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1  Introduction
In recent years, Internet of Vehicles (IoV) has developed rapidly. The emergence of 5G 
IoV has greatly improved the communication performance of IoV by using new mul-
tiple access technology. 4G mobile communications adopt orthogonal multiple access 
(OMA) technology to allocate a single wireless resource block to a user. The traditional 
OMA can not meet the requirements of high-rate and low-latency communications 
in massive machine type communication (mMTC) of 5G. Non-orthogonal multiple 
access (NOMA) has been proposed as an ideal uplink communication scheme in the 
mMTC. Especially in IoV, NOMA is a very promising technology. Unlike traditional 
OMA method used in the IoV, one resource block can only be allocated to one user. In 
the NOMA for IoV, by actively introducing interference and then demodulating at the 
receiver, the same resource block will be allocated to multiple users to improve spectrum 
efficiency Therefore, the NOMA will meet the demands of high throughput and massive 
connectivity in 5G IoV.

Grant-base spectrum access is not suitable for mMTC due to the frequent handshake 
and complex scheduling request. However, without scheduling request and scheduling 
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grant, the grant-free NOMA greatly reduces signaling overhead and latency, which is 
appropriate for the uplink transmissions of mMTC [1]. Grant-free can also be applied to 
satellite IoV to make vehicle navigation more efficient. Each active vehicle directly trans-
mits its metadata and data to the satellite without waiting for any permission. The grant-
free NOMA allows massive users to access the spectrum, but only a few of them are 
active at the same time. Therefore, due to the sparse activity among all users, the trans-
mitted symbols of all users form a sparse signal vector [2]. And it is significant to detect 
the active users and recover the sparse signals in the decoding of the grant-free NOMA. 
Each user is assigned a unique pilot sequence in the grant-free NOMA, and the base sta-
tion first detects the active users according to the pilot sequences and then recovers the 
sparse signals with the reconstruction algorithm [3]. According to the sparsity of active 
users, the reconstruction problem of the sparse signals can be solved by the recon-
struction algorithm of compressed sensing (CS), such as Orthogonal Matching Pursuit 
(OMP) and Iterative Support Detection (ISD) [4]. Different from the traditional OMP 
algorithm [5], the support set of the ISD algorithm will be completely updated after each 
iteration, which can correct the support set obtained in the previous iteration in order to 
improve the accuracy of recovery. SISD algorithm is proposed to jointly recover multiple 
sparse signals instead of a single sparse signal in several continual time slots by exploit-
ing the structured sparsity [6]. Above these algorithms mainly focus on sparse signals 
without additional structure, where non-zero elements can appear anywhere in sparse 
signal vector. In practice, sparse signal vector usually has a strcture, where non-zero ele-
ments are distributed according to a certain principal [7, 8].

In this letter, we propose a multiuser detection scheme for iterative support detection 
algorithm based block sparsity by expoiting the correlation of user activity, which can 
divide a complete signal vector into several block vectors to reduce the sparsity of a sin-
gle vector. According to the principle of compressed sensing, the sparser the signal is, 
the higher the signal recovery accuracy is. Hence, due to the sparsity of each block vec-
tor is lower than that of the complete signal vector, the recovery accuracy of the block 
vector is improved, which can enhance the recovery performance of the complete signal 
vector. Specifically, all zero elements and non-zero elements in the sparse signal vector 
are equally allocated to several block vectors, where the indexes of non-zero elements 
are the same. In this way, block sparsity in the sparse signal recovery model is gener-
ated. The main contributions of this letter can be summarized as follows: (1) a iterative 
support detection algorithm based block sparsity is proposed, where block vectors share 
a common support within a frame in the grant-free NOMA network. And the support 
set in each block vector is updated jointly during the iteration in the model. Compared 
with the random sparsity of active users appearing randomly in sparse signal vector in 
traditional model, the block sparsity structure can obtain better signal recovery perfor-
mance by reducing the signal vector sparsity. The proposed ISD algoithm based block 
sparsity has more performance gain in recovery accuracy than the classic algorithm such 
as OMP algorithm and ISD algorithm. (2) A circulant matrix is designed as measure-
ment matrix by observing the block structure. The proposed circulant matrix consisting 
of multiple one-dimensional vectors can further reduces the computation complexity, 
which is obtained by circularly shifting all the elements in a one-dimensional vector by 
one bit [9, 10].
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2 � System model
We consider the uplink transmission in NOMA network consisting of M users and a base 
station. Without loss of generality, We assume that the BS and all users are equipped with a 
single antenna. Since there are few users transmitting data at the same time, the number of 
active users can be set to N, N ≪ M . According to the sparsity of active users, the original 
sparse signal bm is encoded by LDPC and modulated by QPSK to generate symbols Bm . 
Then the symbol Bm is extended onto a spreading sequence sm of length K, K < M . In the 
NOMA network, the number of orthogonal subcarriers is K, and each orthogonal subcar-
rier carries M user signals. Therefore, the signal on the ath subcarrier received by the base 
station can be expressed as [11, 12]:

