
Detection of fickle trolls in large‑scale online
social networks
Hossein Shafiei1 and Aresh Dadlani2*   

Introduction
Online social platforms have become an essential part of human interactions over the
past few years. These platforms have attracted billions of people from around the globe.
Recent studies showed that over 75% of users check their social pages at least once a
day, and an average user spent 2 hours and 24 minutes per day on social media in 2020
[1]. It has also been shown that more than half of US citizens get their news from social
media [2]. The dominant role of these platforms also attracts misinformation, hoaxes,
and fake news campaigns that can propagate readily as factual information. For example,
[3] showed that during the Ebola crisis fake news spread as quickly as accurate informa-
tion on the Twitter social media platform. This rate of spread was (in part) facilitated by
social trolls.

Abstract 

Online social networks have attracted billions of active users over the past decade.
These systems play an integral role in the everyday life of many people around the
world. As such, these platforms are also attractive for misinformation, hoaxes, and fake
news campaigns which usually utilize social trolls and/or social bots for propagation.
Detection of so-called social trolls in these platforms is challenging due to their large
scale and dynamic nature where users’ data are generated and collected at the scale of
multi-billion records per hour. In this paper, we focus on fickle trolls, i.e., a special type
of trolling activity in which the trolls change their identity frequently to maximize their
social relations. This kind of trolling activity may become irritating for the users and
also may pose a serious threat to their privacy. To the best of our knowledge, this is the
first work that introduces mechanisms to detect these trolls. In particular, we discuss
and analyze troll detection mechanisms on different scales. We prove that the order of
centralized single-machine detection algorithm is O(n3) which is slow and impractical
for early troll detection in large-scale social platforms comprising of billions of users.
We also prove that the streaming approach where data is gradually fed to the system
is not practical in many real-world scenarios. In light of such shortcomings, we then
propose a massively parallel detection approach. Rigorous evaluations confirm that
our proposed method is at least six times faster compared to conventional parallel
approaches.

Keywords:  Online social networks, Large-scale networks, Troll detection

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22
https://doi.org/10.1186/s40537-022-00572-9

*Correspondence:
aresh.dadlani@nu.edu.kz
2 School of Engineering
and Digital Sciences,
Nazarbayev University,
Nur‑Sultan, Kazakhstan
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-6841-9682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00572-9&domain=pdf

Page 2 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

Social trolling is a general term coined to describe various types of disruptive behavior
in social platforms, such as impersonating as experts (in the topic of discussion) and
then propagating misinformation or fake news [4]. The act of trolling can be carried out
by either a real person or a social bot which essentially, is a software agent that commu-
nicates autonomously on social media with the task defined by the owner.

Trolling is a broad term that includes various forms of online misbehaving activity
ranging from deceive and misleading comments to offensive and threatening behavior.
Trolling activity is not usually categorized as spamming. Instead, the end goal of trolls
is to build up confusion and inject misinformation in the target community while the
spammers have financially-driven intentions. Typical examples of trolling behavior
include mocking and discrediting discussion participants, inciting and escalating argu-
ments, and impersonating expert users while spreading bad advice and false information
[4].

Undoubtedly, trolling is a critical issue that threatens the role of social media as the
dominant global information dissemination platform. This makes troll detection one of
the most important challenges for social media administrators. A straightforward detec-
tion approach is to rely on user feedback reports, i.e., users report abusive behavior to
the system and the platform moderators carefully examine the reports before decisively
suspending the suspicious user account. This approach however, has been shown to suf-
fer from various shortcomings; (1) the method is not scalable and often burdens the
platform provider with excessive costs as it requires ample amount of human resources,
(2) it is not sufficiently fast enough as the approach relies heavily on human intervention
and often, the intended damage is already done before the detection of the troll, (3) trolls
often utilize impersonation and disguise methods thus, making it arduous for modera-
tors to detect trolling activity.

To maximize their influence, social trolls tend to expand their pool of followers on
the target social platform. This can be achieved through an array of activities discussed
comprehensively in [5]. Amongst these activities, impersonation is deemed as one of the
most effective approaches [6]. This act can be conducted either through profile cloning
[7] or fake profile identities [8]. In the former case, the trolls clone well-known profiles
and try to gain followers especially among new users of the platform. In the latter, the
trolls introduce a fake identity as an important person (e.g. a non-existent celebrity) or
an expert (e.g. a physician) to attract followers. To reach out to a larger audience, some
of these trolls, which we refer to as fickle trolls, go the extra mile to change their fake
identity frequently [9]. In Section 3, we discuss a case study describing this type of troll-
ing in detail.

While many research studies have focused their attention on troll detection
approaches in online social platforms, they usually fall short when dealing with fickle
trolls in large-scale social networks:

1.	 The approaches usually utilize machine learning tools to extract and analyze a set
of features for detecting trolling activities. As an example, Botometer1 is a machine
learning framework that extracts and analyses a set of over one thousand features.

1  https://​botom​eter.​osome.​iu.​edu/.

https://botometer.osome.iu.edu/

Page 3 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

Clearly, these approaches are slow and impractical in very large networks with rap-
idly changing data.

2.	 The existing approaches are not specifically designed to detect fickle trolls. That is to
say, fickle trolls can evade existing detection approaches due to the high frequency at
which they change their identity.

This paper aims to fill this gap by introducing a method to detect fickle trolls in large-scale
social networks. Considering a large dataset of user activities in an online social platform,
we first extract a graph-theoretic model based on the data and then we discuss fickle troll
detection in different scales. The main contributions of the paper are listed as follows:

•	 Firstly, we consider a single powerful machine that has the memory capacity of an entire
dataset, i.e., a small size dataset. We show that the asymptotic time complexity of the
centralized single-machine detection algorithm is large for early troll detection in large-
scale social platforms with billions of users.

•	 We then discuss a streaming approach on a single machine for cases in which the data-
set is larger than the memory and the data is fed to the machine sequentially. We prove
that the streaming-based approach is not practical in many real-world scenarios.

•	 Next, we propose a massively parallel approach that is both flexible and scalable to han-
dle an extra-large amount of data that changes over time.

•	 Finally, rigorous evaluations based on real-world traces (Twitter Dataset of Russian troll
accounts publicly disclosed by U.S. Congress investigation [10]) are conducted to vali-
date the efficiency of the proposed method. Our approach can detect suspicious fickle
trolls approximately 6 times faster and with 50% lower overhead.

To the best of our knowledge, this is the first work that focuses on fickle trolling on social
networks and presents detection approaches for this unwanted and sometimes hazardous
phenomenon. Every troll detection approach in a social network suffers from reactive and
countermeasure methods, conducted by the trolls, either through dissembling or luring the
detection mechanism. As such, these approaches and mechanisms should be revised regu-
larly to adapt to the dynamic nature of trolling activities. In this regard, our approach is not
an exception. To effectively detect fickle trolls, the proposed mechanism and the regarding
parameters should be adapted frequently.

