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1 Introduction and motivation

The idea of this work originates from our calculation of the second-order transport coef-
ficients of compactified Dp-brane [1]. We know that the near-extremal black D3-brane
will be trivially dimensional reduced to AdS5 black hole after integrating out the 5-
dimensional sphere, whose dual relativistic fluid is conformal and has been thoroughly
studied by two holographic methods: the Minkowskian AdS/CFT correspondence [2–6]
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and the fluid/gravity correspondence [7, 8]. In the case of compactified Dp-brane, both the
(8 − p)-dimensional sphere and a number of q directions of Dp-brane will be reduced. In
the case p = 3, the reduction in the directions of the brane equals to reducing the spatial
directions of the AdS5 black hole, leaving us a black hole background of lower dimensions.
We call the black hole backgrounds that are got by dimensionally reduced from a higher di-
mensional AdS black hole the compactified AdS black holes. In this work, we will show that
the compactified AdS black holes, together with the backgrounds of compactified Dp-brane,
are both Chamblin-Reall type backgrounds. And the compactified AdS black hole is non-
conformal, asymptotically flat in any dimensions. The dynamical second-order transport
coefficients of the strongly coupled, non-conformal relativistic fluids dual to compactified
AdS black holes will also be offered by direct calculation.

In the literature, non-conformality is usually achieved in two ways. The first is to
deform the AdS5 black hole by manually adding a background scalar field. References
along this line are [9–15]. According to the analytic form or the way to solve the scalar
potential, these works may be divided into three classes:

• The Gubser model [9–12], in which the scalar potential is a combination of a hyper-
bolic cosine and a 6 order polynomial with only even powers of the scalar field.

• The holographic renormalization group (RG) flow model [13, 14], whose scalar po-
tentials are even-powered 8 or 6 order polynomials.

• The dynamical holographic QCD model [15]. It is different from the former two in
that the scalar field itself is set manually, and the potential needs to be determined
through the equations of motion (EOMs).

The most salient feature for the models of scalar-deformed AdS5 black holes is that either
the potential or the scalar field needs to be set by hand. So those models all contain free
parameters adjusted by hand with the solutions and final results are all numerical.

The second way to enter the non-conformal regime is to use a non-conformal back-
ground from the start. The non-conformal backgrounds can also be divided into three
classes:

• The supergravity background [16–26]. There are three backgrounds in this class.
The salient similarity shared by all of them is that the background metrics are all
asymptotically AdS5 and they can not be solved both exactly and analytically. The
existing analytical solutions for these backgrounds are all perturbative — causing the
results are not formulated in full non-conformal forms. The details will be specified
in a later section. These models can be classified by the independent background
scalar fields they have. The first is the gravity dual of N = 2∗ supersymmetric gauge
theory [16–22], which has two background scalar fields. It is interesting to note that
the author of [21] wraps the 5-dimensional bulk gravity of N = 2∗ theory on a 2-
dimensional compact manifold and finds that the bulk viscosity extracted from the
compactified bulk gravity dual to N = 2∗ theory violates the lower bound of bulk
viscosity proposed in [27]. The second is the background of near-extremal D3-branes
with D7-branes’ back reaction [23, 24]. The 5-dimensional reduced theory of this
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model is of Chamblin-Reall type with 3 independent scalars. The last is the Klebanov-
Tseytlin background, which is the gravity dual of the cascading gauge theory [25, 26].
Its 5-dimensional reduced theory has 4 independent background scalars.

• The 5-dimensional Chamblin-Reall background [10, 11, 14, 28]. Chamblin-Reall back-
ground [29] is a classical gravitational solution that Einstein gravity coupled with a
background scalar field and a dynamical domain wall. It can exist in any dimension
with the potential of the scalar field the Liouville potential, i.e. a function in the form
of the exponential of that scalar field. According to [29], Chamblin-Reall background
can be got by dimensional reduction from a higher dimensional Einstein gravity with
a constant potential. All the studies we mentioned here, i.e. [10, 11, 14, 28] use the 5-
dimensional Chamblin-Reall background which originates from a (p+ 2)-dimensional
Einstein gravity with negative cosmological constant with p − 3 of its spatial direc-
tions compactified on a torus of the same dimensions,1 i.e. AdSp+2 → CR5 × Tp−3.
What’s more, [10, 11] study the first-order transport properties and [14, 28] calculate
the second-order transport coefficients for the boundary fluid of CR5.

• The brane background [1, 30–41]. Therein, [30] is about the NS5-brane and [1, 31–41]
are about the Dp- or compactified Dp-brane backgrounds. We will show that the
reduced metric after integrating out the compact directions on the compactified Dp-
brane is also of Chamblin-Reall type.

The most obvious feature about the supergravity background is that the results are for-
mulated in a form of leading order non-conformal corrections to the conformal limit via
some conformal breaking parameters. Whereas the results of Chamblin-Reall and brane
backgrounds are completely analytic, exact, and in full non-conformal forms. Another im-
portant observation is that there is no free parameter in the results of the Chamblin-Reall
and brane backgrounds.

In this paper, we generalize the studies on 5-dimensional Chamblin-Reall background
by AdSp+2 → CRp−q+2 × Tq with both p, q of general number as long as p ≥ 2 and
1 ≤ q ≤ p − 1. The reason is that we need to leave at least one spatial direction2 for the
boundary fluid. So we can not dimensionally reduce AdS3, one should begin at least with
AdS4. And also, the number of q can not be larger than p− 1, by the same token.

2 The compactified AdS black hole

The full action of the AdSp+2 black hole contains the bulk action, the Gibbons-Hawking
term and the counter term. It can be written as

S = 1
2κ2

p+2

∫
dp+2x

√
−G

[
R+ p(p+ 1)

L2

]
− 1
κ2
p+2

∫
dp+1x

√
−HK

+ 1
κ2
p+2

∫
dp+1x

√
−H p

L
. (2.1)

1Here we change the convention of the dimensions here. What is used in the original studies is D = p+1.
2Here r is not count because it is the holographic direction: the coordinate of r is relate to the energy

scale of the dual field theory, in the spirit of gauge/gravity correspondence.
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Here GM̂N̂ and R are the metric tensors and the Ricci scalar of the AdSp+2 black hole. Its
boundary is defined on a p+ 1 dimensional hyperplane with HM̂N̂ and K are the induced
metric and extrinsic curvature, respectively. Compared with [29], the Gibbons-Hawking
term and the counter term can be seen as the action of a domain wall placed at the
boundary. The difference of this work from [29] is that the domain wall in [29] is placed
inside the bulk and it splits the background into two parts. The action of the domain
wall contains the extrinsic curvature on both sides. But here in (2.1), since the domain
wall is placed near the boundary, we only count the extrinsic curvature on one side — the
outer side. It is natural to only consider the inner side because one should not care about
what happens outside the boundary. But in practice, we are accustomed to normal vectors
pointing to the positive r direction. So here we only count the outside part.

The solution of the bulk action in (2.1) is the metric of AdSp+2 black hole:

ds2 = r2

L2

(
−f(r)dt2 + δijdx

idxj
)

+ L2

r2
dr2

f(r) + r2

L2 δmndy
mdyn, (2.2)

where f(r) = 1 − rp+1
H
rp+1 . The indices i, j run from 1 to p − q and m, n from 1 to q. We

compactified q of the p+ 1 spatial directions as a q dimensional torus Tq. Such that after
integrating Tq, the above line element will become CRp−q+2, i.e. AdSp+2 → CRp−q+2×Tq.
The coordinate system is set as xM̂ = (xM , ym), of which xM is the coordinate of CRp−q+2
and ym of Tq.

In order to reduce the metric of AdSp+2 black hole to a (p−q+2)-dimensional spacetime,
we use the following reduction ansatz:

ds2 = e2α1AgMNdx
MdxN + e2α2Aδmndy

mdyn, (2.3)

and

ds2 = e2α1AhMNdx
MdxN + e2α2Aδmndy

mdyn, (2.4)

to separately reduce the bulk and boundary sectors of the (p+ 2)-dimensional theory. So
the quantities of (p+ 2)-dimensional AdS black hole can be reduced as

√
−G = e[(p−q+2)α1+qα2]A√−g,

√
−H = e[(p−q+1)α1+qα2]A√−h,

nM̂ = (nM ,nm) =
(
eα1AnM , 0

)
, K = e−α1AK. (2.5)

Here nM̂ = ∇M̂ r√
GN̂P̂∇N̂r∇P̂ r

is the unit norm on the (p+ 1)-dimensional boundary pointing
outwards and nM is the unit norm of the reduced theory.

Then (2.1) becomes

S = Vq
2κ2

p+2

∫
dp−q+2x

√
−ge[(p−q)α1+qα2]A

[
R− 2

(
(p− q + 1)α1 + qα2

)
∇2A

−
(
(p− q + 1)(p− q)α2

1 + 2q(p− q)α1α2 + q(q + 1)α2
2

)
(∂A)2 + p(p+ 1)

L2 e2α1A
]

− Vq
κ2
p+2

∫
dp−q+1x e[(p−q)α1+qα2]A√−h e−α1AK

+ Vq
κ2
p+2

∫
dp−q+1x e[(p−q)α1+qα2]A√−h p

L
. (2.6)
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In Einstein frame, the Ricci scalar should not couple with scalar field directly, which requires
that we should set (p− q)α1 + qα2 = 0. Thus one may choose

α1 = − q

p− q
, α2 = 1. (2.7)

Then one can get the reduced action in p− q + 2 dimensions as

S = 1
2κ2

p−q+2

∫
dp−q+2x

√
−g

[
R+ 2q

p− q
∇2A− pq

p− q
(∂A)2 + p(p+ 1)

L2 e
− 2q
p−qA

]
− 1
κ2
p−q+2

∫
dp−q+1x

√
−hK + 1

κ2
p−q+2

∫
dp−q+1x

√
−h p

L
e
− q
p−qA. (2.8)

Here

1
2κ2

p−q+2
= Vq

2κ2
p+2

(2.9)

is the surface gravity in p − q + 2 dimensions. The background scalar A comes from
the reduction process. It represents the radius of the compact part in AdSp+2 black hole
metric (2.2), i.e. Tq. By setting q = 0 in (2.8), one will get the action of AdSp+2 black
hole (2.1) again.