where gam is the channel gain of the mth user on the ath subcarrier, sam is the ath 
component of spreading sequence sm . va is additive white Gaussian noise on the ath 
subcarrier.

In this letter, we divide the signal into d blocks equally, and the number of users and the 
number of active users in each block are M/d and K/d respectively. The active users appear 
at the beginning of each block. Then data of each block transmitted through the subcarrier 
arrive at the base station. The signal on the ath subcarrier of the ith block received by the 
base station can be expressed as:

where i ∈
{

1, 2, . . . , d
}

 , a ∈
{

1, 2, . . . ,K/d
}

 , g [i]am is the channel gain of the mth user on 
the ath subcarrier of the ith block, s[i]am is the ath component of spreading sequence sm of 
the ith block, v[i]a  is the additive Gaussian white noise with zero mean on the ath subcar-
rier of the ith block. Small-scale fading channel such as Rayleigh channel can be selected 
as the channel model. At last we can express the relationship between original sparse 
signal x and signal block x[i] in the form of one-dimensional matrix

where signal block x[i] can be represented as

The relationship between the signal block y[i] and the complete signal y received at the 
base station is

where signal block y[i] recevied at the base station can be represented as
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According to (2), y[i] can be expressed in matrix form as

According to (5) and (7), the complete signal y can be represented as

where A[i] is the channel matrix of the ith block, the size is K/d ×M/d . Combining (2) 
and (7), we can get the expression of the A[i] and channel noise matrix of the ith block v[i]

where elements of the v[i] follow zero mean Gaussian distribution.

3 � The block sparse ISD methord
Massive machine type communication (mMTC) is a significant scenario in 5g Internet 
of Things, whose main characteristics are massive connection, sporadic transmissions 
and so on. Sporadic transmissions mean the probability of each user being active is 
very low so that only a small percentage of users are active in communicating with the 
base station at the same time. So we can propose the sparsity of active users by taking 
advantage of this characteristic, which forms a sparse signal recovery problem [13]. 
Compressed sensing can be used to solve this problem effectively. In this letter, sig-
nals from inactive users are set to zero and the signals from active users are selected 
from constellation set Y, Y = {1+ i, 1− i,−1+ i,−1− i} . In the traditional CS model, 
the sparsity of users signals x is often considered, and active users can appear any-
where in x. In this letter, we propose a block sparse method that divides users into 
blocks and represent x as a combination of signal block x[i] . Furthermore, active users 
appearing at the beginning of each block share the common support, making the best 
use of block sparsity. Then each block is recovered by reconstruction algorithm. In 
this way, the degree of freedom of the solution can be reduced and the robustness of 
the system can be improved, which can bring better recovery performance than tradi-
tional algorithms with random sparsity. The number and position of the active users 
in each block x[i] are the same. The specific block sparsity representation method is 
shown in Fig. 1. For example, we assume that the number of blocks is 3 and the num-
ber of active users is 9. Each block is represented as x[1] , x[2] , x[3] using the proposed 
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algorithm. The entire process is depicted in the Fig. 2. As shown in the figure, x is the 
original sparse signal and x̂ is the recovered sparse signal. By comparing x and x̂ , the 
BER performance of the proposed method is obtained.