The rest of the paper is organized into five sections. The first section highlights the impor-
tance of fickle troll detection and the main contributions of this research paper. This is fol-
lowed by related works in the second section. The three different methods for detection of
suspicious nodes is discussed in the third section. The fourth evaluates the proposed meth-
ods and compares the results with other similar approaches. Finally, conclusive remarks are
made in the fifth section.

Background and related works
Many research studies have focused their attention on various aspects and challenges
that online social networks face. The focus of these studies ranges from community
detection [11–15], social recommender systems [16, 17], social media analysis [18–21] to
misbehaviour and disruptive activities [22–25]. In particular, the topic of troll detection

Page 4 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

in online social networks has attracted many research studies in the course of the past
few years [26–28]. Various studies have focused on troll detection approaches. Table 1
lists and compares recent approaches. Tomaiuolo et al. [29] surveyed troll detection and
prevention approach comprehensively. Tsantarliotis et al. [4] presented a framework
to define and predict trolling activity in social networks. Fornacciari et al. [5] focus on
introducing a holistic for troll detection on Twitter2. Alsmadi [30] discussed features
related to trolling activity using Twitter’s Russian Troll Tweets dataset. Other studies
also focused their attention on various aspects of that dataset [31–33], some of them
using Botometer which is a machine learning approach. However, Rauchfleisch et al. [34]
discussed that these approaches suffer from relatively high false negatives and also false
positives, especially for languages other than English. Tsantarliotis et al. [35] proposed a
graph-theoretic model for troll detection in online social networks. They introduced a
metric called TVRank to measure the severity of the troll activity with respect to a post.

Other research efforts have been devoted to analyzing the behaviors and socio-cul-
tural features of trolling activity and reactions of the target society. Mkono [36] studied
the trolling activity on Tripadvisor3 which is a social platform specialized in travel and
tourism. Hodge et al. [37] examined the geographical distribution of trolling on social
media platforms. Sun et al. [26] studied the reaction of YouTube4 users to the trolls. They
showed that well-connected users situated in densely connected communities with a
prior pattern of engaging trolls are more likely to respond to trolls, especially when the
trolling messages convey negative sentiments. Basak et al. [38] focused their attention on
a specific type of trolling activity, i.e., public shaming. March [39] analyzed the psycho-
logical and behavioral background of trolling activities.

More recently, few research studies have focused on trolling activities, their detec-
tion, and prevention during the COVID-19 pandemic [40]. Jachim et al. [41] introduced
a machine learning-based linguistic analysis approach to detect the so-called “COVID-
19 infodemic” trolls. Thomas et al. [42] discussed a trolling activity during the recent

Table 1  Comparison of various troll and bot detection approaches discussed in the literature

Ref. Dataset Technique Limitation(s)

[4] Reddit Troll vulnerability metrics to predict a post is
likely to become the victim of a troll attack.

Focuses on the contents of posts and the activ-
ity history of users; does not consider trolling
behaviour directly.

[5] Twitter Takes Holistic approach, i.e., it considers vari-
ous features such as sentiment analysis, time
and frequency of action and etc.

The approach is slow since it considers a magni-
tude of features also it suffers from false positive
detection

[30] Twitter Multi feature analysis, i.e., it considers the tim-
ing of tweets and the contents

It only focuses on the dataset, e.g., the usage of
formal tone in trolls instead of slang and slurs

[31] Twitter Classification based on multiple behavioural
and content-based features such as wording
and hashtags or mentions

It suffers from high false positive and only
concentrates on the behaviours extracted from
one specific dataset

[32] Twitter Classification based on bot detection using
Botometer and geolocation data

Inaccuracy of Botometer and the ability of trolls
and bots to mask their real location

2  https://​twitt​er.​com.
3  https://​tripa​dvisor.​com.
4  https://​youtu​be.​com.

https://twitter.com
https://tripadvisor.com
https://youtube.com

Page 5 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

pandemic. Sharma et al. [43] analyzed disinformation campaigns on major social media
platforms conducted by social trolls during the COVID-19 pandemic.

In spite of the above effort, detection methods for fickle trolls have not been fully
investigated in the literature. Specifically, the existing methods can not be altered to
detect such activity since the main aim of the fickle trolls is to maximize their follow-
ers and thus, they may not exhibit behaviors that can be detected by typical methods.
This paper aims to provide novel approaches to detect fickle trolls at different scales. We
also hope that this paper provides a better understanding of this malicious behavior and
serves as a basis for future investigations and research studies on this topic.

The proposed approach
In this section, we first present a case study to clarify our approach. We then propose
our assumptions and definitions before introducing the detection approaches.

A case study

In order to gain better insights on the nature of fickle trolls, we present a case study in
this section. We tracked the changes in the identity of a case study (i.e., a fickle troll)
along with the topics (hashtags) and contents they posted on Twitter. We tracked this
case for 97 consecutive weeks, where we gathered and logged the aforementioned data
on weekly basis. At the start of the study, the troll had approximately 7k followers, and
at best, they reached over 71k followers. Figure 1 shows the number of their followers
per week. The troll changed their identity 4 times during the study. At week 8, the troll
changed their identity to a female ship’s crew member. A major naval incident in the
previous week killed many crew members onboard a ship causing public grief. During
a massive wildfire (around week 25), the troll purged all the previous posts, changed
their identity to a male firefighter, and posted many daily fire fighting photos. The
troll changed their identity to a female environmental activist at week 43. Again they
cleared all the previous history and the number of followers rose to 31k. The last change
occurred at week 59 (around the same time the COVID-19 pandemic was declared by
the World Health Organization). This time, they changed their identity to a female front-
line health worker. The number of followers rose to 71k. The troll started posting anti-
vaccination posts and hoaxes around week 80.

System model and assumptions

We consider that the fickle trolls are resourceful, i.e., they can alter their identity without
any restrictions or concerns. We consider that the system has access to user personal
information. Therefore, information such as the user’s gender or job is either claimed by

Fig. 1  Changes in the number of followers per week for the case study

Page 6 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

the user or can be deduced by content analysis. We define these as user attributes. For
example, in our case study, user x has attributes job:firefighter, job:shipcrew,
job:nurse, gender:male and gender:female. A trivial solution in this example
would be to detect conflicting attributes and label them as suspected. This is possible for
some of the well-known multi-valued or binary attributes. However, in ever-increasing
polarized social networks [44, 45] with a wide variety of discourses, discussion topics,
and trends, the realization of conflicting attributes is not feasible. Our main idea is to
find users with an arbitrary and somewhat unique set of attributes in the entire net-
work and label them as suspected for further investigations. To this end, we construct a
graph where nodes are users or attributes. The edges show relations between users and
attributes. In what follows, we define the attribute graph formally and then discuss its
characteristics.

Attribute graphs

Consider G(V, E) to be a simple undirected graph, where the set V represents vertices
that are comprised of two types: users with label ui and attributes denoted as aj . Each
subset is denoted by Vu and Va , respectively, and |V | = n . In this graph, an edge exists
between ui and aj if the user ui has the attribute aj . We call this the attribute graph. Sup-
pose that �a and �u represent the maximum degree of attribute nodes5 and user nodes,
respectively, and �u ≫ �a . Also, let d be the diameter of the graph and Aui be the neigh-
boring set of the node ui . Figure 2 exemplifies such a graph, where labels {u1,u2,u3,u4}
stand for users and {a1, a2, a3, a4} signify the attributes.

