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Introduction
Online social platforms have become an essential part of human interactions over the 
past few years. These platforms have attracted billions of people from around the globe. 
Recent studies showed that over 75% of users check their social pages at least once a 
day, and an average user spent 2 hours and 24 minutes per day on social media in 2020 
[1]. It has also been shown that more than half of US citizens get their news from social 
media [2]. The dominant role of these platforms also attracts misinformation, hoaxes, 
and fake news campaigns that can propagate readily as factual information. For example, 
[3] showed that during the Ebola crisis fake news spread as quickly as accurate informa-
tion on the Twitter social media platform. This rate of spread was (in part) facilitated by 
social trolls.
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Social trolling is a general term coined to describe various types of disruptive behavior 
in social platforms, such as impersonating as experts (in the topic of discussion) and 
then propagating misinformation or fake news [4]. The act of trolling can be carried out 
by either a real person or a social bot which essentially, is a software agent that commu-
nicates autonomously on social media with the task defined by the owner.

Trolling is a broad term that includes various forms of online misbehaving activity 
ranging from deceive and misleading comments to offensive and threatening behavior. 
Trolling activity is not usually categorized as spamming. Instead, the end goal of trolls 
is to build up confusion and inject misinformation in the target community while the 
spammers have financially-driven intentions. Typical examples of trolling behavior 
include mocking and discrediting discussion participants, inciting and escalating argu-
ments, and impersonating expert users while spreading bad advice and false information 
[4].

Undoubtedly, trolling is a critical issue that threatens the role of social media as the 
dominant global information dissemination platform. This makes troll detection one of 
the most important challenges for social media administrators. A straightforward detec-
tion approach is to rely on user feedback reports, i.e., users report abusive behavior to 
the system and the platform moderators carefully examine the reports before decisively 
suspending the suspicious user account. This approach however, has been shown to suf-
fer from various shortcomings; (1) the method is not scalable and often burdens the 
platform provider with excessive costs as it requires ample amount of human resources, 
(2) it is not sufficiently fast enough as the approach relies heavily on human intervention 
and often, the intended damage is already done before the detection of the troll, (3) trolls 
often utilize impersonation and disguise methods thus, making it arduous for modera-
tors to detect trolling activity.

To maximize their influence, social trolls tend to expand their pool of followers on 
the target social platform. This can be achieved through an array of activities discussed 
comprehensively in [5]. Amongst these activities, impersonation is deemed as one of the 
most effective approaches [6]. This act can be conducted either through profile cloning 
[7] or fake profile identities [8]. In the former case, the trolls clone well-known profiles 
and try to gain followers especially among new users of the platform. In the latter, the 
trolls introduce a fake identity as an important person (e.g. a non-existent celebrity) or 
an expert (e.g. a physician) to attract followers. To reach out to a larger audience, some 
of these trolls, which we refer to as fickle trolls, go the extra mile to change their fake 
identity frequently [9]. In Section 3, we discuss a case study describing this type of troll-
ing in detail.

While many research studies have focused their attention on troll detection 
approaches in online social platforms, they usually fall short when dealing with fickle 
trolls in large-scale social networks: 

1.	 The approaches usually utilize machine learning tools to extract and analyze a set 
of features for detecting trolling activities. As an example, Botometer1 is a machine 
learning framework that extracts and analyses a set of over one thousand features. 

1  https://​botom​eter.​osome.​iu.​edu/.

https://botometer.osome.iu.edu/
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Clearly, these approaches are slow and impractical in very large networks with rap-
idly changing data.

2.	 The existing approaches are not specifically designed to detect fickle trolls. That is to 
say, fickle trolls can evade existing detection approaches due to the high frequency at 
which they change their identity.

This paper aims to fill this gap by introducing a method to detect fickle trolls in large-scale 
social networks. Considering a large dataset of user activities in an online social platform, 
we first extract a graph-theoretic model based on the data and then we discuss fickle troll 
detection in different scales. The main contributions of the paper are listed as follows:

•	 Firstly, we consider a single powerful machine that has the memory capacity of an entire 
dataset, i.e., a small size dataset. We show that the asymptotic time complexity of the 
centralized single-machine detection algorithm is large for early troll detection in large-
scale social platforms with billions of users.

•	 We then discuss a streaming approach on a single machine for cases in which the data-
set is larger than the memory and the data is fed to the machine sequentially. We prove 
that the streaming-based approach is not practical in many real-world scenarios.

•	 Next, we propose a massively parallel approach that is both flexible and scalable to han-
dle an extra-large amount of data that changes over time.

•	 Finally, rigorous evaluations based on real-world traces (Twitter Dataset of Russian troll 
accounts publicly disclosed by U.S. Congress investigation [10]) are conducted to vali-
date the efficiency of the proposed method. Our approach can detect suspicious fickle 
trolls approximately 6 times faster and with 50% lower overhead.