Note ∇2A in (2.8) is a boundary term and can be dropped, because the domain wall
here is at the boundary. But when the domain wall is placed in the middle of the bulk
spacetime like in [29], it can not be ignored and will also have a corresponding term on the
domain wall as

1
κ2
p−q+2

∫
dp−q+1x

√
−h q

p− q
nµ∇µA. (2.10)

The action (2.8) describes a theory of Einstein gravity coupled with a background scalar
and a dynamical domain wall sitting at the boundary. Thus the (p − q + 2)-dimensional
reduced theory (or the compactified AdS black hole) is really the Chamblin-Reall model,
which is denoted as CRp−q+2. The Gibbons-Hawking term and the counter term in (2.8)
can now be separately understood as the extrinsic curvature and the scalar potential of the
dynamical domain wall. The counter term may also be seen as the interaction between the
background scalar and the domain wall.

From (2.8) one can derive the EOMs for gMN and A in the reduced theory as

EMN − TMN = 0, (2.11)

∇2A− p+ 1
L2 e

− 2q
p−qA = 0. (2.12)

Here TMN is the bulk energy-momentum tensor in CRp−q+2, whose explicit form is

TMN = pq

p− q

(
∂MA∂NA−

1
2gMN (∂A)2

)
+ p(p+ 1)

2L2 gMNe
− 2q
p−qA. (2.13)
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By comparing (2.2) with (2.3), one can get the classical background of (p−q+2)-dimensional
compactified AdS black hole, which is also the background of CRp−q+2, as:

ds2 =
(
r

L

) 2p
p−q (

−f(r)dt2 + d #�x 2
)

+
(
L

r

) 2p−4q
p−q dr2

f(r) , (2.14)

eA = r

L
. (2.15)

It can be checked that the above background solutions (2.14) and (2.15) solve (2.11)
and (2.12). Also note that the background of CRp−q+2 has a non-trivial scalar field A,
suggesting the non-conformality. Eq. (2.14) is no longer asymptotically AdS, which can be
seen from the power of the factor r/L in the metric. Note when setting q = 0 in (2.14),
one gets the metric of AdSp−q+2 black hole. It is q that makes the metric (2.14) deviate
from asymptotically AdS.

The metric of compactified AdS black hole (2.14) is valid for all p ≥ 2 and 1 ≤ q ≤ p−1
and it is asymptotically flat for all the valid p and q. This can be checked by calculating
the Ricci and Kretschmann scalars for (2.14):

R =− p

p− q
(p+ 2)(p− q + 1)rp+1 + qrp+1

H

rp+1L2

(
L

r

) 2q
p−q

, (2.16)

RMNPQR
MNPQ = p2

(p− q)3

[
2(p2 + 2p− 2q)(p− q + 1)r2p+2 + 4q(p− 2q)rp+1rp+1

H

+
(
(p− q)2(p3 − p2q − 2pq)− (p− q)(p2 − 2pq − q2) + 2q2

)
r2p+2
H

]
× 1
r2p+2L4

(
L

r

) 4q
p−q

. (2.17)

For the given range of p and q, these two scalars always approach zero as r → ∞, mean-
ing (2.14) is indeed asymptotically flat.

To compactify the AdS black hole and to deform it by adding background scalar field(s)
are two ways to get non-conformal backgrounds from the AdS black hole. Each way has its
own advantages and limitations. For the compactifying way, the background will remain
analytic and will produce exact and analytic results in full non-conformal forms. The
calculation is usually direct at every step. Analytical results are convenient to check the
identities among the second-order transport coefficients but they are often far from the
case in the real world. For the deforming way, one needs to search for numerical solutions
and the results are all in numerical forms. The calculation is not very direct since the
functions that appear in the calculating process are usually unknown. Numerical results
are not convenient for checking the identities but they are usually closer to the real cases,
at least qualitatively, than the analytical results.

Toroidally compactifying the AdS black hole is a simple way to generalize the AdS black
hole both analytically and non-conformally. Compared with the metric of compactified Dp-
brane [1, 39], the AdS black hole metric in planar limit does not have the spherical part.
This makes the process of dimensional reduction for AdS black holes much easier than that
of compactified Dp-brane.
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The toroidal compactification that we use for both the D-brane and AdS black hole is
special in that the reduction ansatzes of these two cases are diagonal. More general way
of compactifying, e.g. adding non-diagonal elements in reduction ansatz will lead to the
appearance of additional background fields in the reduced bulk gravity, whose roles in the
boundary relativistic fluids may not be clear. Since the reduced gravity theory for both the
compactified Dp-brane and AdS black hole is Einstein gravity coupled with one background
scalar. The scalar field brings the theory into a non-conformal regime and the metric tensor
gives the boundary stress-energy tensor in the sense of the Brown-York tensor.

We are of the opinion that the compactified AdS black hole will be very useful in other
subjects of holographic studies.

3 Connections between the non-conformal backgrounds and the
Chamblin-Reall model

In this section, we will uncover the truth that the compactified AdS black hole, the reduced
compactified Dp-brane and all the other non-conformal supergravity backgrounds that are
used in the non-conformal holographic studies of the relativistic hydrodynamics are all
Chamblin-Reall type backgrounds.

3.1 The compactified AdS black hole

The compactified AdS black hole can be understood as a classical Einstein-scalar-domain
wall gravitational system with the domain wall placed as the boundary. The action and
background can be written as

S = 1
2κ2

p−q+2

∫
dp−q+2x

√
−g

[
R− pq

p− q
(∂A)2 + p(p+ 1)

L2 e
− 2q
p−qA

]
− 1
κ2
p−q+2

∫
dp−q+1x

√
−h

(
K − p

L
e
− q
p−qA

)
,

ds2 =
(
r

L

) 2p
p−q (

−f(r)dt2 + d #�x 2
)

+
(
L

r

) 2p−4q
p−q dr2

f(r) , eA = r

L
. (3.1)

The second term in the above action is the domain wall action. Note the exponent in
the coupling term between the domain wall and the scalar is − q

p−qA, which is half of the
exponent in the scalar potential.

Now we rescale the scalar field by
√

pq
p−qA = 1√

2φ, then the compactified AdS black
hole system becomes

S = 1
2κ2

p−q+2

∫
dp−q+2x

√
−g

[
R− 1

2(∂φ)2 + p(p+ 1)
L2 e−γφ

]
− 1
κ2
p−q+2

∫
dp−q+1x

√
−h

(
K − p

L
e−

γ
2 φ
)
,

ds2 =
(
r

L

) 2p
p−q (

−f(r)dt2 + d #�x 2
)

+
(
L

r

) 2p−4q
p−q dr2

f(r) , eφ =
(
r

L

)pγ
. (3.2)
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Here

γ2 = 2q
p(p− q) = 2

p− q

(
1− (p− q)c2

s

)
= 2
p− q

δnonconf., (3.3)

where δnonconf. = 1−(p−q)c2
s is the parameter of non-conformal corrections used in [14, 28]

and γ is the parameter used in [10, 11, 14, 28]. If substituting the sound speed for the
compactified AdS black hole as c2

s = 1
p , one will have δnonconf. = q

p . In the special case that
the bulk spacetime is CR5, i.e. q = p − 3, we have δnonconf. = 1 − 3

p . We can generalize
the second-order transport coefficients for CR5 produced in [14] into general dimensions
by using δnonconf. = q

p instead of δnonconf. = 1− 3
p in a later section.

In the present form, (3.2) is the (p−q+2)-dimensional Chamblin-Reall model reduced
from the AdS black hole, which we may denote as CRp−q+2. When setting q = p− 3 and
p = D− 1, one can reproduce the background of CR5 reduced from the AdSD+1 black hole
that is used in [10, 11, 14, 28].

3.2 The compactified Dp-brane

The (p − q + 2)-dimensional reduced compactified near-extremal Dp-brane action can be
written as [1]

S = 1
2κ2

p−q+2

∫
dp−q+2x

√
−g

[
R− 8(8− p+ q)

p− q
(∂A)2 − (8− p)(8− p+ q)

q
(∂B)2

−1
2(∂φ)2 − V (φ,A,B)

]
− 1
κ2
p−q+2

∫
dp−q+1x

√
−h

(
K − 9− p

2Lp
e
− 8−p+q

p−q A− p−3
4(7−p)φ

)
,

(3.4)

with the scalar potential

V (φ,A,B) = (7− p)2

2L2
p

e
p−3

2 φ− 2(p−q)(7−p)+16
p−q A−2(8−p)B − (7− p)(8− p)

L2
p

e
− 16
p−qA−2B

. (3.5)

The background solution of (3.4) is

ds2 =
(
r

Lp

) 9−p
p−q (

−f(r)dt2 + d #�x 2
)

+
(
r

Lp

) (p2−8p+9)+q(7−p)
p−q dr2

f(r) , (3.6)

eφ =
(
r

Lp

) (p−3)(7−p)
4

, eA =
(
r

Lp

) (p−3)2
16 + q(5−p)

2(8−p+q)

, eB =
(
r

Lp

)− q(5−p)
2(8−p+q)

. (3.7)

The three background scalars are not independent of each other by

A =
[
p− 3

4(7− p) + 2q(5− p)
(8− p+ q)(p− 3)(7− p)

]
φ,

B = −2q(5− p)
(8− p+ q)(p− 3)(7− p)φ. (3.8)

