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Abstract 

Background:  Kinetic parameters estimated with dynamic 18F-FDG PET/CT can help to characterize hepatocellular 
carcinoma (HCC). We aim to evaluate the feasibility of the gravitational search algorithm (GSA) for kinetic param-
eter estimation and to propose a dynamic chaotic gravitational search algorithm (DCGSA) to enhance parameter 
estimation.

Methods:  Five-minute dynamic PET/CT data of 20 HCCs were prospectively enrolled, and the kinetic parameters 
k1 ~ k4 and the hepatic arterial perfusion index (HPI) were estimated with a dual-input three-compartment model 
based on nonlinear least squares (NLLS), GSA and DCGSA.

Results:  The results showed that there were significant differences between the HCCs and background liver tissues 
for k1, k4 and the HPI of NLLS; k1, k3, k4 and the HPI of GSA; and k1, k2, k3, k4 and the HPI of DCGSA. DCGSA had a higher 
diagnostic performance for k3 than NLLS and GSA.

Conclusions:  GSA enables accurate estimation of the kinetic parameters of dynamic PET/CT in the diagnosis of HCC, 
and DCGSA can enhance the diagnostic performance.
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Background
Hepatocellular carcinoma (HCC) is the third leading 
cause of cancer-related death, with insignificant clini-
cal manifestations and concealed symptoms at the initial 
stage of the disease [1, 2]. Conventional medical imag-
ing techniques such as computed tomography (CT) and 
magnetic resonance imaging (MRI) are often used for the 
initial examination in clinical practice. However, they can 
only generate structural images and lack tumor metabolic 
information [3]. Positron emission tomography (PET)/
CT has emerged as a noninvasive functional imaging 

method that allows assessment of metabolic function in 
tumors by injecting glucose analogs as radiotracers [4].

Although static 18F-FDG PET imaging obtains several 
parameters, such as standard uptake values (SUV), meta-
bolic tumor volume and total lesion glycolysis, it is insuf-
ficient to describe the metabolic processes of 18F-FDG 
[5]. Dynamic PET/CT imaging can track the distribution 
of 18F-FDG in tissues and derive some kinetic parameters 
that accurately describe the cellular metabolic processes 
of 18F-FDG to enhance diagnosis and therapy in vari-
ous diseases, and compartmental modeling is routinely 
applied to estimate kinetic parameters [6, 7]. Sarkar et al. 
[8] demonstrated that dynamic 18F-FDG PET with tracer 
kinetic modeling has the potential to diagnose nonalco-
holic steatohepatitis. Wang et al. [9] found that dynamic 
18F-FDG PET with optimization-derived blood input 
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function kinetic modeling can effectively distinguish liver 
lesions. Considering 60-min or more dynamic PET/CT 
is not easily available in routine clinical settings. Samimi 
et al. [10] reported that 5-min dynamic PET / CT plus a 
static PET/CT enables accurate and robust estimation 
of kinetic parameters in patients with liver metastases. 
Our previous studies [11, 12] also demonstrated that 
5-min dynamic 18F-FDG PET/CT can provide blood flow 
and metabolic information that enhances the detection 
of HCC lesions [11], and derived perfusion and early-
uptake PET/CT are feasible for diagnosing HCC and pro-
vide added functional parameters to enhance diagnostic 
performance [12].

Nonlinear least squares (NLLS) is commonly used to 
estimate compartment model parameters [10, 12–14], 
and its essence is to minimize the sum of squared errors 
of the measured and estimated values; however, NLLS 
easily falls into the local optimum in the process of 
parameter estimation, and the set initial value has a great 
influence on the results [15]. The gravitational search 
algorithm (GSA) is a swarm intelligent optimization 
algorithm that is based on Newtonian gravity and has a 
strong searching ability [16]. It is more stochastic, does 
not require initial values, and can perform better param-
eter estimation compared to NLLS; however, whether 
GSA can function well to estimate compartment model 
parameters with dynamic 18F-FDG PET/CT is unclear. 
Additionally, a dynamic chaotic gravitational search algo-
rithm (DCGSA) is proposed to improve the exploration 
ability and global search ability to enhance parameter 
estimation. Therefore, this study evaluated the role of the 
compartmental parameters of 5-min 18F-FDG PET/CT 
estimated by NLLS, GSA and DCGSA for distinguishing 
HCC from background liver tissue.