We define Gxi as the index set of non-zero elements of the ith block, whose relation-
ship can be expressed as

where ||x[i]||2 indicates the L2 norm of x[i] , which represents the number of non-zero 
elements. In this letter, the compressed sensing reconstruction algorithm we use is ISD 
algorithm, so Gx[i] can be represented as support set supp(x[i]) . According to (7), chan-
nel matrix A[i] have an influence on signal received by the station y[i] , so it’s significant 
to choose the proper channel matrix. In the theory of compressed sensing, the meas-
urement matrix have to satisfy the the Restricted Isometry Property (RIP). In general, 
Gaussian random matrix or Bernoulli random matrix is used as the measurement matrix 
in some papers, and we consider using the circulant matrix as the measurement matrix 
to reduce computational complexity and save storage space by utilizing the previously 
proposed block sparse structure. According to (9), the steps to generate a block circulant 
matrix are listed as follows. 
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Fig. 1  The block sparse representation method

Fig. 2  The execution process of the proposed algorithm
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(1)	 Channel matrix A[i] can be divided into K/d sub-channel matrices, whose elements 
are composed of 0 and 1 with generation probability of 1/2 respectively. The first 
sub-channel matrix of length M/d is set to A[i]

1
.

(2)	 Move all elements of the matrix A[i]
1

 by one place to generate the second matrix A[i]
2

 . 
Then move all elements of A[i]

2
 by one place to generate the third matrix A[i]

3
 , and all 

sub-channel matrices are generated in turn like this.
(3)	 Combine all sub-channel matrices to get a complete measurement matrix A[i] . The 

specific circulant matrix structure is as follows. 

where A[i] contains only 0 and 1. This structure greatly simplifies the measurement 
matrix, makes use of the characteristic of block sparsity and also satisfies the RIP. The 
experimental results prove that it contributes to improving recovery accuracy. However, 
it can only ensure that the signal is reconstructed with a high probability by using circu-
lant matrix or other measurement matrices for compressed sensing. For a certain recon-
struction algorithm, whether there is a measurement matrix that can perfectly recover 
the original signal is still a problem to be studied.

The reconstruction algorithm used in this letter is ISD algorithm, which is different 
from traditional greedy algorithm such as OMP algorithm in support set detection. For 
instance, the index set of ISD algorithm will be updated after each iteration, while the 
index set of the greedy algorithm will remain unchanged or continue to grow. There-
fore, ISD algorithm can reconstruct the original signal more accurately than the greedy 
algorithm. Compared with the traditional ISD algorithm, the block sparse ISD algorithm 
proposed in this letter expresses the original sparse signal x as x[1], x[2], . . . , x[d] , which 
reduces the algorithm complexity and shortens the signal reconstruction time. Recently, 
a new SISD algorithm exploiting the structured sparsity is proposed, which improves 
ISD algorithm by recovering multiple sparse signals in J continuous time slots in a joint 
manner. And the BER will decrease with the increase of time slots. Whereas, only when 
the number of time slots J is very large can the performance of algorithm be significantly 
improved, which increase the algorithm complexity. When the number of time slots is 
small, the performance of SISD algorithm is similar to the traditional ISD algorithm, 
which shows that it has limitations. On the contrary, our proposed method can recover 
signal accurately by fully taking advantage of block sparsity among multiple related 
blocks even when there are few blocks. In summary, the proposed algorithm performs 
better than SISD algorithm under low complexity condition. Finally, we give the specific 
steps of block sparse ISD algorithm in Algorithm 1. The detailed steps can be described 
as follows.

Before the iteration starts, the original sparse signal x is represented as d signal blocks 
by the proposed method: x[1], x[2], x[3], . . . , x[d] , and then multiply the signal block x[r] by 
the corresponding channel sensing matrix A[r] to obtain the received signal y[r] . Next, 
ISD algorithm is used to recover the received signal y[r] into x̂[r] , and then combine all 
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signal blocks x̂[r] into recovered sparse signal x̂ . And recovery process can be expressed 
as the following steps.

