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Abstract 

Background:  There is evidence of geographic disparities in COVID-19 hospitalization risks that, if identified, could 
guide control efforts. Therefore, the objective of this study was to investigate Zip Code Tabulation Area (ZCTA)-level 
geographic disparities and identify predictors of COVID-19 hospitalization risks in the St. Louis area.

Methods:  Hospitalization data for COVID-19 and several chronic diseases were obtained from the Missouri Hospital 
Association. ZCTA-level data on socioeconomic and demographic factors were obtained from the American Com-
munity Survey. Geographic disparities in distribution of COVID-19 age-adjusted hospitalization risks, socioeconomic 
and demographic factors as well as chronic disease risks were investigated using choropleth maps. Predictors of 
ZCTA-level COVID-19 hospitalization risks were investigated using global negative binomial and local geographically 
weighted negative binomial models.

Results:  COVID-19 hospitalization risks were significantly higher in ZCTAs with high diabetes hospitalization risks 
(p < 0.0001), COVID-19 risks (p < 0.0001), black population (p = 0.0416), and populations with some college education 
(p = 0.0005). The associations between COVID-19 hospitalization risks and the first three predictors varied by geo-
graphic location.

Conclusions:  There is evidence of geographic disparities in COVID-19 hospitalization risks that are driven by differ-
ences in socioeconomic, demographic and health-related factors. The impacts of these factors vary by geographi-
cal location implying that a ‘one-size-fits-all’ approach may not be appropriate for management and control. Using 
both global and local models leads to a better understanding of geographic disparities. These findings are useful for 
informing health planning to identify geographic areas likely to have high numbers of individuals needing hospitaliza-
tion as well as guiding vaccination efforts.
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Background
There have been over 309 million confirmed Corona-
virus Disease 2019 (COVID-19) cases and over 5.5 mil-
lion deaths worldwide as of January 10, 2022, with over 
61 million confirmed cases and over 830,000 deaths 
in the United States [1]. As of the same date, the state 
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of Missouri has reported over 1.1 million cases and 
16,500 + deaths. The disease has overwhelmed many 
United States hospital systems, with large numbers of 
patients requiring critical care and interventions such as 
mechanical ventilation [2–4]. This surge of COVID-19 
patients has put strain on hospital resources, potentially 
impacting the care available to both COVID-19 and non-
COVID-19 patients [5].

There is evidence of geographic disparities in the sever-
ity of the disease with certain population groups experi-
encing more severe disease than others. These disparities 
might be driven by population characteristics such as 
socioeconomic, demographic, and chronic disease fac-
tors [6–10]. For instance, there is evidence that Non-
Hispanic American Indian, non-Hispanic Black, and 
Hispanic people have higher hospitalization risks than 
their non-Hispanic Asian and non-Hispanic White coun-
terparts [11].There are also reports that conditions such 
as diabetes mellitus, obesity, chronic lung conditions, 
renal disease, cancer, and cardiovascular disease may 
increase the severity of the condition and risk of hospi-
talizations among COVID-19 patients with these co-
morbidities [6, 12–14]. Identifying geographic disparities 
in COVID-19 hospitalization risks and determinants of 
these disparities is important in providing information to 
guide hospital preparedness to handle the patient surge 
and for targeting resources for public health efforts to 
control the condition at the community level.

Improved understanding of the geographic dispari-
ties and predictors of COVID-19 hospitalization risks at 
the local level, such as the Zip Code Tabulation Areas 
(ZCTA), would help identify local geographic areas with 
higher needs for hospital beds and other healthcare 
resources. This is useful information for healthcare plan-
ning and service provision at the local level. It may also 
inform vaccination efforts by helping to identify areas 
where higher vaccination coverage may have the largest 
effect in reducing hospital burden. Therefore, the objec-
tive of this study was to identify geographic disparities 
and predictors of COVID-19 hospitalization risk in the 
St. Louis Area, Missouri, United States.