Methods
Patients
This study was approved by the Institutional Review 
Committee (IRB) of the First People’s Hospital of Yun-
nan Province (No. 2017YYLH035), informed consent 
was obtained from all the patients, and all the methods 
were performed in accordance with the Declaration of 
Helsinki.

We recruited 28 patients with clinically suspected 
HCC, and a 5-min dynamic PET/CT scan was added 
before conventional PET/CT. Ten patients were excluded 
because they had a non-HCC pathological diagnosis 
(n = 5), lacked a pathological diagnosis (n = 3), and had 
suboptimal imaging quality (n = 2).

Eighteen patients (17 males and 1 female) who had 
pathologically confirmed HCC were finally included in 
this study. Sixteen patients had a single lesion, and two 
patients had two lesions. A total of 20 HCC tumors that 

were confirmed by surgery (n = 14) or biopsy (n = 6) were 
used in this study, and the long axis of these tumors was 
1.9–15.0 cm (average 6.5 ± 3.6).

Dynamic PET/CT
All examinations were performed using a Philips Inge-
nuity TF PET/CT scanner (Cleveland, OH, USA), and a 
Philips IntelliSpace Portal v7.0.4.20175 was used for post-
processing. In summary, after the patients had fasted for 
at least 6 h, blood glucose was verified. A low-dose liver 
CT scan (120 kV, 100 mAs) was performed for attenua-
tion correction and image fusion. A 5-min dynamic PET 
scan was performed over the liver region after intrave-
nous administration of 5.5  MBq/kg 18F-FDG. Dynamic 
PET data were divided into 16 frames using the follow-
ing sampling schedule: 12 frames of 5 s and 4 frames of 
60 s each. Dynamic PET images were then reconstructed 
using the standard ordered subsets expectation maximi-
zation (OSEM) algorithm.

Regions of interest (ROIs) were drawn manually in the 
CT images of each patient, including the HCC, back-
ground liver tissue, aorta and portal vein (the extrahe-
patic portal vein rather than the intrahepatic portal vein), 
with manual slice-by-slice adjustment. An ROI was cop-
ied to the PET/CT images after image fusion, and time 
activity curves (TACs) consisting of the maximum SUV 
(SUVmax) extracted from each frame were generated. 
Figure 1 shows the ROIs drawn on a transaxial dynamic 
PET/CT image of a patient with HCC.

Kinetic modeling
A dual-input three-compartment model was used to 
assess the steady-state hepatic metabolism of 18F-FDG, 
as shown in Fig. 2 [17, 18].

In Fig.  2, k1 (ml/min/ml) represents the rate constant 
of 18F-FDG from the blood to the liver tissue, and k2 
represents the clearance rate back to the blood. k3 is the 
rate constant of further phosphorylation of 18F-FDG to 
18F-FDG-6-phosphate and k4 is the dephosphorylation 
rate of phosphatase. CB(t) represents the 18F-FDG con-
centration in the blood:

where A(t) represents the 18F-FDG concentration in the 
hepatic artery, and P(t) represents the 18F-FDG con-
centration in the portal vein. The HPI represents the 
hepatic artery perfusion index (the ratio of arterial blood 
volume to total blood volume). CM(t) represents the 
free-state 18F-FDG concentration and the metabolized 
18F-FDG-6-phosphate concentration in the liver tissue 
compartment. CT(t) represents the curve of the tracer 
concentration in the tissue measured from the PET image 
over time and is the output function of the kinetic model:

(1)CB(t) = HPI × A(t)+ (1−HPI)× P(t),
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where α2 andα1 can be described as follows:

Estimation of the kinetic parameters
This study proposes an improved algorithm, the DCGSA, 
for the estimation of liver kinetic parameters. In the GSA, 
a solution space about the objective function is initial-
ized randomly, with each individual in the space as one 
feasible solution in the objective function. With constant 
movement, individuals will move toward the most mass, 
which is the optimal solution of the search space [16]. 

(2)CT (t) =
K1

α2 − α1
×

[

(k3 + k4 − α1)e
−α1t + (α2 − k3 − k4)e

−α2t
]

⊗ CB(t)

(3)
α1 =

k2 + k3 + k4 −

√

(k2 + k3 + k4)
2 − 4k2 × k4

2

(4)
α2 =

k2 + k3 + k4 +

√

(k2 + k3 + k4)
2 − 4k2 × k4

2

The convergence speed of the GSA is faster, which makes 
it fall into a local optimum without global search [19].