– 8 –
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After substituting the above into the action and background of compactified Dp-brane,
one has

S = 1
2κ2

p−q+2

∫
dp−q+2x

√
−g
[
R− 4(9− p)((p− 3)2 + q(5− p))

(p− q)(p− 3)2(7− p)2 (∂φ)2

+ (7− p)(9− p)
2L2

p

e
− 4(p−3)2+4q(5−p)

(p−q)(p−3)(7−p) φ
]

− 1
κ2
p−q+2

∫
dp−q+1x

√
−h

(
K − 9− p

2Lp
e
− 2(p−3)2+2q(5−p)

(p−q)(p−3)(7−p) φ

)
. (3.9)

In order to connect to the Chamblin-Reall model, one still needs to rescale the scalar as√
4(9− p)((p− 3)2 + q(5− p))

(p− q)(p− 3)2(7− p)2 φ = 1√
2
ϕ. (3.10)

Thus the action finally becomes the Chamblin-Reall type

S = 1
2κ2

p−q+2

∫
dp−q+2x

√
−g
[
R− 1

2(∂ϕ)2 + (7− p)(9− p)
2L2

p

e−γϕ
]

− 1
κ2
p−q+2

∫
dp−q+1x

√
−h

(
K − 9− p

2Lp
e−

γ
2ϕ

)
. (3.11)

The background now only contains one scalar field

ds2 =
(
r

Lp

) 9−p
p−q (

−f(r)dt2 + d #�x 2
)

+
(
r

Lp

) (p2−8p+9)+q(7−p)
p−q dr2

f(r) , (3.12)

eϕ =
(
r

Lp

) 9−p
2 γ

. (3.13)

Here the parameter γ is derived as

γ2 = 2(p− 3)2 + 2q(5− p)
(p− q)(9− p) . (3.14)

It is interesting to note that γ2 is the numerical part of the bulk viscosity ζ of the com-
pactified Dp-brane, as can be checked by referring to [1]. This will also be true for the
compactified AdS black hole, as one can check by using the results of first-order transport
coefficients offered in the next section.

By the present form, the action and background solution shown in (3.11) and (3.12) is
another (p− q + 2)-dimensional Chamblin-Reall model with different origins.

3.3 The other non-conformal backgrounds

In this subsection, we will show that the backgrounds that are used in the early non-
conformal studies of strongly coupled relativistic fluids are all Chamblin-Reall type back-
grounds, but with more than one independent background scalar field.
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3.3.1 The N = 2∗ model

The 5-dimensional reduced action that is dual to N = 2∗ supersymmetric gauge theory
can be written as [16–22]

S = 1
2κ2

5

∫
d5x
√
−g
(
R− 12(∂φ)2 − 4(∂χ)2 − V (φ, χ)

)
− 1
κ2

5

∫
d5x
√
−h
(
K − P (R4[h], φ, χ)

)
. (3.15)

Here R4[h] is the Ricci scalar on the domain wall and φ, χ are the two background scalars.
P (R[h], φ, χ) is a polynomial of R4[h], φ and χ whose explicit form can be found in [17].
The potential of the background scalars is [22]

V (φ, χ) = 1
L2

(
e8φ sinh2 2χ− 8e2φ cosh 2χ− 4e−4φ

)
. (3.16)

By the definition of the hyperbolic function, one can see that this potential is also a
Liouville potential. The only difference between the cases of compactified AdS black hole
and the compactified Dp-brane is that now the scalar potential contains two independent
scalars and more than one exponential term. The conformal limit is achieved by setting
both of the two scalars to 0, leaving us V = − 12

L2 , which is the potential of the AdS5
black hole. So the gravitational background that solves the EOMs of (3.15) should be
asymptotically AdS5, which may be written like

ds2 = e2A(z)L
2

z2

(
−f(z)dt2 + d #�x 2 + dz2

f(z)

)
. (3.17)

Here f(z) is the blackening factor and A(z) measures the extent of deviation from the AdS5
black hole. One needs to solve 4 unknown functions: A(z), f(z), φ(z), and χ(z) in this
background. Generally, there is no exact and analytic solution for this model, most of the
works done analytically are also perturbatively as in [16–21].

By the statement above, one can see that the 5-dimensional reduced bulk theory be-
longs to the Chamblin-Reall model.

Before we move to the next two non-conformal supergravity models, we would like
to mention another background with also two background scalar fields. The interesting
point is that it is not non-conformal, but conformal. This model is the near D3-brane
with D-instanton smeared on its world-volume, sometimes it is called the D(-1)-D3 or D-
instanton-D3 model. It is originally 10-dimensional, but after reducing it to 5 dimensions,
one has the action with the classical solution as

S = 1
2κ2

5

∫
d5x
√
−g

[
R− 1

2(∂φ)2 + 1
2e

2φ(∂χ)2 + 12
L2

3

]
− 1
κ2

5

∫
d4x
√
−h

(
K − 3

L3

)
(3.18)

and

ds2 = r2

L2
3

(
−f(r)dt2 + d #�x 2

)
+ L2

3
r2

dr2

f(r) , eφ = H−1, χ = 1− e−φ. (3.19)
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From the fact that the scalar potential in the bulk action is V = − 12
L2

3
, the same as the

AdS5 black hole. We can see the background should be conformal, though it has two
dependent non-trivial background scalars φ and χ. The counter term in the above is also
a constant: suggesting the conformality of the background, too. The action (3.18) is not
Chamblin-Reall type for the scalar potential is constant, not Liouville potential.

But why does the non-trivial dilaton and axion do not bring the background into a non-
conformal regime? The reason lies in the form of χ, by χ = 1− e−φ, one has ∂χ = e−φ∂φ,
which leads to (∂φ)2 = e2φ(∂χ)2. So in the on-shell action of D(-1)-D3 model, the profile
of the axion exactly cancels the dilaton’s, making the on-shell action becomes

S = 1
2κ2

5

∫
d5x
√
−g

[
R+ 12

L2
3

]
− 1
κ2

5

∫
d4x
√
−h

(
K − 3

L3

)
, (3.20)

which is exactly the same as the AdS5 black hole. Thus the background is conformal.
The physical account for the fact that the addition of smeared D(-1)-branes does not

make the background non-conformal may be drawn like this. The D(-1)-brane, which
carries a global “electric” charge in string theory [42], is the instanton solution in string
theory. Its magnetic dual is the D7-brane, which is the cosmic string solution in string
theory [43]. Both the instanton and cosmic strings are topological objects. But non-
conformality is a local effect, it should not be affected by the presence of topological
objects.

3.3.2 The D3-D7 model

The D3-D7 model is originally 10-dimensional, it is type IIB supergravity sourced by N3
D3-branes with the correction of N7 D7-branes’ back reaction. After reducing on the
compact manifold T1 × CP2 [23, 24], one gets a 5-dimensional Einstein gravity coupled
with 3 background scalars. The action is

S = 1
2κ2

5

∫
d5x
√
−g

(
R− 1

2(∂φ)2 − 40
3 (∂A)2 − 20(∂B)2 − V (φ,A,B)

)
− 1
κ2

5

∫
d4x
√
−h
[
K −

(
Q3e

20
3 A +Q7e

φ+ 8
3A−4B − 4e

8
3A+6B − 6e

8
3A−4B

− 1
2CR4[h]

)]
. (3.21)

Here C ≈ 1 + 23
108ε∗ −

371
23328ε

2
∗ + O

(
1
r4

)
. ε∗ is an expansion parameter at some specially

chosen UV cutoff of the model, the details can be found in [24]. The Liouville potential in
the above action has the form

V (φ,A,B) = 1
L2

(
Q2

7
2 e2φ+ 16

3 A−8B + 4Q7e
φ+ 16

3 A+2B + 8e
40
3 A + 4e

16
3 A+12B −24e

16
3 A+2B

)
.

(3.22)

Here Q7 = gs
2πN7. By the form of (3.21) and (3.22), the 5-dimensional reduced theory

of D3-D7 model is Chamblin-Reall type with three background scalars. The background
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metric and scalars are solved in terms of series of εh to the second order:

ds2 = e−
10
3 A

r2

L2 (−f(r)dt2 + d #�x 2) + e−
40
3 A

L2dr2

r2f(r) , f(r) = 1− r4
H

r4 , (3.23)

φ = −εh ln rH
r
− ε2h

[
1
6 ln rH

r
− 1

2

(
ln rH

r

)2
− 1

16 Li2
(

1− r4
H

r4

)]
, (3.24)

A = − 1
40εh −

1
120

(
1− 3 ln rH

r

)
ε2h, (3.25)

B = − 1
60εh + 1

720

(
1 + 12 ln rH

r

)
ε2h. (3.26)

The εh here is the same expansion parameter of the model but now taken the value at the
horizon [24]. From the above, we can see that the 3 background scalars in the 5-dimensional
reduced form of the D3-D7 model are independent of each other.

The numerical value of the kinetic terms of the scalars in (3.21) are completely the
same as that of D(4-1)-brane [39]. The compact manifold of D(4-1)-brane is T1 × S4,
which is different from that of the D3-D7 model. But the numbers of dimensions of the
compact submanifolds of these two models are the same. Thus one may draw a conclusion
that the kinetic terms of the scalars from dimensional reduction are determined only by
the dimensions of the compact submanifold, not by the details of the geometry. For the
D(4-1)-brane and the D3-D7 model, the dimensions of the compact submanifolds are both
(1 + 4), although the geometries are different: one is S4, the other is CP2.