Clustering coefficient

Clustering coefficient is a measure of the degree to which nodes in a graph tend to clus-
ter together. It is usually represented by a real value between zero and one, i.e., zero
when there is no clustering at all and one for total clustering. In graphs where the value
is close to one, the nodes tend to create tightly knit groups characterised by a relatively
high density of ties, whereas when it is close to zero, the nodes form looser clusters
among each other. This notion is often interpreted as the probability that two incident
edges are completed by a third one to form a triangle. Clustering coefficient is one of
the important measures of the performance of massively parallel approaches [46, 47].
In what follows, we show that this measure is zero for the attribute graph. The proof is
based on the following lemma:

Fig. 2  An example of an attribute graph

5  In this paper, the terms node and vertex represent exactly the same notion and have been used interchangeably.

Page 7 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

Lemma 1  In an attribute graph G(V, E), every cycle has an even number of nodes.

Proof
Suppose that a cycle in an attribute graph has odd number of nodes. Then, either two
nodes in Vu or two nodes in Va become neighbors in the cycle, which contradicts the defini-
tion of attribute graphs.� �

With no triangles to form clusters, the clustering coefficient of the attribute graph is
equal to zero. As we will show later in this paper, this is actually an important measure
for our proposed detection methods.

Suspected nodes

When there are only one or few users with exactly the same set of attributes i.e., there
are one or few user nodes that are connected to the same attributes in the graph, we
consider these nodes as suspected nodes. Note that in here, by few users, we mean the
number of users that is smaller than a system-wide threshold, denoted by τ and also we
ignore user nodes with attributes smaller than δ which is also a system-wide threshold.
The actual value of these thresholds depends on the social network.

Figure 3 shows an example of such a scenario. As shown in the figure, a user user:x
is connected to four attributes and no other user has exactly this set of attributes. This
makes the user unique in this respect. Thus, we consider it as a suspected node.

Detection methods

In this paper, we discuss possible detection methods at three different scales:

1.	 Single Machine: In this approach, we have a single computation machine and the
whole attribute graph is available inside the machine. We consider the memory of
the machine to be large enough to store the attribute graph. Although this assump-
tion is unrealistic for most real-world networks, there are however, some cases where
the graph does not exceed the size of the machine’s memory. We also suppose that
the attribute graph remains fixed during the computation. The machine processes
the graph and detects the suspected nodes.

2.	 Streaming: In this approach, we have a single computation machine with limited
memory, denoted by m. The input of the machine is a sequence of edges that are

Fig. 3  Another example of an attribute graph

Page 8 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

streamed to the machine. Linear scanning of the memory is possible for the proces-
sor. Here, the goal is to minimize m.

3.	 Massively Parallel: In this approach, we have M machines that work in parallel and
are interconnected. Nodes of the graph are partitioned inside the machines. Edges
whose end nodes reside in different machines are called outbound edges as opposed
to inbound edges. The machines communicate with each other using a message pass-
ing approach. The goal here is to minimize the number of transmitted messages
between machines.

Single machine approach

By our definition, if there are fewer than τ nodes that have exactly the same neighbouring
set, those nodes are considered as suspected. Here, we have a single processing machine
with a memory large enough to load the entire attribute graph. We are interested in
an algorithmic approach to explore suspected nodes. In what follows, we present such
an approach. Lemma 2 establishes the basis for a modified version of the well-known
Depth-First-Search (DFS) algorithm to detect such nodes.

Lemma 2  Consider two nodes ux,uy ∈ Vu . If every 4-cycle6 that starts from ux either
passes through uy or passes through attributes connected to ux , then Aux ⊆ Auy.

Proof  Suppose that ux has another attribute in its neighboring set ai such that ai is not
in the neighboring set of uy . Then, the 4-cycle that starts from ux and passes through ai
cannot pass through uy since they are not connected. Thus, in this case there is at least
one 4-cycle that starts from ux and does not pass through uy , which is a contradiction.��

If Aux = Auy , i.e., the two nodes have the same attribute sets, and if there are greater
than τ such nodes, then neither is suspected.

The algorithm to find all 4-cycles starting from a node can be obtained with minor
alterations to the well-known DFS algorithm. The number of iterations for the algorithm
in this mode is O(n3) which is impractical even for medium-sized graphs. On the other
hand, the storage requirement for this approach is O(|V | + |E|) . Again, when there are
millions of nodes with billions of edges between them (as evident in most online social
networks), fitting the entire graph inside the memory of a single machine is infeasible.

To speed up the algorithm, one approach is to utilize multi-threading, where each
thread chooses a start point and executes the DFS algorithm. The threads stop when
all nodes are visited by at least one thread and at least once. This approach can be per-
formed either synchronously or asynchronously. Synchronous mode requires heavy
coordination between threads which makes it impractical. Asynchronous mode is sim-
pler to implement and does not have the coordination overhead, however, it may over-
count cycles, i.e., a thread counts a cycle that was already counted by another thread.

6  A cycle with x nodes is called an x-cycle.

Page 9 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

Streaming

To be able to handle the large size of the data that often goes beyond the memory
capacity of a single machine, another strategy is to stream the data gradually to the
machine. In the streaming approach, the machine processes the input in a multi-
pass manner. The number of times that the machine linearly scans the memory is an
important measure for the performance of any streaming-based processing approach
[48]. The size of available memory to the machine is limited. So, as the new inputs
from the stream are received by the machine, the oldest ones are overwritten. Thus,
the minimum required memory is also another important performance measure.

The input data in this approach is a sequence of edges. Although the node-based
streaming is also possible, in this paper, we focus on edge-based streaming which is
illustrated in Fig. 4. The figure illustrates a streaming scenario, i.e., edges are fed (from
left side) to a buffer with limited capacity (in this example the capacity is 5). The pro-
cessor (P) in the figure scans the memory and constructs cycles. The processor is able
to scan the memory indefinitely, however, as the buffer is capped, edges are deleted
from the buffer (from right side). In the first pass, P forms the incomplete cycle of
a1,u2, a2,u1 . In the second pass, (a1,u1) is added to the memory thus, resulting in the
formation of a 4-cycle. There are many possible patterns for the sequence of edges,
two of which are described below.

Random sequences

In this pattern, the edges are received by the machine uniformly at random. This
approach is useful for cases wherein the graph is highly flexible and changes during
execution. Nonetheless, it uses O(n) memory space in the worst-case which makes it
less attractive for large volumes of data.

Deterministic sequences

There are various deterministic sequencing patterns. Here, we adopt the Breadth-
First-Search (BFS) algorithm to determine the sequence in which edges are sent to the
machine. The first node is selected randomly, then the edges connected to that node
are sent, and so on and so forth. Theorem 1 determines the memory space used inside
the machine in the worst-case along with the number of passes the machine scans the
memory.