To the best of our knowledge, this is the first work that focuses on fickle trolling on social 
networks and presents detection approaches for this unwanted and sometimes hazardous 
phenomenon. Every troll detection approach in a social network suffers from reactive and 
countermeasure methods, conducted by the trolls, either through dissembling or luring the 
detection mechanism. As such, these approaches and mechanisms should be revised regu-
larly to adapt to the dynamic nature of trolling activities. In this regard, our approach is not 
an exception. To effectively detect fickle trolls, the proposed mechanism and the regarding 
parameters should be adapted frequently.

The rest of the paper is organized into five sections. The first section highlights the impor-
tance of fickle troll detection and the main contributions of this research paper. This is fol-
lowed by related works in the second section. The three different methods for detection of 
suspicious nodes is discussed in the third section. The fourth evaluates the proposed meth-
ods and compares the results with other similar approaches. Finally, conclusive remarks are 
made in the fifth section.

Background and related works
Many research studies have focused their attention on various aspects and challenges 
that online social networks face. The focus of these studies ranges from community 
detection [11–15], social recommender systems [16, 17], social media analysis [18–21] to 
misbehaviour and disruptive activities [22–25]. In particular, the topic of troll detection 
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in online social networks has attracted many research studies in the course of the past 
few years [26–28]. Various studies have focused on troll detection approaches. Table 1 
lists and compares recent approaches. Tomaiuolo et al. [29] surveyed troll detection and 
prevention approach comprehensively. Tsantarliotis et  al. [4] presented a framework 
to define and predict trolling activity in social networks. Fornacciari et al. [5] focus on 
introducing a holistic for troll detection on Twitter2. Alsmadi [30] discussed features 
related to trolling activity using Twitter’s Russian Troll Tweets dataset. Other studies 
also focused their attention on various aspects of that dataset [31–33], some of them 
using Botometer which is a machine learning approach. However, Rauchfleisch et al. [34] 
discussed that these approaches suffer from relatively high false negatives and also false 
positives, especially for languages other than English. Tsantarliotis et al. [35] proposed a 
graph-theoretic model for troll detection in online social networks. They introduced a 
metric called TVRank to measure the severity of the troll activity with respect to a post.

Other research efforts have been devoted to analyzing the behaviors and socio-cul-
tural features of trolling activity and reactions of the target society. Mkono [36] studied 
the trolling activity on Tripadvisor3 which is a social platform specialized in travel and 
tourism. Hodge et al. [37] examined the geographical distribution of trolling on social 
media platforms. Sun et al. [26] studied the reaction of YouTube4 users to the trolls. They 
showed that well-connected users situated in densely connected communities with a 
prior pattern of engaging trolls are more likely to respond to trolls, especially when the 
trolling messages convey negative sentiments. Basak et al. [38] focused their attention on 
a specific type of trolling activity, i.e., public shaming. March [39] analyzed the psycho-
logical and behavioral background of trolling activities.

More recently, few research studies have focused on trolling activities, their detec-
tion, and prevention during the COVID-19 pandemic [40]. Jachim et al. [41] introduced 
a machine learning-based linguistic analysis approach to detect the so-called “COVID-
19 infodemic” trolls. Thomas et  al. [42] discussed a trolling activity during the recent 

Table 1  Comparison of various troll and bot detection approaches discussed in the literature

Ref. Dataset Technique Limitation(s)

[4] Reddit Troll vulnerability metrics to predict a post is 
likely to become the victim of a troll attack.

Focuses on the contents of posts and the activ-
ity history of users; does not consider trolling 
behaviour directly.

[5] Twitter Takes Holistic approach, i.e., it considers vari-
ous features such as sentiment analysis, time 
and frequency of action and etc.

The approach is slow since it considers a magni-
tude of features also it suffers from false positive 
detection

[30] Twitter Multi feature analysis, i.e., it considers the tim-
ing of tweets and the contents

It only focuses on the dataset, e.g., the usage of 
formal tone in trolls instead of slang and slurs

[31] Twitter Classification based on multiple behavioural 
and content-based features such as wording 
and hashtags or mentions

It suffers from high false positive and only 
concentrates on the behaviours extracted from 
one specific dataset

[32] Twitter Classification based on bot detection using 
Botometer and geolocation data

Inaccuracy of Botometer and the ability of trolls 
and bots to mask their real location

2  https://​twitt​er.​com.
3  https://​tripa​dvisor.​com.
4  https://​youtu​be.​com.

https://twitter.com
https://tripadvisor.com
https://youtube.com
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pandemic. Sharma et al. [43] analyzed disinformation campaigns on major social media 
platforms conducted by social trolls during the COVID-19 pandemic.

In spite of the above effort, detection methods for fickle trolls have not been fully 
investigated in the literature. Specifically, the existing methods can not be altered to 
detect such activity since the main aim of the fickle trolls is to maximize their follow-
ers and thus, they may not exhibit behaviors that can be detected by typical methods. 
This paper aims to provide novel approaches to detect fickle trolls at different scales. We 
also hope that this paper provides a better understanding of this malicious behavior and 
serves as a basis for future investigations and research studies on this topic.