3.3.3 The Klebanov-Tseytlin background

The last model is the Klebanov-Tseytlin background. It is the gravity dual of the cascading
gauge theory whose 5-dimensional reduced bulk action is

S = 1
2κ2

5

∫
d5x
√
−g
(
R− 1

2(∂φ)2 − 1
2e
−φ+4A+4B(∂χ)2 − 40

3 (∂A)2 − 20(∂B)2

− V (φ, χ,A,B)
)
, (3.27)

where the scalar potential reads

V (φ, χ,A,B) = 1
L2

[
Q2
(
eφ+ 28

3 A−4B + e
40
3 A+2χ

)
+ 4
√

2Qe
40
3 A+χ + 8e

40
3 A

+ 4e
16
3 A+12B − 24e

16
3 A+2B

]
. (3.28)

This model has four background scalar fields. The Gibbons-Hawking term and counter
term of this model are extremely complicated for us to record here. The readers who
are interested can find it in [44]. When Q = 0, all the scalars are 0, leaving the potential
V = − 12

L2 , which is still the same as that of the AdS5 black hole. Complicate as (3.27) is, the
5-dimensional reduced theory of Klebanov-Tseytlin background is still a Chamblin-Reall
type model, with the number of independent background scalars reaches four.

– 12 –
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4 The first order results

Now we are back on the discussions about compactified AdS black hole and will calculate
its transport coefficients. This section will deal with the first order. The global on-shell
metric written in Eddington-Finkelstein coordinate in boosted form is

ds2 =− r
2p
p−q [f(rH(x), r) + k(rH(x), uα(x), r)]uµ(x)uν(x)dxµdxν

− 2r
2p
p−qP ρµ(uα(x))wρ(uα(x), r)uν(x)dxµdxν

+ r
2p
p−q [Pµν(uα(x)) + αµν(rH(x), uα(x), r) + h(rH(x), uα(x), r)Pµν(uσ(x))]dxµdxν

− 2r
2q
p−q [1− j(rH(x), uα(x), r)]uµ(x)dxµdr. (4.1)

Here the perturbation ansatz k, j, and wρ have an extra minus sign compared with [1, 41].
In the above,

uµ = (1, #�

β )√
1− #�

β 2
, Pµν = ηµν + uµuν . (4.2)

Then put the first order expanded on-shell metric

ds2 = r
2p
p−q

[
−
(
f(r)− (p+ 1)rpH

rp+1 δrH + k(1)(r)
)
dv2

+ 2
(
(f − 1)δβi + w

(1)
i (r)

)
dvdxi + (δij + α

(1)
ij (r) + h(1)(r)δij)dxidxj

]
+ 2r

2q
p−q (1− j(1)(r))dvdr − 2r

2q
p−q δβidx

idr (4.3)

into the traceless tensor components of Einstein equation

Eij −
1

p− q
δijδ

klEkl −
(
Tij −

1
p− q

δijδ
klTkl

)
= 0, (4.4)

we will have

∂r(rp+2f(r)∂rα(1)
ij (r)) + 2pr

p−1
2 σij = 0. (4.5)

The above equation of the tensor perturbation does not contain q, which should not be a
surprise as it has been pointed out in [1] that dimensional reduction does not affect the
tensor and vector part of the perturbations. Thus the solutions for (4.5) are the same as
the AdSp+2 black hole, which can be found in [45]. By the SO(p − q) invariance, one can
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set α(1)
ij (r) = F (r)σij , then the first order tensor perturbation can be solved as

F (r) = 1
3rH

(
2
√

3 arctan
√

3rH
2r + rH

+ 3 ln r
2 + rrH + r2

H

r2

)
, (p=2)

F (r) = 1
2rH

[
2 arctan rH

r
+ ln (r + rH)2(r2 + r2

H)
r4

]
, (p=3)

F (r) = 1
5rH

[
4 sin 2π

5 arctan
rH sin 2π

5
r − rH cos 2π

5
+ 4 sin π5 arctan

rH sin π
5

r + rH cos π5

+
√

5 artanh
√

5rrH
2r2 + rrH + 2r2

H

+ 5
2 ln r

4 + r3rH + r2r2
H + rr3

H + r4
H

r4

]
, (p=4)

F (r) = 1
6rH

[
2
√

3 arctan
√

3rrH
r2 − r2

H

+ ln (r + r2
H)4(r2 + rrH + r2

H)2(r4 + r2r2
H + r4

H)
r12

]
. (p=5) (4.6)

Here we check the cases for 2 ≤ p ≤ 5. The background for the case of p = 1 is the AdS3
black hole which can not be compactified and has been discussed in [45]. For p ≥ 6, the
differential equation (4.5) can still be solved, but we omit the explicit solutions here — the
cases of 2 ≤ p ≤ 5 are enough for us to get the general form of the results.

Then one can use the (ri)-component of Einstein equation Eri − Tri = 0, to solve the
vector perturbation as

w
(1)
i (r) = 1

r
∂0βi, (4.7)

and use the linear combination of (0i)- and (ri)-components gr0(E0i−T0i)+grr(Eri−Tri) =
0 to get the first order vector constraint

1
rH
∂irH = −∂0βi. (4.8)

For the scalar part, the first scalar constraint is

1
rH
∂0rH = −1

p
∂β, (4.9)

which is got through substituting the first order expanded metric (4.3) into gr0(E00−T00)+
grr(Er0− Tr0) = 0. To solve the scalar perturbations, we use the combination of (rr)- and
(r0)-components grr(Err − Trr) + gr0(Er0 − Tr0) = 0, the (rr)-component Err − Trr = 0
and the EOM of the background scalar A (2.12) and get the differential equations for the
first order scalar perturbations as

(rp+1k(1))′ + 2(p+1)rpj(1) +
[
(p− q)rp+1 − (p− q)(p−1)

2p rp+1
H

]
h′(1) + 2rp−1∂β = 0, (4.10)

(p− q)rh′′(1) + 2(p− q)h′(1) + 2pj′(1) = 0, (4.11)

(rp+1k(1))′ + rp+1fj′(1) + 2(p+ 1)rpj(1) + p− q
2 rp+1fh′(1) + rp−1∂β = 0. (4.12)
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The solutions are

Fh = 1
p− q

F, Fj = 1
p

rp − rpH
rp+1 − rp+1

H

− 1
2pF,

Fk = − 2
pr

+ 1
p

(
1 + (p− 1)rp+1

H

2rp+1

)
F. (4.13)

Here we have ψ = Fψ∂β (ψ = {h(1), j(1), k(1)}).
The boundary stress-energy tensor can be got by calculating the following Brown-York

tensor in large r limit:

Tµν = 1
κ2
p−q+2

lim
r→∞

(
r

L

) p(p−q−1)
p−q

(
Kµν − hµνK −

p

L

(
r

L

)− q
p−q

hµν

)
. (4.14)

Using the first order on-shell metric, we get the first order stress-energy tensor for the
relativistic fluids that are dual to compactified AdS black holes

Tµν = 1
2κ2

p−q+2

[
rp+1
H

Lp+2 (p uµuν + Pµν)−
(
rH
L

)p (
2σµν + 2q

p(p− q)Pµν∂u
)]

, (4.15)

from which we find

ε = 1
2κ2

p−q+2
p
rp+1
H

Lp+2 , p = 1
2κ2

p−q+2

rp+1
H

Lp+2 ,

η = 1
2κ2

p−q+2

(
rH
L

)p
, ζ = 1

2κ2
p−q+2

2q
p(p− q)

(
rH
L

)p
. (4.16)

From the result of ζ, one can see that the numerical part of it is indeed the same as the γ2

in (3.3). Since the Hawking temperature of (2.14) is

T = (p+ 1)rH
4πL2 . (4.17)

One can get the entropy density and the ratios involved with it as

s = 1
2κ2

p−q+2
4π
(
rH
L

)p
,

η

s
= 1

4π ,
ζ

s
= 1

2π
q

p(p− q) . (4.18)

One can also get the sound speed by

c2
s =

(
∂p

∂ε

)
s

= 1
p
, (4.19)

which is the same as the AdS black hole. We would also like to add some comments on the
first-order results. First, one has

ζ

η
= 2q
p(p− q) = 2

( 1
p− q

− c2
s

)
, (4.20)

which means that the relativistic fluids that are dual to compactified AdS black holes sat-
urate the Buchel bound of bulk viscosity [27]. This is also true for the case of compactified
Dp-brane [1]. Second, the bulk viscosity offered here reproduces the result of CR5 in [11]
by setting q = p − 3. Third, the bulk viscosity we get also coincides the result in [36] by
setting 2σ = p+ 1 and d = p− q + 1.
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5 The second-order results

5.1 Preliminaries and expansion of the on-shell metric

We will be very brief in formulating the solving procedure for the second order since it is
similar to the D(p-q)-brane [1]. First, to solve the second-order, one needs the expressions
of the second-order constraints derived through ∂µ∂ρT (0)

ρν = 0:

1
rH
∂2

0rH + 1
p
∂0∂β −

p− 1
p

∂0βi∂0βi −
1
p2 (∂β)2 = 0, (5.1)

1
rH
∂2
i rH + ∂0∂β − ∂0βi∂0βi −

1
p

(∂β)2 + ∂iβj∂jβi = 0, (5.2)

1
rH
∂0∂irH + ∂2

0βi −
2
p
∂0βi∂β + ∂0βj∂jβi = 0, (5.3)

1
rH
∂0∂irH + 1

p
∂i∂β −

1
p
∂0βi∂β −

p− 1
p

∂0βj∂iβj = 0, (5.4)

∂0Ωij −
1
p

Ωij∂β − ∂kβ[i∂j]βk = 0, (5.5)