Fig. 4  The concept of streaming approach

Page 10 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

Theorem 1  The BFS-based deterministic streaming approach uses O(�u) memory
space with O(d�u) passes.

Proof  The proof is straightforward. In order to detect 4-cycles, the algorithm needs to
store 4 levels of the BFS algorithm. The first level is a node from Va , the second level
has at most �a nodes, the third has at most �u�a and the forth level has �u�

2
a nodes,

thus O(�u) for memory space. After formation of the 4 levels, a DFS can find the sus-
pected nodes. There are O(�u) nodes and at most O(�u) edges and at most d levels,
thus requiring O(d�u) passes.� �

This approach is practical when the maximum degree �u is at most logarithmic; how-
ever, this is not the case for many real-world applications. For example, at least half of
the users are either male or female, i.e, O(n) . Moreover, the processing takes consider-
able amount of time which is not feasible for most real-world cases. To overcome these
issues, we employ the following massively parallel approach.

Massively parallel approach

We utilize a vertex-centric distributed approach [49] for the detection of suspected
nodes when there are large number of nodes in the attribute graph. The basic idea in
the vertex-centric distributed approach is to iteratively execute an algorithm over ver-
tices of a graph. In this setting, the vertex-centric algorithm in each node includes data
from adjacent vertices or incoming edges as input, and the produced output is com-
municated along outgoing edges of the vertex. These algorithms are usually iteratively
executed for a predefined number of times or until they converge to the desired proper-
ties. The distributed algorithm is performed inside an array of trusted machines that are
interconnected together and communicate with each other using message passing or via
memory sharing. The vertices of the graph are distributed inside those machines prior
to the execution (which is called the placement phase) and the inbound and outbound
edges are established, then the vertex-centric algorithm is executed on each vertex in
each machine.

Various large-scale parallel approaches have been proposed for graph processing. Since
the introduction of Pregel [50] by Google, many other techniques such as GraphLab
[51], GraphX [52] and Pangolin [53] have been reported in the literature. Some of these
approaches are vertex-centric while others are edge-centric. Hybrid approaches have
also been proposed [54]. Other studies have focused on improving the performance of
these approaches [55]. It has been observed that usually the input graphs to massively
parallel graph processing tools are preferential attachment networks which are catego-
rized as scale-free graphs [56, 57]. These types of graphs exhibit two major properties as
given below.

Power‑law degree distribution

Power-law degree distribution means that a small fraction of nodes in the graph have
many direct neighbors while the rest of the nodes have few neighbors. For example,
one percent of the nodes in the Twitter’s web graph are adjacent to nearly half of the
edges. This causes a series of issues in any massively parallel approach when applied on

Page 11 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

such graphs. It leads to imbalance in the computation, network traffic, and storage of
machines that contain nodes with higher degrees. To remedy this issue, PowerGraph
[56] and its successors such as PowerLyra [58] differentiate the functionality of nodes,
i.e., the high degree nodes (nodes with many neighbours) perform series of actions that
are different from low degree nodes (nodes with fewer neighbours).

As the interaction between users and attributes follows the preferential attachment
scheme [59], it is sound to assume that the attribute graph also follows the power-law
degree distribution. PowerGraph performs well in this scenario; however, the attribute
graph has another property (low clustering coefficient) that distinguishes it from typical
scale-free graphs and leads to poor performance of PowerGraph and PowerGraph-like
approaches on the attribute graph.

High clustering coefficient

As discussed earlier in this paper, in a vertex-centric approach with multiple machines,
the first task is to distribute nodes among those machines. A number of approaches have
been proposed for node placement that ranges from fully random placement to greedy
algorithms. After the placement in each machine, a local graph is constructed among
the nodes that reside in the machine. In PowerGraph, instead of nodes that are placed
in other machines, exact “replicas” of those nodes are placed in each machine. This
approach is indeed feasible for scale-free graphs. High clustering coefficient means that
the probability that two connected nodes are also connected to the same replica is high.
This means that the number of replicas reduces with high probability.

To clarify the above argument, consider the example depicted in Fig. 5a. Sup-
pose that we have a graph with high clustering coefficient and we distribute the
constituent nodes of this graph between two machines, namely M1 and M2 . Let us
also assume that two nodes a and b of the graph are connected and reside in the

a

b

c

M1 M2

d

c

(a) An example of
placement of a graph
with high clustering
coefficient in 2 ma-
chines. Here, c is a
replica of c.

a1

a3

u3

M1 M2 M3

u1

u2a2

(b) A placement of an attribute
graph in 3 machines. Shaded
nodes are attribute nodes.

a1

a3

u3

M1 M2 M3

a3

a1
a1

a3

u3

a2

u1

u2 u2
u2a2

u1

(c) A placement and its regard-
ing replica nodes. Dotted nodes
are replicas.

M1

u1

M2 M3

u2

u3

P2 P3P1

(d) Each machine Mi has proxy
node Pi. All nodes inside each ma-
chine are connected to the proxy
node inside that machine.

Fig. 5  Various examples of node placement inside machines

Page 12 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

first machine and nodec is connected to a and resides in another machine. Using
the above approach, we make a replica of c, say c′ , and assign it to the first machine
( M1 ) and then construct the edges, i.e., an inbound edge between a and c′ and an
outbound edge between c and c′ . High clustering coefficient means that if a and b
are connected and a and c are connected, then it is highly probable that b and c are
also connected, which implies that the inbound edge between b and c′ is formed with
high probability. Unfortunately, this is not valid for the attribute graph as its cluster-
ing coefficient is equal to zero. For example, if a user node and an attribute node are
placed inside a machine and the two nodes are connected, and the user node is also
connected to another attribute node, then according to definition, it is not possi-
ble for the two attribute nodes to have an edge between them. This renders replica-
based approaches extremely inefficient for attribute graphs. To further exemplify,
suppose that we want to distribute an attribute graph over 3 different machines,
namely M1 , M2 , and M3 . One possible placement for this scenario is depicted in
Fig. 5b. Figure 5c shows the replicas that are created in each machine to construct
the graph. Each node inside the machine is connected to a replica of its original
neighbour and replicas are connected to their respective original nodes. Clearly, the
amount of outbound connections and the number of replicas in each machine make
this approach inefficient.

The above argument justify that the existing approaches are not suitable for attrib-
ute graphs. As such, we introduce an approach that is specifically tailored for attrib-
ute graphs. The approach consists of the following three steps for node placement:

1.	 User nodes are distributed based on a balanced hash function.
2.	 Each machine contains a node called the proxy node of the machine, denoted by Pi ,

where i is the index of the machine.
3.	 Star-like connection is established between user nodes inside each machine and the

proxy node.