The proposed approach
In this section, we first present a case study to clarify our approach. We then propose 
our assumptions and definitions before introducing the detection approaches.

A case study

In order to gain better insights on the nature of fickle trolls, we present a case study in 
this section. We tracked the changes in the identity of a case study (i.e., a fickle troll) 
along with the topics (hashtags) and contents they posted on Twitter. We tracked this 
case for 97 consecutive weeks, where we gathered and logged the aforementioned data 
on weekly basis. At the start of the study, the troll had approximately 7k followers, and 
at best, they reached over 71k followers. Figure 1 shows the number of their followers 
per week. The troll changed their identity 4 times during the study. At week 8, the troll 
changed their identity to a female ship’s crew member. A major naval incident in the 
previous week killed many crew members onboard a ship causing public grief. During 
a massive wildfire (around week 25), the troll purged all the previous posts, changed 
their identity to a male firefighter, and posted many daily fire fighting photos. The 
troll changed their identity to a female environmental activist at week 43. Again they 
cleared all the previous history and the number of followers rose to 31k. The last change 
occurred at week 59 (around the same time the COVID-19 pandemic was declared by 
the World Health Organization). This time, they changed their identity to a female front-
line health worker. The number of followers rose to 71k. The troll started posting anti-
vaccination posts and hoaxes around week 80.

System model and assumptions

We consider that the fickle trolls are resourceful, i.e., they can alter their identity without 
any restrictions or concerns. We consider that the system has access to user personal 
information. Therefore, information such as the user’s gender or job is either claimed by 

Fig. 1  Changes in the number of followers per week for the case study



Page 6 of 21Shafiei and Dadlani ﻿Journal of Big Data            (2022) 9:22 

the user or can be deduced by content analysis. We define these as user attributes. For 
example, in our case study, user x has attributes job:firefighter, job:shipcrew, 
job:nurse, gender:male and gender:female. A trivial solution in this example 
would be to detect conflicting attributes and label them as suspected. This is possible for 
some of the well-known multi-valued or binary attributes. However, in ever-increasing 
polarized social networks [44, 45] with a wide variety of discourses, discussion topics, 
and trends, the realization of conflicting attributes is not feasible. Our main idea is to 
find users with an arbitrary and somewhat unique set of attributes in the entire net-
work and label them as suspected for further investigations. To this end, we construct a 
graph where nodes are users or attributes. The edges show relations between users and 
attributes. In what follows, we define the attribute graph formally and then discuss its 
characteristics.

Attribute graphs

Consider G(V, E) to be a simple undirected graph, where the set V represents vertices 
that are comprised of two types: users with label ui and attributes denoted as aj . Each 
subset is denoted by Vu and Va , respectively, and |V | = n . In this graph, an edge exists 
between ui and aj if the user ui has the attribute aj . We call this the attribute graph. Sup-
pose that �a and �u represent the maximum degree of attribute nodes5 and user nodes, 
respectively, and �u ≫ �a . Also, let d be the diameter of the graph and Aui be the neigh-
boring set of the node ui . Figure 2 exemplifies such a graph, where labels {u1,u2,u3,u4} 
stand for users and {a1, a2, a3, a4} signify the attributes.

Clustering coefficient

Clustering coefficient is a measure of the degree to which nodes in a graph tend to clus-
ter together. It is usually represented by a real value between zero and one, i.e., zero 
when there is no clustering at all and one for total clustering. In graphs where the value 
is close to one, the nodes tend to create tightly knit groups characterised by a relatively 
high density of ties, whereas when it is close to zero, the nodes form looser clusters 
among each other. This notion is often interpreted as the probability that two incident 
edges are completed by a third one to form a triangle. Clustering coefficient is one of 
the important measures of the performance of massively parallel approaches [46, 47]. 
In what follows, we show that this measure is zero for the attribute graph. The proof is 
based on the following lemma:

Fig. 2  An example of an attribute graph

5  In this paper, the terms node and vertex represent exactly the same notion and have been used interchangeably.
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Lemma 1  In an attribute graph G(V, E), every cycle has an even number of nodes.

Proof
Suppose that a cycle in an attribute graph has odd number of nodes. Then, either two 
nodes in Vu or two nodes in Va become neighbors in the cycle, which contradicts the defini-
tion of attribute graphs.� �

With no triangles to form clusters, the clustering coefficient of the attribute graph is 
equal to zero. As we will show later in this paper, this is actually an important measure 
for our proposed detection methods.

Suspected nodes

When there are only one or few users with exactly the same set of attributes i.e., there 
are one or few user nodes that are connected to the same attributes in the graph, we 
consider these nodes as suspected nodes. Note that in here, by few users, we mean the 
number of users that is smaller than a system-wide threshold, denoted by τ and also we 
ignore user nodes with attributes smaller than δ which is also a system-wide threshold. 
The actual value of these thresholds depends on the social network.