1
rH
∂i∂jrH + ∂0∂(iβj) − ∂0βi∂0βj −

1
p
∂(iβj)∂β + ∂kβ(i∂j)βk = 0 (5.6)

with T (0)
µν the hydrostatic part of the constitutive relation. All the viscous terms above are

defined in table 1. We may also re-express all the constraint relations of (5.1) to (5.5) as

s1 + 1
p

s2 −
p− 1
p

S1 −
1
p2S3 = 0, (5.7)

s2 + s3 −S1 + q

p(p− q)S3 −S4 + S5 = 0, (5.8)

v1 + v2 −
p− 2q
p(p− q)V1 −V2 + V3 = 0, (5.9)

v1 + p− q
p(p− q − 1)(v4 + v5)− 2p− q − 1

p(p− q) V1 −
p− 1
p

(V2 + V3) = 0, (5.10)

t2 − 2T2 + p+ q

p(p− q)T3 = 0, (5.11)

t1 + t3 − T1 + p+ q

p(p− q)T4 − T5 + T6 = 0. (5.12)

From the conservation equation ∂µT
(0+1)
µν = 0, one will get the Navier-Stokes equa-

tions as

∂0r
(1)
H = 2q

p2(p+ 1)(p− q)S3 + 2
p(p+ 1)S5, (5.13)

∂ir
(1)
H = 2q v4 + 2(p− q)(p− 1)v5

p(p+ 1)(p− q − 1) + (p− 1)(p− 2q + 2)− pq
p(p− q)(p+ 1) V1

− p+ 2
p(p+ 1)V2 −

2p2 − 3p+ 2
p(p+ 1) V3. (5.14)
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Scalars of SO(p− q) Vectors of SO(p− q) Tensors of SO(p− q)
s1 = 1

rH
∂2

0rH v1i = 1
rH
∂0∂irH t1ij = 1

rH
∂i∂jrH − 1

p−q δijs3

s2 = ∂0∂iβi v2i = ∂2
0βi t2ij = ∂0Ωij

s3 = 1
rH
∂2
i rH v3i = ∂2

j βi t3ij = ∂0σij

S1 = ∂0βi∂0βi v4i = ∂jΩij T1ij = ∂0βi∂0βj − 1
p−q δijS1

S3 = (∂iβi)2 v5i = ∂jσij T2ij = σ k
[i Ωj]k

S4 = ΩijΩij V1i = ∂0βi∂β T3ij = Ωij∂β

S5 = σijσij V2i = ∂0βjΩij T4ij = σij∂β

V3i = ∂0βjσij T5ij = Ω k
i Ωjk − 1

p−q δijS4

T6ij = σ k
i σjk − 1

p−q δijS5

T7ij = σ k
(i Ωj)k

Table 1. All the SO(p− q) invariant second-order viscous terms for the relativistic fluid which is
dual to compactified AdS black hole. Here p ≥ 2 and 1 ≤ q ≤ p− 1.

Then we expand the global on-shell metric (4.1) to second-order and get

ds2 =− r
2p
p−q

[
f − (1− f)δβiδβi −

(p+ 1)rpH
rp+1 (δrH + 1

2δ
2rH + δr

(1)
H )− p(p+ 1)rp−1

H

2rp+1 (δrH)2

+ (Fk + δFk)∂β + Fk(δ∂β + δβi∂0βi) + 2
r
δβi∂0βi + k(2)(r)

]
dv2

+ 2r
2p
p−q

[
(f − 1)(δβi + 1

2δ
2βi) + 1

r
(∂0βi + δ∂0βi + δβj∂jβi)−

(p+ 1)rpH
rp+1 δrHδβi

+ Fk∂βδβi − Fδβj∂(iβj) + w
(2)
i (r)

]
dvdxi + 2r

2q
p−q

[
1− (Fj + δFj)∂β

− Fj(δ∂β + δβi∂0βi) + 1
2δβiδβi − j

(2)(r)
]
dvdr + r

2p
p−q

[
δij + (1− f)δβiδβj

− 2
r
δβ(i∂|0|βj) + (F + δF )∂(iβj) + F

(
δ∂(iβj) + δβ(i∂|0|βj)

)
+ α

(2)
ij (r)

+ h(2)(r)δij
]
dxidxj − 2r

2q
p−q

(
δβi + 1

2δ
2βi − Fj∂βδβi

)
dxidr. (5.15)

Here we define

δF(rH(x), r) = −F(r) + rF ′(r)
rH

δrH . (5.16)

Then put the second-order expanded on-shell metric into the Einstein equation and the
dilaton’s EOM one can get the differential equations for all the second-order perturbations.
They can be solved by the same token as in [1, 39, 41]. The details will be omitted in
this paper.
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5.2 The dynamical second-order transport coefficients

From the second-order on-shell metric, we get the stress-energy tensor of the relativistic flu-
ids that are dual to (p−q+2)-dimensional compactified AdS black hole, or the background
of CRp−q+2:

Tµν = 1
2κ2

p−q+2

{
rp+1
H

Lp+2 (p uµuν + Pµν)−
(
rH
L

)p (
2σµν + 2q

p(p− q)Pµν∂u
)

+ rp−1
H

Lp−2

[(1
2 + 1

p+ 1H 2
p+1

)
· 2
(
〈Dσµν〉 + 1

p− q
σµν∂u

)

+
(3q

2p −
q

p(p+ 1)H 2
p+1

)2σµν∂u
p− q

+ 1
2 · 4σ

ρ
〈µ σν〉ρ +

(
− 1+ 2

p+ 1H 2
p+1

)
· 2σ ρ

〈µ Ων〉ρ

]

+ Pµν
rp−1
H

Lp−2

[(
q

p(p− q) + 2q
p(p+ 1)(p− q)H 2

p+1

)
D(∂u)

+
(
q(3q − p)
p2(p− q)2 + 2q

p2(p+ 1)(p− q)H 2
p+1

)
(∂u)2 + q

2p(p− q) · 4σ
2
αβ

]}
. (5.17)

Then we can read all the second-order transport coefficients as

ητπ = 1
2κ2

p−q+2

(1
2 + 1

p+ 1H 2
p+1

)
rp−1
H

Lp−2 ,

ητ∗π = 1
2κ2

p−q+2

[3q
2p −

q

p(p+ 1)H 2
p+1

]
rp−1
H

Lp−2 ,

λ1 = 1
2κ2

p−q+2

1
2
rp−1
H

Lp−2 , λ2 = 1
2κ2

p−q+2

(
−1 + 2

p+ 1H 2
p+1

)
rp−1
H

Lp−2 ,

ζτΠ = 1
2κ2

p−q+2

[
q

p(p− q) + 2q
p(p+ 1)(p− q)H 2

p+1

]
rp−1
H

Lp−2 ,

ξ1 = 1
2κ2

p−q+2

q

2p(p− q)
rp−1
H

Lp−2 ,

ξ2 = 1
2κ2

p−q+2

[
q(3q − p)
p2(p− q)2 + 2q

p2(p+ 1)(p− q)H 2
p+1

]
rp−1
H

Lp−2 . (5.18)

Here H 2
p+1

is the harmonic number and it is defined as

Ha
b

= b

a
+ 2

[ b−1
2 ]∑

n=1
cos

(2πna
b

)
ln sin

(
nπ

b

)
− π

2 cot
(
πa

b

)
− ln(2b), (5.19)
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with a and b are both integers.
[
b−1

2

]
means taking the integer part of b−1

2 . For the lowest
values of p, the above gives

H 2
3

= 3
2 + π

2
√

3
− 3

2 ln 3, (p = 2) (5.20)

H 1
2

= 2− 2 ln 2, (p = 3) (5.21)

H 2
5

= 5
2 −

π

2

√
1− 2√

5
+
√

5
2 arcoth

√
5− 5

4 ln 5, (p = 4) (5.22)

H 1
3

= 3− π

2
√

3
− 3

2 ln 3. (p = 5) (5.23)

The second-order transport coefficients as offered in (5.18) can reproduce the dynamical
ones in [14] by setting q = p− 3.3

From (5.18), we can find that of the 7 dynamical second-order transport coefficients,
only ητ∗π , ζτΠ, ξ1, and ξ2 depend on q, which is the same as D(p-q)-brane [1]. As we have
explained in [1], these q-depending coefficients are also non-conformal. They all relate to
the viscous term ∂u, which is the trace part of shear viscous tensor σµν , and compactifying
spatial dimensions will diminish the components that are summed in taking trace. That’s
why only ητ∗π , ζτΠ, ξ1,2 depend on the q, i.e. the number of directions that are compactified.

The identities among the dynamical coefficients that hold true for D(p-q)-
brane [1, 39, 41] are still valid for compactified AdS black holes. We list these identities
here for later convenience:

Haack-Yarom relation: 4λ1 + λ2 = 2ητπ, (5.24)
Romatschke relation 1: τπ = τΠ, (5.25)

Romatschke relation 2: ξ1 = 1
p− q

[1− (p− q)c2
s]λ1, (5.26)

Kleinert-Probst relations: ητ∗π =
(
1− (p− q)c2

s

)
(4λ1 − ητπ),

ξ2 = 2
(p− q)2

(
1− (p− q)c2

s

) [
(1− 2(p− q)c2

s)2λ1 + (p− q)c2
sητπ

]
. (5.27)

As we have pointed out in [1] that these 5 identities reduce the independent dynamical
coefficients from 7 to 2, which can be chosen as τπ and λ1.

The dispersion relations can be calculated by the same method as in [1, 39, 41], the
result is

ωT =− i 1
p+ 1

L2

rH
k2 − i

p+ 1 + 2H 2
p+1

2(p+ 1)3
L6

r3
H

k4, (5.28)

ωL =± 1
√
p
k − i p− 1

p(p+1)
L2

rH
k2 ±

(p−1)
(
1+H 2

p+1

)
p3/2(p+ 1)2

L4

r2
H

k3 − i
(p−1)2

(
p+1+2H 2

p+1

)
p2(p+ 1)3

L6

r3
H

k4.

(5.29)
3For direct comparison with the results in [14], one may need an identity about the Harmonic number

as Hα−1 = Hα − 1
α
.
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The dispersion relations do not depend on q, which is the same as the compactified Dp-
brane [1]. The compactification does not affect the dispersion relations, as it does for the
sound speed.