Figure 5d shows an example of our proposed node placement scheme in which we
assume that:

•	 Each user node has a list of its neighbors, i.e., its attributes.
•	 Nodes are placed inside machines based on the hashes of their IDs.
•	 Outbound communication is only possible through proxy nodes.
•	 The execution can be done either synchronously or asynchronously.
•	 The user nodes are dynamic, i.e., new nodes can be added to the system or old

ones may be deleted from the system at any time.
•	 Machines are dynamic, i.e., new machines are added to the system to improve

scalability. Old machines may be merged to reduce overhead.

Building on these assumptions, we present our vertex-centric algorithm to find sus-
pected nodes in what follows.

Page 13 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

Detection algorithm

Essentially, what we want here is for a node such as ui to have the neighboring set of
every node that has common attribute with ui . For example, in the attribute graph
of Fig. 2, we want us to have the neighboring set of ux and uy since they have com-
mon attributes, i.e., a1 and a4 with us . The straightforward approach would be for each
node to determine its neighboring set and send it to all its two-hop neighbors. In
a distributed vertex-centric with multiple machines, each vertex is not aware of the
neighboring set of its two-hop neighbors after the placement. To do so, every user
node ux constructs a beacon < ux, ai > for each of its attributes and sends each of
them to the proxy node of the machine. Upon receiving the beacon, the receiver
broadcasts the beacon to all other proxy nodes. Each proxy node relays the beacons
locally to all of its neighbors. The receiver (e.g. uy ) looks up its neighboring list and if
it has ai , sends back an acknowledgment response to the proxy node. The proxy node
routes back the response to the sender’s proxy node. The sender’s proxy node then
relays the acknowledgment (ACK) to the sender. The sender saves < uy, ai > locally.
In this way, each node finds the neighbors of its attributes. For example, for the graph
given in Fig. 2, node u2 receives tuples < a1,u1 >,< a2,u1 >,< a3,u1 > and so on.
The pseudocode of this entire procedure is given in Algorithm 1.

Algorithm 1 Parallel two-hop neighbor discovery
Input: An attribute graph
Output: Every node ui finds its two-hop neighbors
1: for all user node ui in machine k do in parallel
2: send a beacon < ui, aj > to Pk

3: end for
4: for all < ui, aj > received at Pk do
5: forward < ui, aj > to all nodes inside k
6: end for
7: for all ACK(ui, ux, aj) received at Pk do
8: if ui in k then
9: send < ux, aj > to ui

10: end if
11: end for
12: for all < ui, aj > received to ux in Pk do
13: if (ux, aj) ∈ E then
14: send back ACK(ui, ux, aj) to Pk
15: end if
16: end for
17: for all < ux, aj > received to ui do
18: store < ux, aj >
19: end for

The execution of the algorithm finishes when every beacon is sent and received by
its destination. After the execution, each node has the neighboring sets of its two-hop
neighbors. Using the list, each node can determine whether it is suspected or not. For
example, consider that the algorithm is executed on the attribute graph presented in
Fig. 2 and τ is 2. After the execution, the system finds out there are less than τ nodes
that has a1 , a2 , a3 and a4 as attributes and thus, ux is marked to be suspected.

Page 14 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

Complexity analysis

The most important measure in these type of approaches is the amount of outbound
communication in terms of the number of transmitted messages between machines
which is also called transmission overhead. This is mainly due to the fact that usually
this type of communication incurs higher delays which in turn reduces the system’s
overall performance. The transmission overhead for Algorithm 1 is O(|Vu||Va|) in
asynchronous mode. To improve the algorithm and reduce the overhead, a batching
approach can be utilized in proxy nodes. In this manner, the algorithm works syn-
chronously at each step, i.e., the proxy node waits until it receives all beacons, batches
them, and then sends the batch to other proxy nodes. Although the size of the trans-
mitted message is still the same, the number of transmission attempts reduces sig-
nificantly and thus, the delays imposed by the network reduces drastically. However,
if one or more beacons are not received by the proxy due to an unforeseen circum-
stance such as system fault, all other messages have to wait until a predefined time-
out, which may result in higher delays.

Evaluation
In order to evaluate the performance of the proposed methods, all three approaches
introduced in this paper were implemented. For the single machine and the streaming
approaches, experiments are performed on a dedicated server that has 4 Intel Xenon
cores and 64GB DRAM. For the massively parallel approach, we utilized a cloud-based
approach with up to 32 VM instances each with 16GB of DRAM and 2 Intel Xenon
cores. The operating system of each VM was Linux-based and the instances were con-
nected to each other over 1Gb Ethernet links. We implemented the approaches using
the Ruby programming language.

Numerous validation experiments have been established. However, for the sake of spe-
cific illustration, validation results are presented for limited number of scenarios. We
adopted 95 percent confidence level to make sure that, on average, the confidence inter-
val which is calculated using t-student distribution and standard error contains the true
values around 95 percent of the time.

For the sake of evaluation, we used a Twitter dataset of Russian troll accounts publicly
disclosed by U.S. Congress investigation [10]. The dataset contains over 43 million elec-
tions-related posts shared on Twitter between September 16 and October 21, 2016, by

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Runtime

%
of

de
te
ct
ed

no
de

s

1 SP
2 SP
4 SP

(a) Percentage of detected suspected nodes
vs runtime for three different cases; (1) single
threaded, (2) 2 threads, (3) 4 threads.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Distance

R
at
io

of
du

pl
ic
at
es

2 SP
4 SP

(b) Ratio of duplicate 4-cycles vs the distance
of start points, for two different cases.

0 20 40 60 80 100
0

0.2

0.4

% of nodes inspected

R
at
io

of
du

pl
ic
at
es

2 SP, d 12
4 SP, d 12

(c) Ratio of duplicate 4-cycles vs percentage of
inspected nodes.

Fig. 6  Evaluation of single machine approach

Page 15 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

about 5.7 million distinct users and their various social interactions such as re-tweeting,
replying, mentioning, etc.

Single machine approach

We evaluated the performance of the single machine approach using the aforemen-
tioned dataset.

Convergence rate

Figure 6a compares the rate of convergence for three different cases. The Y axis shows
the percentage of the detected suspected nodes and X represents the normalized runt-
ime. The first case is single threaded. In this case, a node was selected at random, after
which we executed the algorithm using a single thread. In the two latter cases, two and
four threads were executed, respectively, where the start points were also selected uni-
formly at random. We observe that with increase in the number of independent threads,
the rate at which the 4-cycles are being detected also increases. Thus, as the detection
rate rises, it leads to growth in the rate of convergence of the algorithm.

Overcounting

In the case of multiple threads, one common scenario is overcounting the 4-cycles. One
approach to prevent this is synchronization between multiple threads which is costly
and time consuming. A common approach in these cases is to execute threads indepen-
dently and discard the duplicates. In what follows, we discuss the performance of the
single machine approach from the perspective of overcounting.

In Fig. 6b, the effect of start point distances on the overcounting is investigated.
The figure plots the ratio of duplicate 4-cycles detected by threads when the distance
between start points increases for two cases; (1) two threads and (2) four threads. The
number of duplicates decreases as the distance between start points increases. In the
case of four threads, the ratio of duplicates is slightly higher since the probability of over-
counting increases. Obviously, the distance is bounded by the diameter of the attribute
graph.