Figure 3 shows an example of such a scenario. As shown in the figure, a user user:x 
is connected to four attributes and no other user has exactly this set of attributes. This 
makes the user unique in this respect. Thus, we consider it as a suspected node.

Detection methods

In this paper, we discuss possible detection methods at three different scales: 

1.	 Single Machine: In this approach, we have a single computation machine and the 
whole attribute graph is available inside the machine. We consider the memory of 
the machine to be large enough to store the attribute graph. Although this assump-
tion is unrealistic for most real-world networks, there are however, some cases where 
the graph does not exceed the size of the machine’s memory. We also suppose that 
the attribute graph remains fixed during the computation. The machine processes 
the graph and detects the suspected nodes.

2.	 Streaming: In this approach, we have a single computation machine with limited 
memory, denoted by m. The input of the machine is a sequence of edges that are 

Fig. 3  Another example of an attribute graph
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streamed to the machine. Linear scanning of the memory is possible for the proces-
sor. Here, the goal is to minimize m.

3.	 Massively Parallel: In this approach, we have M machines that work in parallel and 
are interconnected. Nodes of the graph are partitioned inside the machines. Edges 
whose end nodes reside in different machines are called outbound edges as opposed 
to inbound edges. The machines communicate with each other using a message pass-
ing approach. The goal here is to minimize the number of transmitted messages 
between machines.

Single machine approach

By our definition, if there are fewer than τ nodes that have exactly the same neighbouring 
set, those nodes are considered as suspected. Here, we have a single processing machine 
with a memory large enough to load the entire attribute graph. We are interested in 
an algorithmic approach to explore suspected nodes. In what follows, we present such 
an approach. Lemma 2 establishes the basis for a modified version of the well-known 
Depth-First-Search (DFS) algorithm to detect such nodes.

Lemma 2  Consider two nodes ux,uy ∈ Vu . If every 4-cycle6 that starts from ux either 
passes through uy or passes through attributes connected to ux , then Aux ⊆ Auy.

Proof  Suppose that ux has another attribute in its neighboring set ai such that ai is not 
in the neighboring set of uy . Then, the 4-cycle that starts from ux and passes through ai 
cannot pass through uy since they are not connected. Thus, in this case there is at least 
one 4-cycle that starts from ux and does not pass through uy , which is a contradiction.��

If Aux = Auy , i.e., the two nodes have the same attribute sets, and if there are greater 
than τ such nodes, then neither is suspected.

The algorithm to find all 4-cycles starting from a node can be obtained with minor 
alterations to the well-known DFS algorithm. The number of iterations for the algorithm 
in this mode is O(n3) which is impractical even for medium-sized graphs. On the other 
hand, the storage requirement for this approach is O(|V | + |E|) . Again, when there are 
millions of nodes with billions of edges between them (as evident in most online social 
networks), fitting the entire graph inside the memory of a single machine is infeasible.

To speed up the algorithm, one approach is to utilize multi-threading, where each 
thread chooses a start point and executes the DFS algorithm. The threads stop when 
all nodes are visited by at least one thread and at least once. This approach can be per-
formed either synchronously or asynchronously. Synchronous mode requires heavy 
coordination between threads which makes it impractical. Asynchronous mode is sim-
pler to implement and does not have the coordination overhead, however, it may over-
count cycles, i.e., a thread counts a cycle that was already counted by another thread.

6  A cycle with x nodes is called an x-cycle.
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Streaming

To be able to handle the large size of the data that often goes beyond the memory 
capacity of a single machine, another strategy is to stream the data gradually to the 
machine. In the streaming approach, the machine processes the input in a multi-
pass manner. The number of times that the machine linearly scans the memory is an 
important measure for the performance of any streaming-based processing approach 
[48]. The size of available memory to the machine is limited. So, as the new inputs 
from the stream are received by the machine, the oldest ones are overwritten. Thus, 
the minimum required memory is also another important performance measure.

The input data in this approach is a sequence of edges. Although the node-based 
streaming is also possible, in this paper, we focus on edge-based streaming which is 
illustrated in Fig. 4. The figure illustrates a streaming scenario, i.e., edges are fed (from 
left side) to a buffer with limited capacity (in this example the capacity is 5). The pro-
cessor (P) in the figure scans the memory and constructs cycles. The processor is able 
to scan the memory indefinitely, however, as the buffer is capped, edges are deleted 
from the buffer (from right side). In the first pass, P forms the incomplete cycle of 
a1,u2, a2,u1 . In the second pass, (a1,u1) is added to the memory thus, resulting in the 
formation of a 4-cycle. There are many possible patterns for the sequence of edges, 
two of which are described below.

Random sequences

In this pattern, the edges are received by the machine uniformly at random. This 
approach is useful for cases wherein the graph is highly flexible and changes during 
execution. Nonetheless, it uses O(n) memory space in the worst-case which makes it 
less attractive for large volumes of data.