5.3 The second-order thermodynamical transport coefficients

In this subsection, we will offer the results for the second-order thermodynamical transport
coefficients. But they are not derived by direct calculations as what we have done for
the 7 dynamical ones. Thus the results need to be checked via other methods like the
Minkowskian AdS/CFT correspondence [5, 6, 46].

The second-order transport coefficients of the 5-dimensional compactified AdS black
hole (or CR5) have been given in [28] and [14]. Ref. [28] gives the results to the first order
of δnonconf. expansion, whose definition in 5 dimensions is

δnonconf. = 1− 3c2
s = 1− 3

p
. (5.30)

Ref. [14] offers the exact results which are also formulated in terms of δnonconf.. Since in
general dimensions, we have

δnonconf. = 1− (p− q)c2
s = 1− q

p
, (5.31)

which means if we substitute factors involved with δnonconf. for the form in general dimen-
sions, we can generalize the thermodynamical coefficients to other dimensions. According
to [14, 28], the coefficients λ3,4 and ξ3,4 of CR5 are all 0, we can get 4 non-trivial thermo-
dynamical coefficients as

κ = 1
2κ2

p−q+2

2
p− 1

rp−1
H

Lp−2 , κ∗ = − 1
2κ2

p−q+2

q

p− 1
rp−1
H

Lp−2 ,

ξ5 = 1
2κ2

p−q+2

2q
p(p− 1)(p− q)

rp−1
H

Lp−2 , ξ6 = 1
2κ2

p−q+2

2q
(p− 1)(p− q)

rp−1
H

Lp−2 , (5.32)

which satisfy the following 3 identities

κ∗ = −1− (p− q)c2
s

2c2
s

κ, ξ5 = 1− (p− q)c2
s

p− q
κ, ξ6 = 1− (p− q)c2

s

(p− q)c2
s

κ. (5.33)

These identities are firstly proposed in [47] for 4-dimensional relativistic fluids. Then [41]
makes a guess on their forms in general dimensions. By replacing p− q with d− 1, where
d is the number of dimensions of the dual fluids, one can see that the above identities are
in accord with the forms proposed in [41]. For a comparison between CR5 and CRp−q+2,
we list all the non-trivial transport coefficients up to the second-order of these two cases
in table 2. The data of CR5 comes from [14], we just reformulate their results in our
convention.

The 8 second-order thermodynamical coefficients satisfy 5 differential constraint rela-
tions firstly found in [48] by Bhattacharyya, leaving 3 of them independent, which have
been chosen to be κ and λ3,4 in [1]. These 5 constraint relations, which we will call the Bhat-
tacharyya relations, are formulated in a different but more convenient form in [49]. Yet,
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Coefficient CR5 CRp−q+2

η 1 1

ζ 2(p−3)
3p

2q
p(p−q)

ητπ
1
2 + 1

p+1H 2
p+1

1
2 + 1

p+1H 2
p+1

κ 2
p−1

2
p−1

λ1
1
2

1
2

λ2 −1 + 2
p+1H 2

p+1
−1 + 2

p+1H 2
p+1

λ3 0 0

ητ∗π
3(p−3)

2p − p−3
p(p+1)H 2

p+1

3q
2p −

q
p(p+1)H 2

p+1

κ∗ −p−3
p−1 − q

p−1

λ4 0 0

ζτΠ
p−3
3p + 2(p−3)

3p(p+1)H 2
p+1

q
p(p−q) + 2q

p(p+1)(p−q)H 2
p+1

ξ1
p−3
6p

q
2p(p−q)

ξ2
(p−3)(2p−9)

9p2 + 2(p−3)
3p2(p+1)H 2

p+1

q(3q−p)
p2(p−q)2 + 2q

p2(p+1)(p−q)H 2
p+1

ξ3 0 0
ξ4 0 0

ξ5
2(p−3)
3p(p−1)

2q
p(p−1)(p−q)

ξ6
2(p−3)
3(p−1)

2q
(p−1)(p−q)

Table 2. The comparison between the transport coefficients of CR5 and CRp−q+2, here the
Chamblin-Reall backgrounds refer to the compactified AdS black hole.

this form does not reflect the independence of κ and λ3,4. We rewrite the Bhattacharyya
relations for 4-dimensional relativistic fluids in a form that emphasizes the independent
coefficients here:

κ∗ = −
(1

2T∂T − 1
)
κ, (5.34)

ξ5 = 1
6
[
3c2
sT∂T − (1 + 3c2

s)
]
κ, (5.35)

ξ6 =
[
c2
sT

2∂2
T −

1
3(2− 3c2

s)T∂T + 1
3(1− 3c2

s)
]
κ+ λ4

c2
s

, (5.36)

ξ3 = 1
12
[
3c2
sT∂T + (1− 9c2

s)
]
λ3 −

3
4
[
c2
sT

2∂2
T − (1− 2c2

s)T∂T
]
κ− λ4

c2
s

, (5.37)

ξ4 = −1
6
[
3c2
sT∂T + (1 + 3c2

s)
]
λ4 −

1
2c

4
s

[
c2
sT

3∂3
T − (1− 3c2

s)T 2∂2
T

]
κ. (5.38)
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Since in the compactified AdS black hole, the temperature dependence of the second-order
transport coefficients is ∼ rp−1

H ∼ T p−1. Then one has the following equivalences:

T∂T ⇔ p− 1, T 2∂2
T ⇔ (p− 1)(p− 2), T 3∂3

T ⇔ (p− 1)(p− 2)(p− 3). (5.39)

In the Chamblin-Reall backgrounds with only one background scalar, the temperature
dependence of the transport coefficients is just power law, thus the differential relations in
Bhattacharyya constraints can be reduced to algebraic identities like the Romatschke or
Kleinert-Probst relations. This is indeed true as it can be checked by putting the results
of (5.32) into the 4-dimensional Bhattacharyya relations in the special case of q = p − 3.
But how about in general dimensions?

We make a bold guess on the Bhattacharyya constraints about their forms in general
dimensions, which are

κ∗ =− 1
2 (T∂T − (p− q − 1))κ, (5.40)

ξ5 = 1
2(p− q)

[
(p− q)c2

sT∂T −
(
(p− q − 2) + (p− q)c2

s

)]
κ, (5.41)

ξ6 =
[
c2
sT

2∂2
T −

(p− q − 1)− (p− q)c2
s

p− q
T∂T + 1− (p− q)c2

s

p− q

]
κ+ λ4

c2
s

, (5.42)

ξ3 = (p− q)c2
sT∂T +

(
1− (p− q)2c2

s

)
(p− q)(p− q − 1) λ3 −

p− q
p− q + 1

[
c2
sT

2∂2
T − (1− 2c2

s)T∂T
]
κ− λ4

c2
s

,

(5.43)

ξ4 =− 2
[
(p− q)c2

sT∂T + (1 + (p− q)c2
s)
]

(p− q)(p− q − 1) λ4 −
1
2c

4
s

[
c2
sT

3∂3
T − (1− 3c2

s)T 2∂2
T

]
κ. (5.44)

We have checked the above for the case of compactified AdS black hole with λ3,4 = ξ3,4 = 0.
The relations of κ∗, ξ5, and ξ6 can indeed be reduced to algebraic forms of (5.33) by
using (5.32). The factor

[
c2
sT

2∂2
T − (1− 2c2

s)T∂T
]
in (5.43) and

[
c2
sT

3∂3
T − (1− 3c2

s)T 2∂2
T

]
in (5.44) are automatically zero for 5-dimensional compactified AdS black hole, i.e. when
q = p− 3. We can not find their forms in p− q+ 2 dimensions that can still automatically
vanish, so we just leave them as they are. One can check that when λ4 = 0 and ignoring
the term

[
c2
sT

2∂2
T − (1− 2c2

s)T∂T
]
, (5.43) will reduce to the following algebraic form

ξ3 = 1− (p− q)c2
s

p− q
λ3, (5.45)

which is the same as in [41] given that p− q = d− 1. We can also find that if ignoring the
term of κ, (5.44) will lead to a constraint relation between ξ4 and λ4 as

ξ4 = − 2
p− q

λ4. (5.46)

We hope that future studies will recover whether this is correct.
By now, we have 5 constraints among the thermodynamical second-order transport

coefficients: (5.33), (5.45) and (5.46). Eqs. (5.33) and (5.45) are just the Romatschke
relations [47] in general dimensions, and (5.46) is newly proposed in this work. These
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5 algebraic relations are just the 5 Bhattacharyya constraints [48] when the transport
coefficients have a simple power-law with respect to temperature. Such case is true for the
Chamblin-Reall backgrounds with only one background scalar like the D(p-q)-brane and
the compactified AdS black hole. When the dependence on temperature of the coefficients
becomes complicated, these 5 algebraic relations (5.33), (5.45) and (5.46) should be replaced
with their more involved differential forms: the Bhattacharyya constraint relations.

In [14], the authors proposed another relation similar as the Haack-Yarom’s, which
reads 2(κ− κ∗) + λ2 = 2ητπ. But using the results in (5.18) and (5.32) one can get

2(κ− κ∗) + λ2 − 2ητπ = −2(p− q − 3)
p− 1 , (5.47)

from which we can see that it is only held in 5-dimensions, i.e. q = p− 3, as a special case.
When q goes general, the right-hand side of the above is no longer zero. So if κ∗ that we
get is correct, this relation may not be valid in general dimensions.