Methods
Study area
This study was performed in an area of Missouri that 
includes 108 ZCTAs located in St. Charles county, St. 
Louis county, and St. Louis City as well as parts of Jeffer-
son, Franklin and Warren counties (Fig. 1). The area had 
a population of approximately 2 million people compris-
ing 74% white, 20% black, 3% Hispanic/Latino, and 3% 
Asian. Forty-eight percent of the population was male, 
while 52% was female. Thirty-one percent of the popula-
tion was older than 25 years old, 53% was 25–64, and 16% 

was older than 65 years of age. The ZCTA-level popula-
tion density varied from 10 people per square mile in St. 
Charles County to 9,368 people per square mile in St. 
Louis City County.

Data sources
COVID‑19 and chronic disease hospitalization data
Data on COVID-19 and chronic condition hospitaliza-
tions were obtained from the Hospital Industry Data 
Institute, a not-for-profit organization founded by the 
Missouri Hospital Association  that summarizes state 
level discharge data. The COVID-19 data provided 
information on the numbers of COVID-19 discharges 
by patient ZCTA and by age group from April 1, 2020 
to September 30, 2020. In addition to the COVID-19 
hospitalization data, data on the number of confirmed 
COVID-19 cases were obtained from the county Depart-
ments of Health. COVID-19 case data were included as 
one of the potential predictors of COVID-19 hospitali-
zation risks. Data on chronic conditions were extracted 
for the time period 2019–2020 based on ICD-10 codes 
and included the following conditions/behaviors: obesity, 
tobacco use, cancer (breast, colorectal, prostate, lung, 
endometrial, leukemia and lymphoma), chronic obstruc-
tive pulmonary disease, chronic kidney disease, heart 
failure, and diabetes. These conditions were selected due 
to their potential association with COVID-19 severity. 
All data were aggregated to the ZCTA-level to facilitate 
subsequent ZCTA-level analyses. The ZCTA-level risks 
of these conditions were then computed and presented as 
disease-specific hospitalizations per 100 population.

Socioeconomic, demographic and base map data
ZCTA-level data on socioeconomic and demographic 
factors including age, sex, race, population density, edu-
cation level, and median income, were obtained from the 
U.S. Census Bureau 2018 American Community Survey 
(ACS) 5-year estimates [15]. The cartographic boundary 
files, used for generating maps, were obtained from the 
US Census Bureau Website [16].

Descriptive analyses
All descriptive analyses were performed in R version 
4.1.0 [17] using RStudio version 1.4.1103 [18]. Normal-
ity of distribution of continuous variables was assessed 
using Shapiro–Wilk test. Medians as well as 1st and 3rd 
quartiles were used as measures of central tendency and 
spread for all continuous variables since they were all 
non-normally distributed. The COVID-19 ZCTA-level 
hospitalization risks were directly age-standardized in 
STATA version 16 [19], using the 2010 US population as 
the standard population.
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Investigation of predictors of COVID‑19 
hospitalizations
Global models
Univariable global Poisson models were used to assess 
simple associations between each of the potential pre-
dictors and COVID-19 hospitalization risk. As opposed 
to local models that estimate as many regression coeffi-
cients per predictor as the number of geographic units, 
global models assume constant relationships between 
each potential predictor and the outcome and therefore 
estimate one regression coefficient per potential predic-
tor. These models were fit under the Generalized Lin-
ear Model (GLM) framework in R [17] specifying log 
link. The dependent variable was the expected count 
of COVID-19 hospitalizations in each ZCTA based 
on the age-adjusted/standardized number of COVID-
19 hospitalizations and the offset was the natural log 
of the population in each ZCTA. A relaxed α of 0.15 

was used to assess potentially significant predictors in 
univariable models. The linearity of the relationships 
between the log risk and potential predictor variables 
was assessed graphically.