Deterministic sequences

There are various deterministic sequencing patterns. Here, we adopt the Breadth-
First-Search (BFS) algorithm to determine the sequence in which edges are sent to the 
machine. The first node is selected randomly, then the edges connected to that node 
are sent, and so on and so forth. Theorem 1 determines the memory space used inside 
the machine in the worst-case along with the number of passes the machine scans the 
memory.

Fig. 4  The concept of streaming approach
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Theorem  1  The BFS-based deterministic streaming approach uses O(�u) memory 
space with O(d�u) passes.

Proof  The proof is straightforward. In order to detect 4-cycles, the algorithm needs to 
store 4 levels of the BFS algorithm. The first level is a node from Va , the second level 
has at most �a nodes, the third has at most �u�a and the forth level has �u�

2
a nodes, 

thus O(�u) for memory space. After formation of the 4 levels, a DFS can find the sus-
pected nodes. There are O(�u) nodes and at most O(�u) edges and at most d levels, 
thus requiring O(d�u) passes.� �

This approach is practical when the maximum degree �u is at most logarithmic; how-
ever, this is not the case for many real-world applications. For example, at least half of 
the users are either male or female, i.e, O(n) . Moreover, the processing takes consider-
able amount of time which is not feasible for most real-world cases. To overcome these 
issues, we employ the following massively parallel approach.

Massively parallel approach

We utilize a vertex-centric distributed approach [49] for the detection of suspected 
nodes when there are large number of nodes in the attribute graph. The basic idea in 
the vertex-centric distributed approach is to iteratively execute an algorithm over ver-
tices of a graph. In this setting, the vertex-centric algorithm in each node includes data 
from adjacent vertices or incoming edges as input, and the produced output is com-
municated along outgoing edges of the vertex. These algorithms are usually iteratively 
executed for a predefined number of times or until they converge to the desired proper-
ties. The distributed algorithm is performed inside an array of trusted machines that are 
interconnected together and communicate with each other using message passing or via 
memory sharing. The vertices of the graph are distributed inside those machines prior 
to the execution (which is called the placement phase) and the inbound and outbound 
edges are established, then the vertex-centric algorithm is executed on each vertex in 
each machine.

Various large-scale parallel approaches have been proposed for graph processing. Since 
the introduction of Pregel [50] by Google, many other techniques such as GraphLab 
[51], GraphX [52] and Pangolin [53] have been reported in the literature. Some of these 
approaches are vertex-centric while others are edge-centric. Hybrid approaches have 
also been proposed [54]. Other studies have focused on improving the performance of 
these approaches [55]. It has been observed that usually the input graphs to massively 
parallel graph processing tools are preferential attachment networks which are catego-
rized as scale-free graphs [56, 57]. These types of graphs exhibit two major properties as 
given below.

Power‑law degree distribution

Power-law degree distribution means that a small fraction of nodes in the graph have 
many direct neighbors while the rest of the nodes have few neighbors. For example, 
one percent of the nodes in the Twitter’s web graph are adjacent to nearly half of the 
edges. This causes a series of issues in any massively parallel approach when applied on 
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such graphs. It leads to imbalance in the computation, network traffic, and storage of 
machines that contain nodes with higher degrees. To remedy this issue, PowerGraph 
[56] and its successors such as PowerLyra [58] differentiate the functionality of nodes, 
i.e., the high degree nodes (nodes with many neighbours) perform series of actions that 
are different from low degree nodes (nodes with fewer neighbours).

As the interaction between users and attributes follows the preferential attachment 
scheme [59], it is sound to assume that the attribute graph also follows the power-law 
degree distribution. PowerGraph performs well in this scenario; however, the attribute 
graph has another property (low clustering coefficient) that distinguishes it from typical 
scale-free graphs and leads to poor performance of PowerGraph and PowerGraph-like 
approaches on the attribute graph.

High clustering coefficient

As discussed earlier in this paper, in a vertex-centric approach with multiple machines, 
the first task is to distribute nodes among those machines. A number of approaches have 
been proposed for node placement that ranges from fully random placement to greedy 
algorithms. After the placement in each machine, a local graph is constructed among 
the nodes that reside in the machine. In PowerGraph, instead of nodes that are placed 
in other machines, exact “replicas” of those nodes are placed in each machine. This 
approach is indeed feasible for scale-free graphs. High clustering coefficient means that 
the probability that two connected nodes are also connected to the same replica is high. 
This means that the number of replicas reduces with high probability.

To clarify the above argument, consider the example depicted in Fig.  5a. Sup-
pose that we have a graph with high clustering coefficient and we distribute the 
constituent nodes of this graph between two machines, namely M1 and M2 . Let us 
also assume that two nodes a and b of the graph are connected and reside in the 

a

b

c

M1 M2

d

c
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placement of a graph
with high clustering
coefficient in 2 ma-
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node inside that machine.