We may explain the non-validity of (5.47) from another prospect. We have known
from [1] that only 5 of the 15 second-order transport coefficients are actually independent:
the dynamical transport coefficients τπ, λ1, and the thermodynamical ones κ, λ3,4. If (5.47)
holds, another one of these 5 would be taken from the list. As these remaining 5 have
completely different physical meanings:

τπ : relaxation time λ1 : second-order shear viscosity κ : curvature
λ3 : vorticity λ4 : gradient of entropy density (5.48)

One may infer that these 5 should all exist in the list of independent coefficients. So the
conclusion may be (5.47) not hold in general dimensions. For the sake of prudence, one
needs to use the results of the thermal coefficients by direct calculation to check.

Another observation on (5.47) is that it is a constraint among the transport coefficients
that from both the dynamical and thermal sectors: τπ, λ2 are from the dynamical sector
while κ, κ∗ are thermal coefficients. The other constraints are among the coefficients within
only one sector, either dynamical or thermal. This fact puts a question to us whether there
should be a constraint that is among the coefficients belonging to different sectors? We
hope future works may find a satisfying answer.

6 A revisit to Kanitscheider-Skenderis proposal

The Kanitscheider-Skenderis (KS) proposal [36] allows one to extract the second-order
transport coefficients for a non-conformal relativistic fluid from a conformal one in higher
dimensions. This is realized by making substitutions in the conformal stress-energy tensor
of higher dimensions. Under the convention of this work, the substitution rules proposed
in [36] can be rewritten as

σµν → σµν + χPµν∂u, (6.1)
A〈µν〉 → A〈µν〉 + χPµνP

ρλAρλ, (6.2)
Ωµν → Ωµν , Rρ〈µν〉σ → Rρ〈µν〉σ, R〈µν〉 → R〈µν〉, R→ R. (6.3)
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The viscous terms of the thermodynamical sector do not change, only dynamical sector
changes. χ is a parameter which contains both the number of dimensions of the conformal
fluid d̃ and that of the non-conformal one d, and it is defined as

χ = d̃− d
(d̃− 1)(d− 1)

. (6.4)

For the case of compactified AdS black hole, d̃ = p+ 1 and d = p− q + 1. Such that

χ = q

p(p− q) = 1− (p− q)c2
s

p− q
. (6.5)

Since both the lower dimensional, non-conformal fluid and the conformal one in higher
dimensions have dual gravitational backgrounds. These two backgrounds should be con-
nected by dimensional reduction. From the above introduction on the KS proposal, one
can see that its spirit is precisely consistent with what we do for the compactified AdS
black hole in this work.

6.1 The dynamical sector

Based on the rules from (6.1) to (6.3), one can infer the substitution rules for the following
viscous tensors in dynamical sector:

〈Dσµν〉, σµν∂u, σ ρ
〈µ σν〉ρ, σ ρ

〈µ Ων〉ρ. (6.6)

The KS proposal does not tell us how exactly the above viscous tensors will change. We
need to figure out the transformation rules one by one with great deliberation. The first is
〈Dσµν〉. If we use the rule of (6.2) for it, we will find it does not change, since P ρσDσρσ = 0.
By using (6.1), after some calculations, one can get

〈Dσµν〉 → 〈Dσµν〉 + χPµνD(∂u). (6.7)

The transformation rule of σµν∂u can also be easily got with (6.1):

σµν∂u→ σµν∂u+ χPµν(∂u)2. (6.8)

Under either (6.1) or (6.2), we have

σ ρ
〈µ Ων〉ρ → σ ρ

〈µ Ων〉ρ. (6.9)

One can check that the above three substitution rules are the same as [41]. The last and
most puzzled one is σ ρ

〈µ σν〉ρ. If we use the rule of (6.2) we can only get σ ρ
〈µ σν〉ρ →

σ ρ
〈µ σν〉ρ + χPµνσ

2
αβ , the same as in [41]. But it is wrong! The correct rule for σ ρ

〈µ σν〉ρ
is (6.1). After some tensor calculation one will find that three non-conformal viscous
terms should come from the transformation rule of σ ρ

〈µ σν〉ρ, which are Pµνσ2
αβ , σµν∂u and

Pµν(∂u)2, not only Pµνσ2
αβ . This is the reason that ητ∗π and λ2 of D4-brane that is got

through KS proposal in [41] do not match with the results got by direct calculation. We
will see this in more detail in the following paragraphs. According to the analysis in this
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paragraph, we are of the opinion that the transformation rules for the viscous tensors in
the dynamical sector should be

〈Dσµν〉 → 〈Dσµν〉 + χPµνD(∂u), σµν∂u→ σµν∂u+ χPµν(∂u)2, σ ρ
〈µ Ων〉ρ → σ ρ

〈µ Ων〉ρ,

σ ρ
〈µ σν〉ρ → σ ρ

〈µ σν〉ρ + χPµνσ
2
αβ + 2(d− 1)χσµν∂u+ χ

(
χ− 1

d̃− 1

)
Pµν(∂u)2. (6.10)

Compared with [41], the rule for σ ρ
〈µ σν〉ρ has been changed.

Based on the new transformation rules, we get new relations between the lower dimen-
sional non-conformal coefficients and the conformal ones in higher dimensions (the ones
with tildes) as

ητπ = η̃τπ, λ1 = λ̃1, λ2 = λ̃2, ζτΠ = 2χη̃τπ, ξ1 = χλ̃1,

ητ∗π = (d− 1)χ(4λ̃1 − η̃τπ), ξ2 = 4χ
(
χ− 1

d̃− 1

)
λ̃1 + 2χ

d̃− 1
η̃τπ. (6.11)

From the above, one can see that the conformal coefficients ητπ, λ1 and λ2 of the lower
dimensional, non-conformal fluid inherit the values from their higher dimensional counter-
parts. While the non-conformal dynamical coefficients ζτΠ, ξ1, ητ∗π , and ξ2 are changed by
the factor χ or by both χ and combinations of ητπ and λ1. We also know that the con-
formal coefficients do not contain q whereas the non-conformal ones do. From (6.11), we
can conclude that the q-dependence of the non-conformal coefficients are actually through
the factor χ, which can be seen from (6.5). The physical reason that the non-conformal
dynamical coefficients are q-dependent has been pointed out in [1] that the viscous terms
of those coefficients all contain ∂u, which is the trace of ∂µuν . The dimensional reduction
will diminish the components in taking the trace, causing their changes.

It has been found in [41] that ητ∗π and ξ2 of D4-brane can not be got correctly.
From (6.11) we can see that it is the identities involved with these two are not got cor-
rectly in [41] since the contribution from λ̃1 is missing. By the relations in (6.11), one can
check that this problem is fixed now. If one put the explicit expression of χ (6.5) into the
relations of ητ∗π and ξ2 in (6.11). One will find that the identities of ητ∗π and ξ2 become
exactly the Kleinert-Probst relations (5.27). Thus the KS proposal is in nature the same
as the Romatschke and Kleinert-Probst relations. The difference is that the KS proposal
stresses the origins of the non-conformal viscous terms from the conformal viscous tensors,
whereas the Romatschke and Kleinert-Probst relations offer directly the identities between
non-conformal and the conformal coefficients.

6.2 The thermodynamical sector

In the KS proposal, the viscous tensors of the thermal sector will not change as in (6.3).
But we would like to make a different claim for the curvature tensor in the thermal sector
that they will change in the dimensional reduction as

R〈µν〉 → R〈µν〉 + χPµνR− (d̃− 1)(d− 1)χuρuσRρ〈µν〉σ, (6.12)
2uρuσRρ〈µν〉σ → 2uρuσRρ〈µν〉σ − (d̃− 1)χPµνuρuσRρσ. (6.13)
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Then the term in the conformal stress-energy tensor of higher dimensions

κ̃
(
R〈µν〉 − 2uρuσRρ〈µν〉σ

)
(6.14)

will transform as

κ̃
(
R〈µν〉 − 2uρuσRρ〈µν〉σ

)
→ κ̃

(
R〈µν〉 − 2uρuσRρ〈µν〉σ

)
+
(
−1

2(d̃− 1)(d− 1)χκ̃
)

2uρuσRρ〈µν〉σ

+ Pµν
(
χκ̃R+ (d̃− 1)χκ̃uρuσRρσ

)
= κ

(
R〈µν〉 − 2uρuσRρ〈µν〉σ

)
+ κ∗ · 2uρuσRρ〈µν〉σ + Pµν (ξ5R+ ξ6u

ρuσRρσ) . (6.15)

Thus one has

κ = κ̃, κ∗ = −1
2(d̃− 1)(d− 1)χκ̃, ξ5 = χκ̃, ξ6 = (d̃− 1)χκ̃. (6.16)

The conformal coefficient κ inherits the result of its higher-dimensional counterpart κ̃,
the same as the other conformal coefficients. The non-conformal thermodynamical coeffi-
cients also get the q-dependence from χ, the same as the non-conformal coefficients in the
dynamical sector.

If one put (6.5) into the identities of non-conformal coefficients in (6.16), one will get
the Romatschke relations for κ∗ and ξ5,6 in general dimensions (5.33). This again proves
that the KS proposal has the same nature as the Romatschke and Kleinert-Probst relations.