In the DCGSA, the dynamic adjustment strategy is 
introduced for the gravitational constant of GSA to 
improve the algorithm exploration capacity and mining 
capacity. At the same time, inertia weights and chaotic 
sequences are added to the particle speed update process 
to avoid falling into a local optimum and to improve the 
global search ability. The overall flow of the DCGSA is 
shown in Fig. 3. The DCGSA can be simply divided into 
four parts: the initialization phase, the evaluation phase, 
the acceleration phase, and the update position phase.

Initialization phase
To start the search process for the DCGSA, the initial 
population of N individuals is randomly generated in the 
search space, which represents a set of model parameters 
(k1, k2, k3, k4 and the HPI). The position of each particle is 
represented by the following:

Fig. 1  Region of interest drawn in dynamic PET/CT. a CT image, b PET/CT fusion image. The HCC is shown in the black circle, background liver 
tissue is shown in the green circle, the portal vein is shown in the red circle, and the aorta is shown in the yellow circle. Blood 18F-FDG enters the 
aorta, portal vein, spleen and HCC

Fig. 2  A dual-input three-compartment model
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where xDi  is the position of the ith individual in the D 
dimension.

Evaluation phase
The individual is evaluated according to the fitness func-
tion, defined as the sum of the squared errors squared 
errors of the experimental data and the fitted data:

where N is the number of individuals, i is the index, C(t) 
is the actual concentration of 18F-FDG in the obtained 
tissue, and Cm

i (t) is the estimated concentration of 18F-
FDG in the obtained tissue. After that, the individual 
continuously updates its inertial mass Mi(t) during 

(5)
Xi =

(

x1i , x
2
i , · · · , x

d
i , · · · , x

D
i

)

for i = 1, · · · ,N

(6)fiti(t) =
∑N

i=1

(

CT
′

(t)− Cm
i (t)

)2
,

movement by the following equations, that is, to find the 
best model parameters in the search space:

where best(t) and worst(t) are the best and worst fitness, 
respectively:

(7)mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)

(8)Mi(t) =
mi(t)

∑N
j=1mj(t)

,

(9)best(t) = min
j∈1,··· ,N

fitj(t)

(10)worst(t) = max
j∈{1,··· ,N}

fitj(t)

Fig. 3  Flowchart of the DCGSA
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Acceleration phase
The individual will be subjected to the force of other indi-
viduals in the search space. Based on the law of universal 
gravitation, the force Fdij(t) of individual i by individual j 
is:

where Mi(t) and Mj(t) are the inertial masses of individu-
als i and j at time t, respectively, that is, the TACs cal-
culated by a set of kinetic parameters. ǫ is a small value 
to prevent errors. Rij(t) is the Euclidean distance between 
individuals i and j. G(t) is a gravitational constant that 
decreases with time t and is described by Eq. (12); it can 
affect the force and acceleration of the individual:

where G0 is an initial value, α is a constant, t is the cur-
rent number of iterations, and T is the maximum num-
ber of iterations. The traditional gravitational constant 
was not fully explored in the early stage of iteration, and 
fell into a local optimum [20]. Lei et al. [21] introduced 
a self-adaptive gravitational constant, and Seyedali et al. 
[22] used chaotic mapping to adjust the gravitational 
constant.

Therefore, this paper proposes a new gravitational con-
stant expression, introducing an improved dynamic adjust-
ment strategy, which contains a random variable as follows:

where randt is a random number in (0,1). G′(t) adopts 
a large step and long movement in the early stage of 
iteration to increase the particle exploration ability and 
enough time for optimization. Random variables can 
abruptly change the gravitational constant during itera-
tions, improving the ability of particles to jump out of 
the local optimum. The process of moving in small steps 
is adopted in the later stage of iteration, which effec-
tively avoids the premature convergence of particles and 
improves the mining capacity.