(Step 2 ) Set support set I (0) = ∅ , and calculate the complement set T (0) = (I (0))C.
(Step 4 ) Obtain the rth signal block x[r](l) from the truncated weighted BP model in the 

lth iteration.
(Step 5 ) Set proper threshold ǫ(l) . First, the components of x[r](l) are sorted from small 

to large according to the absolute value to obtain a new signal block G(l) . Then subtract 
the absolute value of the previous element |g (l)i | from the absolute value of the latter ele-
ment |g (l)i+1

| in G(l) . And τ (l) is given preliminarily according to the paper [14, 15]. Then 
we find the minimum i value of the of the adjacent components satisfying the condi-
tion: |g (l)i+1

| − |g
(l)
i | > τ(l) and the component |g (l)i | corresponding to the minimum i is the 

threshold ǫ(l) . That is, when there is a big jump in the absolute value of two adjacent 
components for the first time, the smaller component is selected as the threshold. Then 
we detect support set of x[r](l) and update a new support set I (l+1).

(Step 9 ) When the support set I (l) contains enough elements to reach the end loop 
condition, the recovered sparse signal block x̂[r] is returned. And all sparse signal blocks 
are obtained in turn: x[1], x[2], x[3], . . . , x[d].

(Step 11 ) Combine all d sparse signal blocks into the original sparse signal x̂.
In the proposed algorithm, the threshold setting is based on the prior information that 

the non-zero elements of the each sparse signal block has fast degradation distribution 
characteristics. According to step 4, the optimization problem is the L1 minimization 
problem, and the true non-zero values of sparse signal x[r](l) are very large, but the num-
ber is small, while false non-zero values are very small, but the number is large. There-
fore, it is possible that the sum of true non-zero elements is the same as the sum of false 
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non-zero element, then true non-zero elments will be replaced by false non-zero ele-
ments in support set, which causes false detection. In this way, we can get right position 
of non-zero elements and determine more support set elements in the next iteration, 
and finally recover the complete support set.

The traditional ISD algorithm and the SISD algorithm proposed in recent years only 
consider the conventional sparse signal without additional structure. SISD algorithm can 
recover multiple sparse signals at the same time by expanding a received signal into a 
combination of multiple received signals in a joint manner. However, the structure of the 
original sparse signal is unchanged, and the position of non-zero elements is random. 
Different from ISD and SISD algorithm, the sparse signal in our proposed algorithm has 
a block sparse structure, where non-zero elements x[1], x[2], x[3], . . . , x[d] . As a result, 
each block has the same support set. By exploiting this structure, the signal blocks can 
be recovered in a joint manner, which not only increases the probability of signal recov-
ery, but also improves the accuracy of signal recovery. Obviously, when d = 1 , the sig-
nal with sparse structure degenerate into conventional sparse signal. And computational 
complexity mainly coming from BP problem in Step 4 is an indicator used to measure 
the performance of algorithm. And block method can reduces the scale of the received 
signal in a recovery process, which greatly speeds up the detection of the support set and 
reduces the complexity on the whole.

In the grant-free NOMA system, we apply the block sparse ISD algorithm to realize 
the detection of user activity. A sparse signal block can be regarded as a user group and 
different signal blocks correspond to different user groups. In a user group, each user 
communicates by using NOMA technology. And appropriate power is allocated to users 
who are divided into groups according to their channel conditions.

4 � Results and discussion
In this section, we compare the proposed ISD algorithm with ISD and SISD algorithm 
for simulation results. The BER is used to evaluate the accuracy of signal recovery, and 
the CPU running time is used to evaluate the complexity of the algorithm. The specific 
simulation parameters are as follows. The total number of users is M = 150 , the number 
of active users is N = 10 , the number of subcarriers is K = 10 , and number of blocks is 
d = 2 . Hence, the number of users in a block is 75, the number of active users in a block 
is 5, and the number of subcarriers in a block is 50. The measurement matrix is a circu-
lant matrix whose elements are 0 or 1. In the SISD algorithm, the number of time slots is 
J = 2 , and the measurement matrix is a Gaussian random matrix.