Spearman rank correlation coefficients were computed 
to assess bivariate correlations among the potential pre-
dictor variables identified during the univariable analyses 
using R [17]. Variables with correlation coefficients greater 
than 0.7 were considered highly correlated. To avoid 
multicollinearity, only one of a pair of highly correlated 
variables was retained for further assessments using mul-
tivariable Poisson model. Biological and statistical consid-
erations were used to determine which of a pair of highly 
correlated variables to retain. Non-correlated variables 
that had univariable p ≤ 0.15 were assessed in a multivari-
able global Poisson model, built using manual backwards 
elimination and an α of 0.05. Variables were considered 
as confounders if their removal from the model resulted 

Fig. 1  Map of study area showing geographic distribution of Zip Code Tabulation Areas and Counties



Page 4 of 10Igoe et al. BMC Public Health          (2022) 22:321 

in changes of at least 20% of the coefficients of any of the 
variables in the model. Confounders were retained in the 
final main effects model. Biologically plausible two-way 
interactions between variables in the final main effects 
multivariable model were assessed and the significant 
ones retained in the final model. The final Poisson regres-
sion model was then assessed for overdispersion.

Due to the presence of overdispersion in the final Pois-
son model (based on comparison of model deviance and 
degrees of freedom), a global negative binomial model 
was built. The process of building the negative binomial 
(NB) model was similar to that of the Poisson model 
described above. However, the glm.nb function of the 
MASS package [20] of R [17] was used instead of the 
glm function. The rest of the model specifications were 
similar to the Poisson model. Goodness-of-fit of the final 
global NB model was assessed using Pearson and Devi-
ance chi-square goodness-of-fit tests.

Local models
To assess if the association between each of the pre-
dictors and hospitalization risks varied by geographic 
location, a geographically weighted negative binomial 
(GWNB) model, proposed by Silva and Rodrigues [21], 
was fit to the data specifying the same outcome, link 
function, offset and significant predictors as in the final 
global multivariable NB model. However, unlike the 
global multivariable NB model that estimates one regres-
sion coefficient for each predictor and thus assumes a 
constant strength of association across all ZCTAs, the 
GWNB theoretically estimates as many regression coeffi-
cients as the number of ZCTAs. Essentially, GWNB eval-
uates a local model of the outcome by fitting a regression 
equation to every ZCTA in the dataset. These separate 
model equations are constructed by incorporating the 
outcome and predictor variables of the ZCTAs that fall 
within the neighborhood of each target ZCTA. There-
fore, the GWNB allows identification of local variations 
in the strength of associations and therefore giving the 
importance of specific predictors in different local areas 
(ZCTAs). This implies that some factors may be more 
important predictors of hospitalization risk in some 
ZCTAs than others.

The local GWNB model was fit in SAS version 9.4 [22] 
using a SAS/IML macro [23]. The estimation of local 
regression coefficients was based on biquadratic kernel 
weighting function [23], while the bandwidth was esti-
mated using the adaptive method which allows the size 
of the bandwidth to vary based on the density of observa-
tions. Bias-corrected Akaike Information Criteria (AICc) 
was used to determine the optimum kernel bandwidth 
and for comparing the goodness-of-fit of the global NB 

and GWNB models. The better fitting model was identi-
fied as the one with the lower AICc value.

Stationarity of the GWNB coefficients was assessed 
using: (a) randomization non-stationarity test based on 
999 replications [24]; (b) comparison of the interquar-
tile range of the local GWNB model coefficients with the 
standard error estimates of the global NB model. Local 
coefficients whose interquartile ranges were larger than 
twice the standard error of the regression coefficient 
from the global NB model were considered non-station-
ary [25, 26].

Cartographic displays
Choropleth maps showing the geographic distributions 
of ZCTA-level age-adjusted COVID-19 hospitalization 
risks, the socioeconomic, demographic and chronic dis-
ease factors as well as local regression coefficients from 
the GWNB models were generated using QGIS 3.16.6 
[27]. Jenk’s optimization classification scheme [28–30] 
was used to determine the critical intervals of the choro-
pleth maps.

Results
Descriptive statistics
The ZCTA-level median percentage of males was 48.6% 
while that of black and Hispanic populations were 3.7% 
and 2.2%, respectively (Table  1). For education vari-
ables, 38.2% of the population had high school education, 
23% had some college education while 8.6% had associ-
ate’s degree and 18% had bachelor’s degree. The median 
household income was just over $59,400 with 9.5% of 
the ZCTA-level population living below the poverty line. 
Among chronic conditions investigated, Chronic Kidney 
Disease had the highest hospitalization risk (7.6%) fol-
lowed by diabetes (7.5%) and heart failure had the low-
est (3.2%) (Table  1). The ZCTA-level median number 
of confirmed cases of COVID-19 was 360 cases which 
was equivalent to 2.2% of the population at ZCTA-level 
(Table1).