The resultant force of each particle is calculated as 
follows:

where Kbest decreases with the number of iterations, the 
initial value is N, and randj is a random number between 
the interval (0, 1). The acceleration of particle i at time t is 
calculated as follows:

(11)Fd
ij (t) = G(t)

Mi(t)×Mj(t)

Rij(t)+ ε

(

xdi (t)− xdj (t)
)

(12)G(t) = G0e
−α t

T

(13)G′(t) = G0e
−α t

T1.5 ×
(

randt+
t
T

)

,

(14)Fd
i (t) =

∑

j∈Kbest,j �=i

randjF
d
ij (t)

Update position phase
In each iteration, the particles update their velocity and 
position as follows:

where randi is a uniformly distributed random num-
ber between the interval (0, 1). However, some particles 
move too fast in the moving process, thus flying out of 
the solution space. Li et al. [23] introduced inertia weight 
instead of random variables to restrict the particle veloc-
ity. Gao et al. [24] replaced random variables with chaotic 
sequences. Therefore, this paper adds inertia weight and 
chaotic sequence to the particle speed updating process 
to further limit the particle speed:

where ωmax and ωmin are the inertia weights ( ωmax=0.7, 
ωmin=0.1, which is mainly based on experience), and c(i) 
is a chaotic sequence. A larger inertia weight can improve 
the exploration ability, and a smaller inertia weight can 
improve the mining ability. Moreover, the ergodicity and 
dynamics of the chaotic sequence have the ability to jump 
out of the local optimum.

Statistical analysis
Statistical analysis was performed using MedCalc ver-
sion 13.0.0.0 (MedCalc software, Ostend, Belgium). The 
derived parameters are expressed as the mean ‍ ± ‍ stand-
ard deviation. The Student’s t-test was used to compare 
the estimated parameters between HCCs and back-
ground liver tissues. The box plot was used to assess 
the consistency of the estimated k1 and k3 for the differ-
ent methods. The diagnostic performance of k1 and k3 
among the three methods was compared using receiver 
operating characteristic (ROC) curve analysis. P < 0.05 
indicated significant differences. The fitting quality of 
the TACs among the three methods was compared using 
the Akaike information criterion (AIC) and the Bayesian 

(15)adi (t) =
Fd
i (t)

Mi(t)

(16)vdi (t + 1) = randi × vdi (t)+ adi (t)

(17)xdi (t + 1) = xdi (t)+ vdi (t + 1)

(18)vdi (t + 1) = Wd(t)× vdi (t)+ adi (t)

(19)xdi (t + 1) = xdi (t)+ vdi (t + 1)× c(i)

(20)Wd(t) = ωmax −
ωmax − ωmin

T
× t,
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information criterion (BIC), and a smaller value repre-
sents better curve fitting.

Results
Kinetic parameters
  The kinetic parameters (k1, k2, k3 and k4) and the HPI 
obtained by the three methods are shown in Table 1.

NLLS yielded a significant difference in HCCs due to its 
higher k1, k4 and the HPI than those in background liver 
tissue (P = 0.019, P < 0.001, and P < 0.001, respectively), 
and k2 and k3 did not show a significant difference 
between HCCs and background liver tissue (P = 0.067 
and P = 0.411, respectively).

For the GSA, k1, k3, k4 and the HPI showed significant 
differences in distinguishing between HCCs and back-
ground liver tissue (P = 0.008, P < 0.001, P < 0.001, and 
P = 0.019, respectively), while k2 did not reach signifi-
cance. (P = 0.688).

For the DCGSA, k1, k3 and the HPI were significantly 
higher in HCCs than in background liver tissue (P < 0.001, 
P < 0.001, and P < 0.001, respectively), and k2 and k4 were 
significantly lower in HCCs than in background liver tis-
sue (P < 0.001 and P < 0.001, respectively).

The box plots of k1 and k3 estimated by the three meth-
ods are shown in Fig.  4. Compared with the GSA and 
NLLS, the DCGSA had a more compact data distribution 
and lower standard deviation of k1 and k3 in HCCs and in 
background liver tissues.

Comparison of k1 and k3
Figure 5 shows the ROC curves of k1 and k3 estimated by 
the three methods. For k1, the diagnostic performance 
for differentiating HCCs from background liver tissue 
among the three methods was not significantly different 
(all P > 0.05). For k3, the DCGSA had higher diagnostic 

performance than the GSA and NLLS (P = 0.0024 and 
P = 0.0001, respectively); the diagnostic performance was 
not significantly different between the GSA and NLLS 
(P = 0.4420).