We are also interested in the rate at which the ratio of duplicates grows when the
algorithm progresses as depicted in Fig. 6c. The Y axis represents the ratio of dupli-
cate 4-cycles and the X axis shows the percentage of inspected nodes. In both cases, we
assumed the distance to be equal to 12. In the early stages of the algorithm, the rate at
which the overcounting occurs is significantly lower than the later stages and this rate is
higher for the case of 4 threads.

Streaming approach

Figure 7 depicts the results obtained for the streaming approach.

Convergence rate

We examined the convergence rate of the streaming approach for the given dataset for
two different cases, i.e., random streams and deterministic BFS streams. Here, we con-
sider the memory large enough for the algorithm to be able to detect all the suspected

Page 16 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

nodes. The results are plotted in Fig. 7a. As shown in the figure, the deterministic
approach outperforms the random approach.

Figure 7b investigates the effect of memory size on the convergence of the stream-
ing approach. Here, we consider the maximum memory size to be equal to the size of
the entire graph and thus, plotted the normalized memory size accordingly. When the
memory size is small, the chance that the algorithm misses a 4-cycle increases since one
or more edges of the cycle may be truncated from the memory before being included in
the algorithm to form a cycle. As the memory size grows, the number of detected nodes
rises. We also observe a threshold which in this case is around 40% of maximum mem-
ory size. This threshold is related to �u as discussed earlier in this paper, i.e., when the
memory size is smaller than the threshold, some of the edges are being evicted before
the formation of 4-cycles which consequently, disrupts the detection.

Number of passes

We have already seen that in a streaming approach, the algorithm scans the memory for
a number of times to detect 4-cycles. Figure 7c depicts the normalized number of passes
when the algorithm progresses. The rate of growth increases as the algorithm advances
mainly due to the fact that the number of constructed incomplete cycles grows and thus,
the algorithm needs to re-scan the memory more often.

The effect of memory size is also investigated in Fig. 7d. As the memory size grows, the
number of edges that the algorithm scans in each pass grows and thus, the total num-
ber of passes reduces. Again, a threshold phenomena can be seen in the figure. In both
figures, the number of passes for the deterministic BFS case is lower than the random

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Runtime

%
of

de
te
ct
ed

no
de
s

BFS
Aprox. Alg.

(a) Percentage of detected suspected nodes vs.
runtime for two different cases: (1) random-
ized streaming, (2) deterministic BFS-based
streaming.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Memory size

%
of

de
te
ct
ed

no
de
s

BFS
Aprox. Alg.

(b) Ratio of duplicate 4-cycles vs. percentage
of inspected nodes.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Runtime

N
or
m
al
iz
ed

N
um

be
r
of

pa
ss
es

BFS
Aprox. Alg.

(c) Normalized number of passes for detection
vs. runtime for two different cases.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Memory size

N
or
m
al
iz
ed

N
um

be
r
of

pa
ss
es

BFS
Aprox. Alg.

(d) Normalized number of passes for detection
vs. Normalized memory size.

Fig. 7  Evaluation of the streaming approach

Page 17 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

sequence as the incoming stream for the latter is uniformly random and thus, for the
construction of a cycle the algorithm may need more passes to find missing edges.

Massively parallel approach

Figure 8 shows the evaluation of our proposed massively parallel approach.

Memory usage

Figure 8a depicts the total memory usage of the proposed method executed in paral-
lel over 16 exactly same machines. Note that in this figure, we aggregated the memory
usage of all 16 machines. We considered two different cases: (1) synchronous proxies
and (2) asynchronous execution. As shown in the figure, the memory usage grows as the
algorithm progresses. The asynchronous approach has significantly lower memory usage
compared to that of the synchronous approach mainly due to the delay imposed for syn-
chronization inside proxy nodes.

We also examined the memory usage of only the proxy nodes in Fig. 8b. Here, the eval-
uation settings were the same. Comparing the figures, we realize that the proxy nodes
impose most of the memory burden on the machines. The two gaps in the synchronous
execution is related to the phases in which proxies gather inbound messages and send
them to other proxy nodes.

Parallelism

Figure 8c shows the impact of parallelism on the performance of the proposed approach
both in synchronous and asynchronous executions. As the number of machines

0 0.2 0.4 0.6 0.8 1
0

50

100

150

Normalized Runtime

M
em

or
y
[G

B
]

16M Synch.
16M Asynch.

(a) Total memory usage in machines vs. runtime
using Algorithm 1 for 2 different cases: (1) Syn-
chronous and (2) Asynchronous both with 16
machines.

0 0.2 0.4 0.6 0.8 1
0

50

100

Normalized Runtime

P
ro
xi
es

M
em

or
y
U
sa
ge
[G

B
]

Synch.
Asynch.

(b) Memory usage of proxy nodes in machines
vs. normalized runtime using Algorithm 1 for 2
different cases: (1) Synchronous and (2) Asyn-
chronous both with 16 machines.

4 8 16 32

40

60

80

100

Number of Machines

E
xe
cu

ti
on

T
im

e
(s
)

Synch.
Asynch.

(c) Execution time of Algorithm 1 vs. number
of machines for two different cases.

4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Machines

ou
tb
ou

nd
/
In
bo

un
d
R
at
io

(d) Ratio of outbound communications (mes-
sages exchanged between machines) vs. num-
ber of machines.

Fig. 8  Evaluation of the proposed massively parallel approach

Page 18 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

increases, the execution time of both cases reduces; however, the parallelism has greater
impact on the asynchronous case. Generally, the asynchronous execution experiences
lower delays and thus, outperforms the synchronous approach.

One important factor to decide whether to use the synchronous or the asynchro-
nous approach is the ratio of outbound to inbound communications. All the previous
arguments have shown that the asynchronous approach outperforms the synchronous
approach, i.e., both showing lower memory usage and lower execution time. However,
from the communication perspective, the synchronous approach has significant supe-
riority to the other approach. Figure 8d shows the ratio of outbound to inbound com-
munications (lowers are outbound) for the case of asynchronous approach. As the
outbound communications for the synchronous approach is negligible, it has not been
shown in the figure.

The synchronous execution is best fitted for cases in which the bandwidth between
machines are low or the communication link is unstable, lossy or with unpredictable
delays. Obviously, these are not the cases for cloud infrastructures. But there may be
some use cases for which the detection algorithm must be executed over the edge-com-
puting environments.

Comparison with PowerGraph

In order to compare our approach, we implemented a two-hop neighbor discovery algo-
rithm using PowerGraph. Table 2 compares the execution time and maximum memory
usage of our synchronous parallel approach with PowerGraph for various number of
machines. The table lists 3 different scenarios, with few number of processing machines
( M = 4 ), M = 8 , and massively parallel one ( M = 16 ). In each scenario, the execu-
tion time reduces significantly when the degree of parallelism increases. Nonetheless,
with the same attribute graph, the execution time of PowerGraph is significantly higher
mainly due to the overhead caused by replicas. These replicas not only escalate the out-
bound traffic which increases the execution time of the algorithm, but also cause more
memory overhead in the PowerGraph implementation.