Predictors of COVID‑19 hospitalization risks
Global model
A number of variables had univariable associations 
with COVID-19 hospitalization risks at a relaxed p < 0.2 
(Table  2). Of the assessed demographic variables, only 
percentage of black population had a univariable asso-
ciation (p < 0.001) with hospitalization risk. By contrast, 
all the assessed educational, economic, health behavior 
and chronic disease variables had significant univari-
able associations with COVID-19 hospitalization risks 
(Table 2). The ZCTA-level risk of confirmed COVID-19 
cases had a significant (p < 0.001) univariable association 
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with COVID-19 hospitalization risk but the raw count of 
COVID-19 cases per ZCTA did not (p = 0.9) (Table 2).

Based on the final global multivariable NB model, the 
ZCTA-level hospitalization risks were higher in ZCTAs 
that were high in the following predictors: percentage of 
black population (p = 0.0416), percentage of population 
with some college education (p = 0.0005), percentage of 
individuals hospitalized with diabetes (p < 0.0001), and 
number of ZCTA-level COVID-19 cases per 100 popula-
tion (p = 0.0001) (Table 3). A map of the distribution of 
age-adjusted COVID-19 hospitalization risks and each 
of the significant predictors is shown in Fig. 2. High age-
adjusted COVID-19 hospitalization risks tended to occur 
in the Northeast of the study area and included ZCTAs 
in parts of St. Charles, St. Louis and Louis City counties. 
These areas also had high percentages of black popula-
tion, individuals with some college education, those with 
high diabetes hospitalization risks as well as high risks 
of COVID-19 cases (Fig.  2). High hospitalization risks 
were also evident in the Southwest areas of the study area 
that included parts of Warren and Franklin counties. It 

is worth noting that these areas also tended to have high 
diabetes hospitalization risks and percentages of the 
population with some college education (Fig.  2). Since 
the global model did not show evidence of good fit based 
on both Deviance (p = 0.03) and Pearson (p = 0.01) good-
ness-of-fit tests, stationarity of the regression coefficients 
was assessed using a local GWNB model.

Local model
The p-values of the stationarity tests from the GWNB 
model indicate that the coefficients for the association 
between COVID-19 hospitalization risks and percentage 
of black population (p = 0.001) and number of hospital-
ized patients with diabetes per 100 population (p = 0.032) 
were non-stationary (Table 4). Additionally, comparison 
of the 2 × SEs of the global coefficients and IQR of the 
local coefficients showed evidence of non-stationarity of 
the coefficients of the above two predictors as well as the 
population adjusted cases of COVID-19 (Table 4).

The spatial distribution of the local coefficients of the 
three predictors whose relationships with COVID-19 

Table 1  Descriptive Statistics of ZCTA-level Potential Predictors of COVID-19 Hospitalization Risks in the St. Louis Area, Missouri

1 ZCTA-level % of COVID-19 hospitalized patients that were tobacco users
2 Chronic Obstructive Pulmonary Disease
3 Chronic Kidney Disease

Type of Variable Variable Median First Quartile Third Quartile

Demographic Factors

% male population 48.6 47.4 50.3

% black population 3.7 0.9 34.2

% Hispanic/Latino population 2.2 1.0 3.2

Educational Variables

% with ≤ high school education 38.2 23.9 47.6

% with some college 23.0 19.8 25.6

% with associate’s degree 8.6 6.6 10.6

% with bachelor’s degree 18.0 9.4 25.9

Economic Variables

% below poverty level 9.5 5.8 16.8

median household income 59,768.5 46,005.3 77,504.0

Health Behavior (ZCTA-level number of hospitalized patients that use tobacco per 100 Population)