Fig. 5  Various examples of node placement inside machines
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first machine and nodec is connected to a and resides in another machine. Using 
the above approach, we make a replica of c, say c′ , and assign it to the first machine 
( M1 ) and then construct the edges, i.e., an inbound edge between a and c′ and an 
outbound edge between c and c′ . High clustering coefficient means that if a and b 
are connected and a and c are connected, then it is highly probable that b and c are 
also connected, which implies that the inbound edge between b and c′ is formed with 
high probability. Unfortunately, this is not valid for the attribute graph as its cluster-
ing coefficient is equal to zero. For example, if a user node and an attribute node are 
placed inside a machine and the two nodes are connected, and the user node is also 
connected to another attribute node, then according to definition, it is not possi-
ble for the two attribute nodes to have an edge between them. This renders replica-
based approaches extremely inefficient for attribute graphs. To further exemplify, 
suppose that we want to distribute an attribute graph over 3 different machines, 
namely M1 , M2 , and M3 . One possible placement for this scenario is depicted in 
Fig. 5b. Figure 5c shows the replicas that are created in each machine to construct 
the graph. Each node inside the machine is connected to a replica of its original 
neighbour and replicas are connected to their respective original nodes. Clearly, the 
amount of outbound connections and the number of replicas in each machine make 
this approach inefficient.

The above argument justify that the existing approaches are not suitable for attrib-
ute graphs. As such, we introduce an approach that is specifically tailored for attrib-
ute graphs. The approach consists of the following three steps for node placement: 

1.	 User nodes are distributed based on a balanced hash function.
2.	 Each machine contains a node called the proxy node of the machine, denoted by Pi , 

where i is the index of the machine.
3.	 Star-like connection is established between user nodes inside each machine and the 

proxy node.

Figure 5d shows an example of our proposed node placement scheme in which we 
assume that:

•	 Each user node has a list of its neighbors, i.e., its attributes.
•	 Nodes are placed inside machines based on the hashes of their IDs.
•	 Outbound communication is only possible through proxy nodes.
•	 The execution can be done either synchronously or asynchronously.
•	 The user nodes are dynamic, i.e., new nodes can be added to the system or old 

ones may be deleted from the system at any time.
•	 Machines are dynamic, i.e., new machines are added to the system to improve 

scalability. Old machines may be merged to reduce overhead.

Building on these assumptions, we present our vertex-centric algorithm to find sus-
pected nodes in what follows.
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Detection algorithm

Essentially, what we want here is for a node such as ui to have the neighboring set of 
every node that has common attribute with ui . For example, in the attribute graph 
of Fig. 2, we want us to have the neighboring set of ux and uy since they have com-
mon attributes, i.e., a1 and a4 with us . The straightforward approach would be for each 
node to determine its neighboring set and send it to all its two-hop neighbors. In 
a distributed vertex-centric with multiple machines, each vertex is not aware of the 
neighboring set of its two-hop neighbors after the placement. To do so, every user 
node ux constructs a beacon < ux, ai > for each of its attributes and sends each of 
them to the proxy node of the machine. Upon receiving the beacon, the receiver 
broadcasts the beacon to all other proxy nodes. Each proxy node relays the beacons 
locally to all of its neighbors. The receiver (e.g. uy ) looks up its neighboring list and if 
it has ai , sends back an acknowledgment response to the proxy node. The proxy node 
routes back the response to the sender’s proxy node. The sender’s proxy node then 
relays the acknowledgment (ACK) to the sender. The sender saves < uy, ai > locally. 
In this way, each node finds the neighbors of its attributes. For example, for the graph 
given in Fig.  2, node u2 receives tuples < a1,u1 >,< a2,u1 >,< a3,u1 > and so on. 
The pseudocode of this entire procedure is given in Algorithm 1.

Algorithm 1 Parallel two-hop neighbor discovery
Input: An attribute graph
Output: Every node ui finds its two-hop neighbors
1: for all user node ui in machine k do in parallel
2: send a beacon < ui, aj > to Pk

3: end for
4: for all < ui, aj > received at Pk do
5: forward < ui, aj > to all nodes inside k
6: end for
7: for all ACK(ui, ux, aj) received at Pk do
8: if ui in k then
9: send < ux, aj > to ui

10: end if
11: end for
12: for all < ui, aj > received to ux in Pk do
13: if (ux, aj) ∈ E then
14: send back ACK(ui, ux, aj) to Pk
15: end if
16: end for
17: for all < ux, aj > received to ui do
18: store < ux, aj >
19: end for

The execution of the algorithm finishes when every beacon is sent and received by 
its destination. After the execution, each node has the neighboring sets of its two-hop 
neighbors. Using the list, each node can determine whether it is suspected or not. For 
example, consider that the algorithm is executed on the attribute graph presented in 
Fig. 2 and τ is 2. After the execution, the system finds out there are less than τ nodes 
that has a1 , a2 , a3 and a4 as attributes and thus, ux is marked to be suspected.
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Complexity analysis