Conclusion
The large-scale and highly dynamic nature of social networks necessitates specifically
tailored troll detection methods. In this paper, we investigated a massively parallel
approach to detect fickle trolls in large-scale social networks. We first proved that cen-
tralized and streaming approaches are not practical in real-world large-scale networks
as they are slow for early detection of these trolls. We then proposed a parallel detection
approach that uses a vertex-centric parallel two-hop neighbor discovery algorithm. Our

Table 2  Comparison of our approach with PowerGraph. Here, M represents number of machines

M = 4 M = 8 M = 16

PowerGraph Exec. Time (s) 749 534 313

Max. Memory (GB) 743 612 509

Proposed approach Exec. Time (s) 107 88 59

Max. Mem. (GB) 340 229 159

Page 19 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

evaluations based on real-world traces confirmed that our proposed method can out-
perform similar parallel approaches by order of magnitude. Our future direction aims
at utilizing fast machine-learning approaches to prune the attribute graph (and thus,
minimize the overheads incurred) to further enhance the proposed detection algorithm.
We will also consider using an optimization algorithm to solve the problem of excessive
computation time and load balancing in our proposed parallel approach in the future.

Authors’ contributions
HS was responsible for authoring and AD was responsible for guidance and editing. Both authors read and approved the
final manuscript.

Funding
This research was supported by the Faculty Development Competitive Research Grant (No. 240919FD3918), Nazarbayev
University.

Availability of data and materials
The dataset used and/or analyzed in the current study is available at https://​www.​recode.​net/​2017/​11/2/​16598​312/​rus-
sia-​twitt​er-​trump-​twitt​er-​deact​ivated-​handle-​list. Results sets are available from the corresponding author on reasonable
request.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Computer Engineering, K. N. Toosi University, Tehran, Iran. 2 School of Engineering and Digital Sciences, Naz-
arbayev University, Nur‑Sultan, Kazakhstan.

Received: 8 September 2021 Accepted: 30 January 2022

References
	1.	 Shanahan T, Tran TP, Taylor EC. Getting to know you: social media personalization as a means of enhancing brand

loyalty and perceived quality. J Retail Consum Serv. 2019;47:57–65.
	2.	 Shearer E, Mitchell A. News use across social media platforms in. 2021;2020.
	3.	 Jin F, Wang W, Zhao L, Dougherty E, Cao Y, Lu C-T, Ramakrishnan N. Misinformation propagation in the age of twitter.

Computer. 2014;47(12):90–4.
	4.	 Tsantarliotis P, Pitoura E, Tsaparas P. Defining and predicting troll vulnerability in online social media. Soc Netw Anal

Min. 2017;7(1):1–15.
	5.	 Fornacciari P, Mordonini M, Poggi A, Sani L, Tomaiuolo M. A holistic system for troll detection on twitter. Comput

Hum Behav. 2018;89:258–68.
	6.	 Goga O, Venkatadri G, Gummadi KP. The doppelgänger bot attack: exploring identity impersonation in online social

networks. 2015; p. 141–53.
	7.	 Devmane M, Rana N, Detection and prevention of profile cloning in online social networks. In: International confer-

ence on recent advances and innovations in engineering (ICRAIE-2014). IEEE; 2014. p. 1– 5
	8.	 Roy PK, Chahar S. Fake profile detection on social networking websites: a comprehensive review. IEEE Trans Artif

Intell. 2021.
	9.	 Ramalingam D, Chinnaiah V. Fake profile detection techniques in large-scale online social networks: a comprehen-

sive review. Comput Electr Eng. 2018;65:165–77.
	10.	 Badawy A, Ferrara E, Lerman K. Analyzing the digital traces of political manipulation. In: The 2016 Russian interfer-

ence twitter campaign. IEEE; 2018. p. 258–65.
	11.	 Gu K, Liu D, Wang K. Social community detection scheme based on social-aware in mobile social networks. IEEE

Access. 2019;7:173407–18.
	12.	 Li M, Lu S, Zhang L, Zhang Y, Zhang B. A community detection method for social network based on community

embedding. IEEE Trans Comput Soc Syst. 2021;8(2):308–18.
	13.	 Luo W, Zhang D, Ni L, Lu N. Multiscale local community detection in social networks. IEEE Trans Knowl Data Eng.

2019;33(3):1102–1112.
	14.	 Van Lierde H, Chow TW, Chen G. Scalable spectral clustering for overlapping community detection in large-scale

networks. IEEE Trans Knowl Data Eng. 2019;32(4):754–67.
	15.	 Chopade P, Zhan J. A framework for community detection in large networks using game-theoretic modeling. IEEE

Trans Big Data. 2016;3(3):276–88.
	16.	 Forouzandeh S, Rostami M, Berahmand K. Presentation a trust walker for rating prediction in recommender

system with biased random walk: effects of h-index centrality, similarity in items and friends. Eng Appl Artif Intell.
2021;104:104325.

	17.	 Forouzandeh S, Soltanpanah H, Sheikhahmadi A. Application of data mining in designing a recommender system
on social networks. Int J Comput Appl. 2015;124(1):32–8.

https://www.recode.net/2017/11/2/16598312/russia-twitter-trump-twitter-deactivated-handle-list
https://www.recode.net/2017/11/2/16598312/russia-twitter-trump-twitter-deactivated-handle-list

Page 20 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22

	18.	 Balaji T, Annavarapu CSR, Bablani A. Machine learning algorithms for social media analysis: a survey. Comput Sci Rev.
2021;40:100395.

	19.	 Xu K, Wang F, Wang H, Wang Y, Zhang Y. Mitigating the impact of data sampling on social media analysis and
mining. IEEE Trans Comput Soc Syst. 2020;7(2):546–55.

	20.	 Chakraborty K, Bhattacharyya S, Bag R. A survey of sentiment analysis from social media data. IEEE Trans Comput
Soc Syst. 2020;7(2):450–64.

	21.	 Xia R, Jiang J, He H. Distantly supervised lifelong learning for large-scale social media sentiment analysis. IEEE
Trans Affect Comput. 2017;8(4):480–91.

	22.	 Hopster J. What are socially disruptive technologies? Technol Soc. 2021;67:101750.
	23.	 Sharevski F, Alsaadi R, Jachim P, Pieroni E. Misinformation warnings: Twitter’s soft moderation effects on covid-19

vaccine belief echoes. Comput Secur. 2022;102577. 114:1–13.
	24.	 Sadiq S, Mehmood A, Ullah S, Ahmad M, Choi GS, On B-W. Aggression detection through deep neural model on

twitter. Futur Gener Comput Syst. 2021;114:120–9.
	25.	 Sainju KD, Mishra N, Kuffour A, Young L. Bullying discourse on twitter: an examination of bully-related tweets

using supervised machine learning. Comput Hum Behav. 2021;120:106735.
	26.	 Sun Q, Shen C. Who would respond to a troll? A social network analysis of reactions to trolls in online communi-

ties. Comput Hum Behav. 2021;121:106786.
	27.	 Akhtar S, Morrison CM. The prevalence and impact of online trolling of UK members of parliament. Comput

Hum Behav. 2019;99:322–7.
	28.	 Antonakaki D, Fragopoulou P, Ioannidis S. A survey of twitter research: data model, graph structure, sentiment

analysis and attacks. Expert Syst Appl. 2021;164:114006.
	29.	 Tomaiuolo M, Lombardo G, Mordonini M, Cagnoni S, Poggi A. A survey on troll detection. Futur Internet.