% tobacco1 10.4 6.8 14.5

Co-morbidities (ZCTA-level number of hospitalized patients with specific condition per 100 Population)

% obesity 7.0 5.6 8.0

% diabetes 7.5 6.5 9.2

% cancer 3.8 3.3 4.3

% COPD2 4.0 3.1 4.9

% CKD3 7.6 6.4 8.9

% heart failure 3.2 2.6 3.8

COVID-19 Cases

total cases 360 118 607

cases per 100 population 2.2 1.9 2.5
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hospitalizations were identified as non-stationary pro-
vides visual evidence for variability of the local rela-
tionships (Fig.  3). Thus, associations of COVID-19 
hospitalization risks with percentage of black popu-
lation, diabetes hospitalization risks and COVID-19 
adjusted cases varied considerably across the study 
area, with a strong East–West gradient. The association 
between percentage of black population and COVID-19 

hospitalization risks, for instance, was positive in the 
Northeast and negative in the West and Southwest. More-
over, the strength of the association was higher in ZCTAs 
in the West compared to those near the center of the 
study area. The strength of association between COVID-
19 hospitalization risks with diabetes hospitalization risks 
was also higher in the Northeast and lower in the West. 
All ZCTAs, except one (63,025), showed evidence of 

Table 2  Univariable Associations of Sociodemographic, Economic, and Chronic Disease Potential Predictors of COVID-19 
Hospitalization Risk in the St. Louis Area, Missouri

1 ZCTA-level % of COVID-19 hospitalized patients that were tobacco users
2 Chronic Obstructive Pulmonary Disease
3 Chronic Kidney Disease

Type of Variable Variable Coefficient 95% Confidence Interval P-values

Demographic Factors

% male population 0.004 -0.015, 0.024 0.727

% black population 0.007 0.005, 0.009  < 0.0001

% Hispanic/Latino population -0.021 -0.056, 0.016 0.292

Educational Variables

% with ≤ high school education 0.015 0.010, 0.020  < 0.0001

% with some college education 0.035 0.022, 0.049  < 0.0001

% with associate’s degree 0.028 0.0002, 0.055 0.036

% with bachelor’s degree -0.021 -0.028, -0.014  < 0.0001

Economic Variables

% below poverty level 0.017 0.009, 0.024  < 0.0001

median income -5.00E-06 -0.000008, -0.000003  < 0.0001

Health Behavior (ZCTA-level number of hospitalized patients that use tobacco per 100 Population)

% tobacco1 0.046 0.034, 0.058  < 0.0001

Co-morbidities (ZCTA-level number of hospitalized patients with specific condition per 100 Population)

% obesity 0.138 0.104, 0.171  < 0.0001

% cancer -0.029 -0.096,0.032 0.377

% COPD2 0.11 0.055, 0.164  < 0.0001

% CKD3 0.1 0.068, 0.131  < 0.0001

% heart failure 0.194 0.123, 0.265  < 0.0001

% diabetes 0.11 0.083, 0.136  < 0.0001

Confirmed COVID-19 Cases

total cases 1.40E-05 -0.0002, 0.00023 0.9

cases per 100 population 0.277 0.192, 0.3621  < 0.0001

Table 3  Final Global Negative Binomial Model Showing Significant Determinants of COVID-19 Hospitalization Risk in the St. Louis area

1 Number of hospitalized patients with diabetes per 100 Population

Name Coefficient 95% Confidence Interval p-value

% black population 0.0014 0.0001, 0.0027 0.0416

% with some college education 0.0180 0.0078, 0.0281 0.0005

% diabetes1 0.0628 0.0397, 0.0860  < 0.0001

Confirmed COVID-19 cases per 100 population 0.2623 0.2027, 0.3218  < 0.0001
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positive association between COVID-19 hospitalization 
risks and diabetes hospitalization risks. Finally, the associ-
ation between COVID-19 hospitalization and population 
adjusted cases of COVID-19 increased from West to East, 

with the association staying positive in all ZCTAs of the 
study area. It is worth noting that the local GWNB model 
had a much better goodness-of-fit (AICc = 986.4) than the 
global model (AICc = 1002.7).