The most important measure in these type of approaches is the amount of outbound 
communication in terms of the number of transmitted messages between machines 
which is also called transmission overhead. This is mainly due to the fact that usually 
this type of communication incurs higher delays which in turn reduces the system’s 
overall performance. The transmission overhead for Algorithm  1 is O(|Vu||Va|) in 
asynchronous mode. To improve the algorithm and reduce the overhead, a batching 
approach can be utilized in proxy nodes. In this manner, the algorithm works syn-
chronously at each step, i.e., the proxy node waits until it receives all beacons, batches 
them, and then sends the batch to other proxy nodes. Although the size of the trans-
mitted message is still the same, the number of transmission attempts reduces sig-
nificantly and thus, the delays imposed by the network reduces drastically. However, 
if one or more beacons are not received by the proxy due to an unforeseen circum-
stance such as system fault, all other messages have to wait until a predefined time-
out, which may result in higher delays.

Evaluation
In order to evaluate the performance of the proposed methods, all three approaches 
introduced in this paper were implemented. For the single machine and the streaming 
approaches, experiments are performed on a dedicated server that has 4 Intel Xenon 
cores and 64GB DRAM. For the massively parallel approach, we utilized a cloud-based 
approach with up to 32 VM instances each with 16GB of DRAM and 2 Intel Xenon 
cores. The operating system of each VM was Linux-based and the instances were con-
nected to each other over 1Gb Ethernet links. We implemented the approaches using 
the Ruby programming language.

Numerous validation experiments have been established. However, for the sake of spe-
cific illustration, validation results are presented for limited number of scenarios. We 
adopted 95 percent confidence level to make sure that, on average, the confidence inter-
val which is calculated using t-student distribution and standard error contains the true 
values around 95 percent of the time.

For the sake of evaluation, we used a Twitter dataset of Russian troll accounts publicly 
disclosed by U.S. Congress investigation [10]. The dataset contains over 43 million elec-
tions-related posts shared on Twitter between September 16 and October 21, 2016, by 
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about 5.7 million distinct users and their various social interactions such as re-tweeting, 
replying, mentioning, etc.

Single machine approach

We evaluated the performance of the single machine approach using the aforemen-
tioned dataset.

Convergence rate

Figure 6a compares the rate of convergence for three different cases. The Y axis shows 
the percentage of the detected suspected nodes and X represents the normalized runt-
ime. The first case is single threaded. In this case, a node was selected at random, after 
which we executed the algorithm using a single thread. In the two latter cases, two and 
four threads were executed, respectively, where the start points were also selected uni-
formly at random. We observe that with increase in the number of independent threads, 
the rate at which the 4-cycles are being detected also increases. Thus, as the detection 
rate rises, it leads to growth in the rate of convergence of the algorithm.

Overcounting

In the case of multiple threads, one common scenario is overcounting the 4-cycles. One 
approach to prevent this is synchronization between multiple threads which is costly 
and time consuming. A common approach in these cases is to execute threads indepen-
dently and discard the duplicates. In what follows, we discuss the performance of the 
single machine approach from the perspective of overcounting.

In Fig.  6b, the effect of start point distances on the overcounting is investigated. 
The figure plots the ratio of duplicate 4-cycles detected by threads when the distance 
between start points increases for two cases; (1) two threads and (2) four threads. The 
number of duplicates decreases as the distance between start points increases. In the 
case of four threads, the ratio of duplicates is slightly higher since the probability of over-
counting increases. Obviously, the distance is bounded by the diameter of the attribute 
graph.

We are also interested in the rate at which the ratio of duplicates grows when the 
algorithm progresses as depicted in Fig.  6c. The Y axis represents the ratio of dupli-
cate 4-cycles and the X axis shows the percentage of inspected nodes. In both cases, we 
assumed the distance to be equal to 12. In the early stages of the algorithm, the rate at 
which the overcounting occurs is significantly lower than the later stages and this rate is 
higher for the case of 4 threads.

Streaming approach

Figure 7 depicts the results obtained for the streaming approach.

Convergence rate

We examined the convergence rate of the streaming approach for the given dataset for 
two different cases, i.e., random streams and deterministic BFS streams. Here, we con-
sider the memory large enough for the algorithm to be able to detect all the suspected 
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nodes. The results are plotted in Fig.  7a. As shown in the figure, the deterministic 
approach outperforms the random approach.

Figure  7b investigates the effect of memory size on the convergence of the stream-
ing approach. Here, we consider the maximum memory size to be equal to the size of 
the entire graph and thus, plotted the normalized memory size accordingly. When the 
memory size is small, the chance that the algorithm misses a 4-cycle increases since one 
or more edges of the cycle may be truncated from the memory before being included in 
the algorithm to form a cycle. As the memory size grows, the number of detected nodes 
rises. We also observe a threshold which in this case is around 40% of maximum mem-
ory size. This threshold is related to �u as discussed earlier in this paper, i.e., when the 
memory size is smaller than the threshold, some of the edges are being evicted before 
the formation of 4-cycles which consequently, disrupts the detection.