2020;12(2):31.
	30.	 Alsmadi I, Orien MJ. How many bots in russian troll tweets. Inf Process Manage. 2020;57(6):102303.
	31.	 Im J, Chandrasekharan E, Sargent J, Lighthammer P, Denby T, Bhargava A, Hemphill L, Jurgens D, Gilbert E. Still

out there: modeling and identifying russian troll accounts on twitter. 2020. p. 1–10.
	32.	 Badawy A, Addawood A, Lerman K, Ferrara E. Characterizing the 2016 russian ira influence campaign. Soc Netw

Anal Min. 2019;9(1):1–11.
	33.	 Jamieson KH. How russian hackers and trolls exploited us media in 2016 1. Proc Am Philos Soc.

2019;163(2):122–35.
	34.	 Rauchfleisch A, Kaiser J. The false positive problem of automatic bot detection in social science research. PloS

one. 2020;15(10):0241045.
	35.	 Tsantarliotis P, Pitoura E, Tsaparas P. Troll vulnerability in online social networks. 2016. p. 1394–6.
	36.	 Mkono M. “Troll alert”: provocation and harassment in tourism and hospitality social media. Curr Issues Tour.

2018;21(7):791–804.
	37.	 Hodge E, Hallgrimsdottir H. Networks of hate: the alt-right,"troll culture", and the cultural geography of social

movement spaces online. J Borderl Stud. 2020;35(4):563–80.
	38.	 Basak R, Sural S, Ganguly N, Ghosh SK. Online public shaming on twitter: detection, analysis, and mitigation. IEEE

Trans Comput Soc Syst. 2019;6(2):208–20.
	39.	 March E. Psychopathy, sadism, empathy, and the motivation to cause harm: new evidence confirms malevolent

nature of the internet troll. Personal Individ Differ. 2019;141:133–7.
	40.	 Arnaout R, Lee RA, Lee GR, Callahan C, Yen CF, Smith KP, Arora R, Kirby JE. Sars-cov2 testing: the limit of detection

matters. bioRxiv. 2020.
	41.	 Jachim, P., Sharevski, F., Pieroni, E.: Trollhunter2020: Real-time detection of trolling narratives on twitter during

the 2020 us elections. In: Proceedings of the 2021 ACM workshop on security and privacy analytics. 2021. p.
55– 65

	42.	 Thomas, E., Zhang, A.: Covid-19 attracts patriotic troll campaigns in support of china’s geopolitical interests. Austral-
ian Strategic Policy Institute, last modified June 11. 2020

	43.	 Sharma, K., Seo, S., Meng, C., Rambhatla, S., Liu, Y.: Covid-19 on social media: Analyzing misinformation in twitter
conversations. 2020. arXiv preprint arXiv:​2003.​12309

	44.	 de Arruda HF, Cardoso FM, de Arruda GF, Hernández AR, da Fontoura Costa L, Moreno Y. Modelling how social
network algorithms can influence opinion polarization. Inf Sci. 2022;588:265–78.

	45.	 Van Bavel JJ, Rathje S, Harris E, Robertson C, Sternisko A. How social media shapes polarization. Trends Cognit Sci.
2021;25(11):913–6.

	46.	 Ediger D. Analyzing hybrid architectures for massively parallel graph analysis. Georgia Institute of Technology; 2013.
PhD thesis.

	47.	 Green O, Bader DA. Faster clustering coefficient using vertex covers. IEEE; 2013. p. 321–30.
	48.	 Assadi S, Karpov N, Zhang Q. Distributed and streaming linear programming in low dimensions. 2019. p. 236–53.
	49.	 McCune RR, Weninger T, Madey G. Thinking like a vertex: a survey of vertex-centric frameworks for large-scale

distributed graph processing. ACM Comput Surv (CSUR). 2015;48(2):25.
	50.	 Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale

graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data.
ACM; 2010. p. 135–146

	51.	 Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, Hellerstein J. Graphlab: a new framework for parallel machine
learning. 2014. arXiv preprint arXiv:​1408.​2041

	52.	 Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A resilient distributed graph system on spark. In: First interna-
tional workshop on graph data management experiences and systems. ACM; 2013. p. 2

	53.	 Chen X, Dathathri R, Gill G, Pingali K. Pangolin: an efficient and flexible graph mining system on cpu and gpu. Proc
VLDB Endow. 2020;13(8):1190–205.

	54.	 Bouhenni S, Yahiaoui S, Nouali-Taboudjemat N, Kheddouci H. A survey on distributed graph pattern matching in
massive graphs. ACM Comput Surv (CSUR). 2021;54(2):1–35.

http://arxiv.org/abs/2003.12309
http://arxiv.org/abs/1408.2041

Page 21 of 21Shafiei and Dadlani ﻿Journal of Big Data (2022) 9:22 	

	55.	 Sabet AHN, Zhao Z, Gupta R. Subway. Minimizing data transfer during out-of-gpu-memory graph processing. 2020.
p. 1–16.

	56.	 Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. Powergraph: distributed graph-parallel computation on natural
graphs. In: Presented as part of the 10th {USENIX} symposium on operating systems design and implementation ( {
OSDI} 12). 2012. p. 17–30

	57.	 Jiang X, Xu C, Yin X, Zhao Z, Gupta R. Tripoline: generalized incremental graph processing via graph triangle inequal-
ity. 2021. p. 17–32.

	58.	 Chen R, Shi J, Chen Y, Zang B, Guan H, Chen H. Powerlyra: differentiated graph computation and partitioning on
skewed graphs. ACM Trans Parallel Comput (TOPC). 2019;5(3):13.

	59.	 Łuczak T, Magner A, Szpankowski W. Compression of preferential attachment graphs. IEEE; 2019. p. 1697–701.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Detection of fickle trolls in large-scale online social networks
	Abstract
	Introduction
	Background and related works
	The proposed approach
	A case study
	System model and assumptions
	Attribute graphs
	Clustering coefficient
	Suspected nodes

	Detection methods
	Single machine approach
	Streaming
	Random sequences
	Deterministic sequences

	Massively parallel approach
	Power-law degree distribution
	High clustering coefficient

	Detection algorithm
	Complexity analysis

	Evaluation
	Single machine approach
	Convergence rate
	Overcounting

	Streaming approach
	Convergence rate
	Number of passes

	Massively parallel approach
	Memory usage
	Parallelism
	Comparison with PowerGraph

	Conclusion
	References