Fig. 2  Geographic distribution of ZCTA-level COVID-19 age-adjusted hospitalization risks and its significant predictors in the St. Louis area, Missouri

Table 4  Results of assessment of stationarity of the coefficients of the predictors of the COVID-19 hospitalization risks in the St. Louis 
Area, Missouri

1 Standard Error
2 Interquartile Range
3 Number of hospitalized patients with diabetes per 100 Population
4 Coefficients are non-stationary based on both the p-value of the stationarity test and IQR-2(SE) assessment
5 Coefficient is non-stationary based on IQR-2(SE) assessment

Global SE1 Global SE1 × 2 IQR2 of Local 
Coefficient

IQR-2(SE) Stationarity test 
p-value

Is Coefficient 
Stationary?

% Black Population 0.0007 0.0014 0.0148676 0.0134676 0.001 No4

% With Some College 
Education

0.0052 0.0104 0.0092401 -0.0011599 0.406 Yes

% diabetes3 0.0118 0.0236 0.0416903 0.0180903 0.032 No4

Cases of COVID-19 per 
100 population

0.0304 0.0608 0.1164299 0.0556299 0.109 No5
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Discussion
The goal of this study was to investigate geographic dis-
parities and identify predictors of ZCTA-level COVID-19 
hospitalization risks in the St. Louis area. The findings of 
this study can be used to identify areas where the popu-
lation is at higher risk of hospitalization due to COVID-
19 in order to guide planning and control efforts and 
to reduce potential overburdening of hospitals during 
COVID-19 surges.

There was evidence of geographic disparities in 
COVID-19 age-adjusted hospitalization risks in the study 
area. Urban ZCTAs in St. Louis City and St. Louis County 
exhibited high hospitalization risks. These ZCTAs also 
had high percentages of the population that were black, 
some as high as 98.4%. Some of these ZCTA also had 
high diabetes hospitalization risks. It is worth noting 
that some rural ZCTAs in Franklin and Warren coun-
ties had high COVID-19 hospitalization risk but very 
low percentages of the population that were black. How-
ever, these ZCTAs had high diabetes hospitalization risks 
implying that the COVID hospitalization risks in these 
rural ZCTAs were more driven by diabetes burden than 
demographic factors. Thus, although COVID-19 hospi-
talization risks in the more urban areas seem to be driven 
by the demographic composition of the population, the 
risks in the more rural areas seem to be driven more by 
diabetes burden. Geographic areas with intermediate 
to high COVID-19 hospitalization risks tended to have 
high percentages of the population with some college 
education and included ZCTAs in Franklin, Jefferson, St. 
Louis City and St. Louis County. It is worth noting that 
St. Louis City and St. Louis County tend to have similar 
restrictions, but often times, the restrictions from the 
other counties are more laxed. Previous ecological and 

individual level studies have not considered education 
level as a predictor of hospitalization risk. The level of 
education may be a proxy of occupation and other soci-
odemographic factors that may impact both the risk of 
infection and the resulting severity of the disease and 
hence hospitalization risks.

The above findings are consistent with those from pre-
vious ecological studies that investigated risk factors and 
predictors of COVID-19 hospitalization. For instance, an 
ecological study by Nguyen et al. reported that diabetes 
was a significant predictor of high COVID-19 hospitali-
zation risk at the county level in Georgia, USA even after 
controlling for sociodemographic and economic fac-
tors [31]. On the contrary, an Iranian study conducted 
at the provincial level did not find a significant associa-
tion when only controlling for chronic disease factors 
[32]. This may indicate differences of relationships in 
different geographic areas and populations as well as the 
importance of controlling for sociodemographic factors 
when evaluating the impact of chronic disease variables 
on COVID-19 hospitalization risk. Considering the fact 
that ZCTAs with high diabetes hospitalization risks also 
tended to have high COVID-19 hospitalization risks, 
COVID-19 mitigation efforts may need to be targeted 
to these ZCTAs to reduce the potential burden of the 
disease.