TAC fit quality
Figure  6 shows the mean and standard deviation of the 
AIC and BIC values for HCCs and background liver tis-
sue using the DCGSA, GSA and NLLS. The DCGSA had 
the lowest AIC and BIC values among the three methods 
for HCCs, and the AIC and BIC values of the DCGSA 
were higher than those of the GSA and lower than those 
of NLLS for the background liver tissue.

Discussion
Conventional dynamic scans take 60 min or more, which 
is time-consuming, significantly limits the daily through-
put of PET/CT scanners and the patients cannot remain 
immobile for a long period of time, thus it is not suitable 
for clinical settings. Based on previous study results, this 
paper used 5-min dynamic PET/CT for kinetic analysis 
to differentiate HCCs from background liver tissue [11, 
12]. This study preliminarily introduced the GSA and 
improved kinetic parameter estimation with a dual-input 
dual-compartment model on dynamic PET/CT. The 
liver receives dual blood supplies from the hepatic artery 
and portal vein, which is neglected in traditional single-
input kinetic modeling, resulting in inaccuracy in kinetic 
parameter estimation [25, 26]. Moreover, hepatocytes 
contain glucose-6-phosphatase (G6P), which dephos-
phorylates 18FDG-6-phosphate (k4) [6]. In this paper, a 
reversible (k4 > 0) two-tissue three compartment model 
with dual blood input is used for kinetic modeling, and 
it can accurately describe the glucose metabolism of the 
liver.

Table 1  Parameter estimation results of the three methods

k1 k2 k3 k4 HPI (%)

NLLS

 HCCs 0.528 ± 0.241 0.535 ± 0.200 0.060 ± 0.054 0.061 ± 0.014 48.8 ± 32.8

 Liver tissue 0.362 ± 0.197 0.657 ± 0.195 0.074 ± 0.051 0.018 ± 0.025 10.9 ± 15.7

 P 0.019 0.066 0.411  < 0.001  < 0.001

GSA

 HCCs 0.679 ± 0.206 0.754 ± 0.183 0.189 ± 0.035 0.111 ± 0.046 56.5 ± 13.8

 Liver tissue 0.545 ± 0.073 0.772 ± 0.045 0.161 ± 0.036 0.042 ± 0.034 21.8 ± 7.3

  P 0.008 0.675 0.019  < 0.001  < 0.001

DCGSA

 HCCs 0.651 ± 0.013 0.592 ± 0.012 0.137 ± 0.024 0.064 ± 0.003 66.7 ± 18.3

 Liver tissue 0.628 ± 0.015 0.620 ± 0.013 0.075 ± 0.024 0.090 ± 0.009 31.0 ± 9.2

 P  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
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With the development of swarm intelligence opti-
mization algorithms, some researchers have begun to 
use them to estimate kinetic models. Liu et al. [27] pro-
posed an improved artificial immune network (AIN) for 
parameter estimation of a normal mouse liver kinetic 
model. Huang et al. [28] achieved kinetic analysis of PET 
images of Parkinson’s disease by particle swarm optimi-
zation (PSO). Sara et al. [29] also demonstrated that the 
kinetic modeling of mouse kidneys can be estimated by 
ant colony optimization (ACO). The GSA is an optimiza-
tion algorithm inspired by the theory of Newtonian grav-
ity; its role in kinetic parameter estimation has attracted 
the attention of researchers. Ismail et al. [30] proposed a 
hybrid algorithm of PSO and the GSA for kinetic model 
parameter estimation of aspartate biochemical pathways.

This study preliminarily indicated that the GSA can 
estimate the parameters of the liver kinetic model and 
can distinguish HCCs from background liver tissue by k1, 
k3, k4 and the HPI. To further enhance the global search 
capability and improve the strategy for jumping out of 
the local optimum to improve the accuracy of parameter 
estimation, an enhanced version, the DCGSA, is pro-
posed in this paper, which showed significant differences 
in the kinetic parameters k1, k2, k3, and k4 and the HPI. 
NLLS is the most commonly used parameter estimation 

of kinetic models, but it can only distinguish HCCs from 
background liver tissue by k1, k4 and the HPI. Addition-
ally, the statistical information criteria showed that the 
DCGSA achieved lower AIC and BIC values than those 
of the GSA and NLLS for HCCs and lower AIC and BIC 
values than those of NLLS for background liver tissue, 
which ensures improved TAC fitting quality.