Number of passes

We have already seen that in a streaming approach, the algorithm scans the memory for 
a number of times to detect 4-cycles. Figure 7c depicts the normalized number of passes 
when the algorithm progresses. The rate of growth increases as the algorithm advances 
mainly due to the fact that the number of constructed incomplete cycles grows and thus, 
the algorithm needs to re-scan the memory more often.

The effect of memory size is also investigated in Fig. 7d. As the memory size grows, the 
number of edges that the algorithm scans in each pass grows and thus, the total num-
ber of passes reduces. Again, a threshold phenomena can be seen in the figure. In both 
figures, the number of passes for the deterministic BFS case is lower than the random 
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sequence as the incoming stream for the latter is uniformly random and thus, for the 
construction of a cycle the algorithm may need more passes to find missing edges.

Massively parallel approach

Figure 8 shows the evaluation of our proposed massively parallel approach.

Memory usage

Figure  8a depicts the total memory usage of the proposed method executed in paral-
lel over 16 exactly same machines. Note that in this figure, we aggregated the memory 
usage of all 16 machines. We considered two different cases: (1) synchronous proxies 
and (2) asynchronous execution. As shown in the figure, the memory usage grows as the 
algorithm progresses. The asynchronous approach has significantly lower memory usage 
compared to that of the synchronous approach mainly due to the delay imposed for syn-
chronization inside proxy nodes.

We also examined the memory usage of only the proxy nodes in Fig. 8b. Here, the eval-
uation settings were the same. Comparing the figures, we realize that the proxy nodes 
impose most of the memory burden on the machines. The two gaps in the synchronous 
execution is related to the phases in which proxies gather inbound messages and send 
them to other proxy nodes.

Parallelism

Figure 8c shows the impact of parallelism on the performance of the proposed approach 
both in synchronous and asynchronous executions. As the number of machines 
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increases, the execution time of both cases reduces; however, the parallelism has greater 
impact on the asynchronous case. Generally, the asynchronous execution experiences 
lower delays and thus, outperforms the synchronous approach.

One important factor to decide whether to use the synchronous or the asynchro-
nous approach is the ratio of outbound to inbound communications. All the previous 
arguments have shown that the asynchronous approach outperforms the synchronous 
approach, i.e., both showing lower memory usage and lower execution time. However, 
from the communication perspective, the synchronous approach has significant supe-
riority to the other approach. Figure 8d shows the ratio of outbound to inbound com-
munications (lowers are outbound) for the case of asynchronous approach. As the 
outbound communications for the synchronous approach is negligible, it has not been 
shown in the figure.

The synchronous execution is best fitted for cases in which the bandwidth between 
machines are low or the communication link is unstable, lossy or with unpredictable 
delays. Obviously, these are not the cases for cloud infrastructures. But there may be 
some use cases for which the detection algorithm must be executed over the edge-com-
puting environments.

Comparison with PowerGraph

In order to compare our approach, we implemented a two-hop neighbor discovery algo-
rithm using PowerGraph. Table 2 compares the execution time and maximum memory 
usage of our synchronous parallel approach with PowerGraph for various number of 
machines. The table lists 3 different scenarios, with few number of processing machines 
( M = 4 ), M = 8 , and massively parallel one ( M = 16 ). In each scenario, the execu-
tion time reduces significantly when the degree of parallelism increases. Nonetheless, 
with the same attribute graph, the execution time of PowerGraph is significantly higher 
mainly due to the overhead caused by replicas. These replicas not only escalate the out-
bound traffic which increases the execution time of the algorithm, but also cause more 
memory overhead in the PowerGraph implementation.

Conclusion
The large-scale and highly dynamic nature of social networks necessitates specifically 
tailored troll detection methods. In this paper, we investigated a massively parallel 
approach to detect fickle trolls in large-scale social networks. We first proved that cen-
tralized and streaming approaches are not practical in real-world large-scale networks 
as they are slow for early detection of these trolls. We then proposed a parallel detection 
approach that uses a vertex-centric parallel two-hop neighbor discovery algorithm. Our 

Table 2  Comparison of our approach with PowerGraph. Here, M represents number of machines

M = 4 M = 8 M = 16

PowerGraph Exec. Time (s) 749 534 313

Max. Memory (GB) 743 612 509

Proposed approach Exec. Time (s) 107 88 59

Max. Mem. (GB) 340 229 159
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evaluations based on real-world traces confirmed that our proposed method can out-
perform similar parallel approaches by order of magnitude. Our future direction aims 
at utilizing fast machine-learning approaches to prune the attribute graph (and thus, 
minimize the overheads incurred) to further enhance the proposed detection algorithm. 
We will also consider using an optimization algorithm to solve the problem of excessive 
computation time and load balancing in our proposed parallel approach in the future.
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