Interestingly, the study by Nguyen et  al., which also 
considered sociodemographic and economic factors 
as well as comorbidities, did not find a significant asso-
ciation between percentage of black population and 
COVID-19 hospitalization risk [31]. However, it did 
identify other socioeconomic factors that this study did 
not consider, including: percentage of children in poverty 
and percentage of the population with severe housing 

Fig. 3  Geographically Varying Coefficients of the Local Geographically Weighted Negative Binomial Model Predicting COVID-19 Age-adjusted 
Hospitalization Risks in the St. Louis area
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problems. Although not directly comparable with the 
current ecological study, previous individual level studies 
have also identified associations between black race and 
COVID-19 hospitalization risk [8, 13, 33].

The local GWNB model allowed modeling of geo-
graphically varying associations between COVID-19 hos-
pitalization risks and its predictors instead of assuming 
constant associations across the study area. Although 
the coefficients of percentage of black population, dia-
betes hospitalization risk and risk of COVID-19 infec-
tions varied spatially, the coefficients of percentage of 
the population with some college education did not and 
hence was modeled as stationary. This suggests that the 
coefficients for the percentage of the population with 
some college education are generalizable to all ZCTAs in 
the study area. In contrast, geographic variations in the 
associations between COVID-19 hospitalization risks 
and the percentage of black population, diabetes hospi-
talization risks and risks of COVID-19 infections suggest 
that global coefficients do not adequately describe the 
associations between COVID-19 hospitalization risks 
and these predictors across the study area. These findings 
have health planning and service provision implications. 
For instance, a “one size fits all” approach would not be 
suitable for addressing geographic disparities in COVID-
19 hospitalization risks across the study area since some 
predictors are more important in some locales than oth-
ers. Thus, different locales may require slightly different 
strategies depending on the most important predictors 
driving COVID-19 hospitalization risk in the location. 
Therefore, planning for hospital capacity and other dis-
ease management and control efforts will need to use evi-
dence-based approaches informed by empirical evidence 
from both global and local models.

Strengths and limitations
This study used both global and local models to inves-
tigate geographic disparities and identify predictors of 
COVID-19 hospitalization risks in St. Louis region of 
Missouri. Unlike studies that use only global statistical 
models and no GIS and/or local models, this study has 
been able to identify how the associations between the 
outcome (hospitalization risks) and each of the identi-
fied significant predictors change based on geographic 
location. The use of local models to investigate station-
arity of regression coefficients of significant predictors 
and model non-stationary coefficients is a key strength 
of the study. This approach is particularly important in 
guiding local health planning since the importance of dif-
ferent predictors are not constant across the study area 
implying that different management and control strat-
egies may need to be used in different areas. For exam-
ple, while race (% black) may be a more important driver 

of hospitalization risks in some locations, other factors 
(such as diabetes) play more important roles in other 
areas. This is very useful information for guiding local 
health planning and disease control/prevention strategies 
and suggests that a one-size-fits-all strategy might not be 
the best approach for disease control. Therefore, mod-
eling approaches that use both global and local models 
help to better understand the relationships between the 
outcome and predictors and may be more useful in guid-
ing control efforts at the local level. However, the study is 
not without limitations. The hospital data has limitations 
associated with diagnostic classifications of COVID-19 
in  situations when the patient has co-morbidities that 
may have contributed to hospitalization. The age-stand-
ardization of the hospitalization risks was done using the 
2010 US census data which was the most recent US cen-
sus data available at the time of the study. Additionally, 
there may be geographic differences in COVID-19 case 
ascertainment and reporting.

Conclusions
There is evidence of geographic disparities in COVID-
19 hospitalization risks in the St. Louis area of Mis-
souri. These disparities are driven by socioeconomic, 
demographic and health-related factors. The impacts of 
these factors vary by geographical location with some 
factors being more important predictors of COVID-19 
hospitalization risk in some locales than others. This 
demonstrates the importance of using not only global 
but also local models to investigate determinants of 
geographic disparities in health outcomes and utiliza-
tion of health services. This study’s findings are useful 
for informing healthcare system planning to identify 
geographic areas likely to have high numbers of indi-
viduals needing hospitalization as well as in guiding 
vaccination efforts.
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