Normal liver tissue is mainly supplied by the por-
tal vein, which carries 70%-80% of the overall inflow, 
while HCC is a hypervascular tumor mainly supplied by 
the hepatic artery. The results of this study are consist-
ent with those of previous studies, with the HPI of HCC 
being significantly higher than that of normal liver tissue 
[10, 12]. The HPIs of HCC for NLLS, the GSA, and the 
DCGSA were 48.8 ± 32.8, 56.5 ± 13.8, and 66.7 ± 18.3, 
respectively, and the DCGSA was much closer to the 
expected clinical value. Most patients with HCC have 
a history of liver cirrhosis, which leads to an increase 
in the arterial blood supply of normal liver tissue [31]. 
When using the GSA and NLLS, the respective HPIs of 
normal liver tissue were 10.9 ± 15.7 and 21.8 ± 7.3 and 
were much lower than expected. However, the HPI of the 
DCGSA was 31.0 ± 9.2 and is closer to clinical practice.

Many glucose transporters (Gluts), which transport 
18F-FDG from the blood into hepatocytes, are distributed 

Fig. 4  Box plots of k1 and k3 for the three methods
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on the plasma membrane of hepatocytes, and 18F-FDG is 
phosphorylated to 18F-FDG-6-phosphate by hexokinase 
(HK). The expression of Gluts is significantly higher in 
many cancer cells than in normal cells, and the uptake 
of glucose is increased. In addition, the expression of 
hexokinase and its affinity or functional activity of glu-
cose phosphorylation is generally higher in cancer cells 
[32–35]. The transport rate k1 and phosphorylation rate 

k3, which are the parameters of major interest, are often 
used for quantitative analysis to achieve the diagno-
sis and assessment of HCC. Zuo et al. [36] reported the 
potential of using k1 to noninvasively evaluate human 
liver inflammation. Geist et  al. [13] compared four dif-
ferent kinetic models for kinetic modeling of HCC and 

Fig. 5  Comparison of the ROC curves of k1 and k3

Fig. 6  AIC and BIC values of TAC fitting by the three methods
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demonstrated significant differences in k3 between HCC 
and background liver tissue in all models.

In this study, k1 and k3 were greater in HCC than in 
background  liver tissue by using the GSA and DCGSA, 
which is consistent with previous studies, implying 
increased Glut and HK activity in HCC [10, 37]. Mean-
while, the box plots showed higher consistency of k1 and 
k3 estimated with the DCGSA compared with NLLS and 
the GSA. Comparison of the ROC curves showed that 
the DCGSA had the highest diagnostic performance for 
k3 and was significantly higher than that of the GSA and 
NLLS.

G6P activity and the dephosphorylation rate k4 are 
higher in normal liver tissue than in HCC [6]. Our 
results showed that only k4 of the DCGSA conformed 
to the above clinical study, but that of the GSA and 
NLLS did not.

In summary, 18F-FDG kinetics can provide a com-
prehensive understanding of physiological systems and 
disease pathogenesis. The DCGSA can better estimate 
the kinetic parameters of the compartment model than 
the GSA and NLLS, which might play a significant role 
in clinical use for tumor characterization, monitoring 
the locoregional therapy and outcomes after resection.

This study has some limitations. First, the sample size 
of the experimental data is small. Second, there was a 
slight difference in ROI placement during TAC extrac-
tion, but we believe the influence was negligible. Third, 
this study did not explore lymph node involvement and 
other sites of metastasis, and we may explore other 
kinetic models in further studies. Fourth, the parameter 
estimation process is computationally expensive, and 
the proposed DCGSA might not be applicable to voxel 
level analysis for parametric images. It is necessary to 
improve the fitting algorithm to enhance the diagnostic 
performance and to develop more effective and efficient 
methods in our future research.

Conclusions
In this study, we demonstrated that the GSA can be 
used for parameter estimation of kinetic models on 
dynamic 18F-FDG PET/CT, and furthermore, the 
DCGSA was proposed to estimate the parameters more 
efficiently and reliably to distinguish HCC from back-
ground liver tissue.
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