At the last of this section, we would like to mention another observation about the
algebraic identities of the second-order transport coefficients. The total number of them is
10, which can be listed as follows:

4λ1 + λ2 = 2ητπ; (6.17)

τΠ = τπ, ξ1 = 1
p− q

[1− (p− q)c2
s]λ1, (6.18)

ητ∗π =
(
1− (p− q)c2

s

)
(4λ1 − ητπ),

ξ2 = 2
(
1− (p− q)c2

s

)
(p− q)2

[
(1− 2(p− q)c2

s)2λ1 + (p− q)c2
sητπ

]
; (6.19)

κ∗ = −1− (p− q)c2
s

2c2
s

κ, ξ5 = 1− (p− q)c2
s

p− q
κ, ξ6 = 1− (p− q)c2

s

(p− q)c2
s

κ; (6.20)

ξ3 = 1− (p− q)c2
s

p− q
λ3, ξ4 = − 2

p− q
λ4. (6.21)

Only the first one, i.e. the Haack-Yarom relation is purely among the conformal coefficients.
The other 9 identities all speak the relations between the non-conformal coefficients and
the conformal ones. Why is Haack-Yarom relation so special and what on earth does it
speak of? We hope future studies can give us a satisfying answer.
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7 Discussions and outlook

In this paper, we have proved that hitherto the gravity models that can be used to offer
analytic results for the second-order transport coefficients of the non-conformal relativistic
fluids are all Chamblin-Reall type. The only difference is the number of independent
background scalar fields. Through previous studies and our works, we find that only the
Chamblin-Reall models with one background scalar can be solved exactly. These models
are the D(p-q)-brane and the compactified AdS black hole. We calculate all the 7 dynamical
second-order transport coefficients for the compactified AdS black hole in this paper via
the fluid/gravity correspondence.

We not only calculate the dynamical coefficients for the compactified AdS black hole,
but also manage to get the thermodynamical coefficients through formal generalization.
Thus we get non-trivial results for 11 second-order transport coefficients about compactified
AdS black hole. The trivial ones are the λ3,4 and ξ3,4. The compactified AdS black holes
is the first example that we know everything about up to the second order.

Since the (compactified) Dp-brane and the compactified AdS black hole are the only
two examples of the Chamblin-Reall type backgrounds with one scalar. We believe that
there are also 11 non-trivial second-order transport coefficients for (compactified) Dp-brane.
We have already known the 7 dynamical ones. The coefficients that remain unknown in
the thermal sector should also be κ, κ∗ and ξ5,6, which may need the Minkowski-space
AdS/CFT correspondence to derive.

We also find the physical meaning of the Kanitscheider-Skenderies proposal. This
proposal recovers the origins of the non-conformal viscous terms from the conformal viscous
tensors, through which one can get algebraic identities for the non-conformal coefficients
in terms of the conformal ones. These identities are equivalent to the Romatschke and
Kleinert-Probst relations. We also claim a possible way of change for the viscous tensors
in the thermodynamical sector which have trivial reducing behaviors in the original KS
proposal. It finally leads to the Romatschke relations for κ∗ and ξ5,6 in general dimensions.

At last, we would like to talk a little about the study of the transport coefficients for
NS5-brane, which has not been referred to in the works on (compactified) Dp-brane [1, 41].
It can be proved that NS5-brane and D5-brane are completely the same if written in Ein-
stein frame. The first-order perturbations of D5-brane are found not renormalizable [41],
it is not dual to any physical relativistic fluid in fluid/gravity correspondence, so is NS5-
brane. Considering [30] gets the bulk viscosity for NS5-brane with real-time AdS/CFT
correspondence. Maybe we should use the same method to extract the second-order trans-
port coefficients for NS5-brane.
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A The reduction ansatz

In the calculation of reducing the metric of AdSp+2 black hole to a (p− q+ 2)-dimensional
manifold, we use the ansatz

ds2 = e2α1AgMNdx
MdxN + e2α2Aδmndy

mdyn. (A.1)

From the above one can calculate the Christoffel symbol as

Γ̃MNP = ΓMNP + α1(δMN ∂PA+ δMP ∂NA− gNP∇MA),
Γ̃Mmn = −α2(∇MA)e(−2α1+2α2)Aδmn,

Γ̃nMm = α2∂MAδ
n
m. (A.2)

Here the symbols with tilde are (p + 2)-dimensional while those without are (p − q + 2)-
dimensional. One will also find the following summations of the Christoffel symbols are
useful in the calculation, which are

Γ̃NMN = ΓNMN + (p− q + 2)α1∂MA,

Γ̃mMm = qα2∂MA,

Γ̃N̂
MN̂

= ΓNMN + [(p− q + 2)α1 + qα2]∂MA. (A.3)

Then, the (p+ 2)-dimensional Ricci tensor RM̂N̂ can be got as

RMN = RMN − [(p− q)α1 + qα2]∇M∇NA− α1gMN∇2A

+
[
(p− q)α2

1 + 2qα1α2 − qα2
2

]
∂MA∂NA

−
[
(p− q)α2

1 + qα1α2
]
gMN (∂A)2, (A.4)

Rmn =−
[
α2∇2A+

(
(p− q)α1α2 + qα2

2

)
(∂A)2

]
e(−2α1+2α2)Aδmn, (A.5)

with RMN the Ricci tensor in p− q+2 dimensions. Finally the Ricci scalar is calculated as

R = e−2α1A
[
R− 2((p− q + 1)α1 + qα2)∇2A−

(
(p− q)(p− q + 1)α2

1

+2q(p− q)α1α2 + q(q + 1)α2
2

)
(∂A)2

]
. (A.6)

Here R and R are separately the Ricci scalars of AdSp+2 black hole and the reduced
(p− q + 2)-dimensional spacetime.

B The D(-1)-D3 background

The 10-dimensional action of D(-1)-D3 model in Einstein frame is

S = 1
2κ2

10

∫
d10x
√
−G

[
R− 1

2(∇φ)2 + g2
s

2 e
2φ(∇χ)2 − g2

s

2 · 5!F
2
M1···M5

]

− 1
κ2

10

∫
d9x
√
−HK + 1

κ2
10

∫
d9x
√
−H 3

L3
. (B.1)
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The first, second and third terms in the above are respectively the bulk term, the Gibbons-
Hawking term and the counter term. Here we do not employ the self-dual condition for
F 2
M1···M5

as the normalization constant is 1
2·5! but not 1

4·5! . In order to describe the D-
instanton, one needs to make the Wick rotation for χ as χ → iχ [42]. That’s the reason
for the sign difference between the two background scalars. By the form of the counter
term, we can see that this background is actually conformal, since it is the same as the
AdS black hole’s. A non-conformal background should have a counter term that contains
the contribution of background scalars. This can be seen from the cases of (compactified)
Dp-brane [1, 32, 38, 39, 41] and compactified AdS black hole in this paper.

The background fields are the metric tensor, dilaton, axion and the Ramond-Ramond
field:

ds2 =
(
r

L3

)2 (
−f(r)dt2 + d #�x 2

)
+
(
L3
r

)2
(
dr2

f(r) + r2dΩ2
5

)
,

eφ = H−1, χ = g−1
s (1−H−1

−1 ), Fθ1···θ5 = g−1
s Q3

√
γ5. (B.2)

Here we have the blackening factor f(r) = 1− r4
H
r4 and the harmonic function for D-instanton

H−1 = 1− L4
−1
r4
H

ln f . L−1 is a constant related with D-instanton and Q3 = 4L4
3. Using the

reducing procedure as in [41], we get the 5-dimensional reduced action

S = 1
2κ2

5

∫
d5x
√
−g

[
R− 1

2(∂φ)2 + 1
2e

2φ(∂χ)2 + 12
L2

3

]
− 1
κ2

5

∫
d4x
√
−h

(
K − 3

L3

)
. (B.3)

In the above, 1
2κ2

5
= L5

3Ω5
2κ2

10
and we have set gs = 1. The reduced 5-dimensional metric is just

AdS5 black hole

ds2 = r2

L2
3

(
−f(r)dt2 + d #�x 2

)
+ L2

3
r2

dr2

f(r) (B.4)

coupled with two scalar fields:

eφ = H−1, χ = 1−H−1
−1 = 1− e−φ. (B.5)

C The transport coefficients of NS5-brane

In this part of the appendix, we would like to point out the reason why fluid/gravity
correspondence can not extract the transport coefficients for the NS5-brane. The answer
is that in Einstein frame, NS5-brane is completely the same as D5-brane whose transport
coefficients can not be extract in fluid/gravity correspondence. So we can not use the
present method to study NS5-brane.
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The 10-dimensional action and background solution in Einstein frame for NS5-brane
can be written as

S = 1
2κ2

10

∫
d10x
√
−g

[
R− 1

2(∂φ)2 − e−φ

2 · 3!H̃
2
3

]
, (C.1)

ds2 = H−
1
4 (−f(r)dt2 + d #�x 2) +H

3
4

(
dr2

f(r) + r2dΩ2
3

)
, (C.2)

eφ = H
1
2 , H̃θ1θ2θ3 = Q

√
γ3, H = 1 + r2

5
r2 , f = 1− r2

H

r2 . (C.3)

Here the H̃3 is the NS-NS background field magnetically couples with the NS5-brane, H is
the harmonic function. For D5-brane one has

S = 1
2κ2

10

∫
d10x
√
−g

[
R− 1

2(∂φ)2 − g2
s

2 · 3!e
φF̃ 2

3

]
, (C.4)

ds2 = −H−
1
4

5

(
−f(r)dt2 + d #�x 2

)
+H

3
4
5

(
dr2

f(r) + r2dΩ2
3

)
, (C.5)

eφ = H
− 1

2
5 , F̃θ1θ2θ3 = g−1

s Q5
√
γ3, H5 = 1 + r2

5
r2 , f = 1− r2

H

r2 (C.6)

In the above, F̃3 is the Ramond-Ramond field that couples with the D5-brane, and the H5
is the harmonic function for D5-brane.

The only difference in the actions of NS5- and D5-brane is how dilaton couples with
the 3-form fields. For NS5-brane it is e−φ whereas for D5-brane is eφ. But as we can see
from the profiles of the dilatons for these two kinds of branes that NS5-brane is eφ = H

1
2

and D5-brane is eφ = H
− 1

2
5 . Thus the terms that coupled with the 3-form fields for these

two cases are actually the same. So both the action and the metric for NS5- and D5-brane
are the same.

As what has been calculated and discussed in [41], the D5-brane is not dual to any
physical relativistic fluid in the framework of fluid/gravity correspondence. So we can not
extract any useful information for NS5-brane either, with the present means.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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