγa/eψ + ψ/eγaε

)
, (D.4)

δga = Dωσ
a − λabgb + τfa − ρah− 1

2
(
εγ̃a/eψ + ψ/eγ̃aε

)
, (D.5)

δh = dτ + faσa − gaρa + 1
2
(
εγ5/eψ + ψ/eγ5ε

)
(D.6)

δAI = D(AJTJ )θ
I − i

(
ελI/eψ + ψ/eλIε

)
, (D.7)

δA = dθ − i

4z
(
ε/eψ + ψ/eε

)
, (D.8)

δ(/eψ) = DΩε− ρ(Gbos)/eψ , (D.9)

δ(ψ/e) = −ε←−DΩ + ψ/eρ(Gbos) , (D.10)

where

ρ(Gbos) = 1
2λ

abΣab + 1
2ρ

aγa + 1
2σ

aγ̃a + 1
2τγ5 −

i

2θ
IλI − iθz(4/N − 1) . (D.11)
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