Figure  3 shows the BER performance of block sparse ISD algorithm under different 
number of blocks. From the simulation results, we can know that the BER performance 
of proposed algorithm improves with the increase of the number of blocks, which is due 
to the use of block sparsity to improves the accuracy of recovery.

Figure 4 shows the BER performance of different algorithms under different SNR. The 
results in Fig.  4 shows that compared with ISD algorithm, the proposed block sparse 
ISD algorithm has 2.5dB SNR gain when BER = 5 ∗ 10−2 . Compared with the SISD algo-
rithm, the proposed block sparse ISD algorithm has 1.75dB SNR gain when BER = 10−2 . 
It shows that the proposed algorithm has lower requirements for SNR than ISD and 
SISD algorithm under the same BER. Figures 5 and 6 show that the performance of the 
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proposed algorithm is better than others in the case of higher sparsity, which shows the 
applicability of the algorithm.

Table  1 shows the average CPU running time for all algorithm, that is, the time 
required for signal recovery, which is used to evaluate the algorithm complexity. The 
simulation environment is MATLAB 2010b with Intel (R) Core (TM) i7-10700f, 2.90 

Fig. 3  BER performance comparison against SNR (dB) for d = 1, 2, 5, when the number of active user N is 10

Fig. 4  BER performance comparison against SNR (dB), where the number of signal blocks is d = 2 and the 
number of continuous time slots is J = 2 when the number of active user N is 10
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Fig. 5  BER performance comparison against SNR (dB) for d = 1, 2, 5 when the number of active user N is 20

Fig. 6  BER performance comparison against SNR (dB), where the number of signal blocks is d = 2 and the 
number of continuous time slots is J = 2 when the number of active user N is 20

Table 1  The average CPU running time (second) for all algorithm

Time slots Block number The block sparse ISD algorithm SISD ISD

2 2 4641 8526 60064
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GHz CPU with 16GB memory under Windows 10 operating system. And the simula-
tion parameters are the same as the simulation parameters in Fig. 1. From the results 
in Table 1, we can see that traditional ISD algorithm has the longest running time and 
performance of SISD algorithm is much better than ISD algorithm. And the proposed 
ISD algorithm can recover the original sparse signal twice as fast as the SISD algorithm. 
This is because the SISD algorithm is very sensitive to the number of time slots, and its 
performance is not ideal when the number of time slots is low, and the increase of the 
number of time slots in turn increases the complexity. The proposed algorithm with an 
extra sparse structure performs better than ISD algorithm when the number of blocks 
is low. Thus, it is more suitable to apply in grant-free NOMA system with massive user 
connections.

5 � Conclusion
This letter studies the sparse signal reconstruction problem in grant-free NOMA system 
for 5g. We propose a new blcok sparse method based on ISD algorithm by exploiting 
the sparsity of user activities in massive Machine Type Communications. Specifically, 
we represent the original sparse signal in blocks, and then design the channel matrix 
as a circulant matrix to get the received signal blocks. Then the reconstructed algo-
rithm is used to detect the user activity and data to recover the signal blocks, which are 
recombined into a recovered original sparse signal. Compared with ISD algorithm and 
SISD algorithm, the proposed method improves the traditional ISD algorithm with the 
extra block sparse structure, and the support set of each block is the same. The circu-
lant matrix is selected as the measurement metrix. The simulation results show that the 
proposed algorithm can achieve 1.75dB SNR gain compared with SISD algorithm and 
achieve 2.5dB SNR gain compared with ISD algorithm. From the perspective of algo-
rithm complexity, the signal recovery time of SISD algorithm is one tenth of that of ISD 
algorithm and half of that of SISD algorithm, which indicates that the proposed algo-
rithm is very efficient. Therefore, the block sparse ISD algorithm has more performance 
gains than other ISD algorithms, and it is suitable to apply in the NOMA system. Finally, 
it is worth discussing that the sparsity of sparse signal is relatively low in this paper. A 
promising research direction is to achieve accurate recovery of a sparse signal with high 
sparsity. In the future, whether we can achieve accurate recovery by using block ISD 
algorithm for a sparse signal with higher sparsity remains to be studied.
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