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Optimization of enzymatic fragmentation 
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Abstract 

Background:  Novel commercial kits for whole genome library preparation for next-generation sequencing on 
Illumina platforms promise shorter workflows, lower inputs and cost savings. Time savings are achieved by employ-
ing enzymatic DNA fragmentation and by combining end-repair and tailing reactions. Fewer cleanup steps also allow 
greater DNA input flexibility (1 ng-1 μg), PCR-free options from 100 ng DNA, and lower price as compared to the well-
established sonication and tagmentation-based DNA library preparation kits.

Results:  We compared the performance of four enzymatic fragmentation-based DNA library preparation kits (from 
New England Biolabs, Roche, Swift Biosciences and Quantabio) to a tagmentation-based kit (Illumina) using low input 
DNA amounts (10 ng) and PCR-free reactions with 100 ng DNA. With four technical replicates of each input amount 
and kit, we compared the kits’ fragmentation sequence-bias as well as performance parameters such as sequence 
coverage and the clinically relevant detection of single nucleotide and indel variants. While all kits produced high 
quality sequence data and demonstrated similar performance, several enzymatic fragmentation methods produced 
library insert sizes which deviated from those intended. Libraries with longer insert lengths performed better in terms 
of coverage, SNV and indel detection. Lower performance of shorter-insert libraries could be explained by loss of 
sequence coverage to overlapping paired-end reads, exacerbated by the preferential sequencing of shorter frag-
ments on Illumina sequencers. We also observed that libraries prepared with minimal or no PCR performed best with 
regard to indel detection.

Conclusions:  The enzymatic fragmentation-based DNA library preparation kits from NEB, Roche, Swift and Quanta-
bio are good alternatives to the tagmentation based Nextera DNA flex kit from Illumina, offering reproducible results 
using flexible DNA inputs, quick workflows and lower prices. Libraries with insert DNA fragments longer than the 
cumulative sum of both read lengths avoid read overlap, thus produce more informative data that leads to strongly 
improved genome coverage and consequently also increased sensitivity and precision of SNP and indel detection. In 
order to best utilize such enzymatic fragmentation reagents, researchers should be prepared to invest time to opti-
mize fragmentation conditions for their particular samples.
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Background
During the last decade, Illumina technology has come to 
dominate short read next generation sequencing (NGS), 
offering cost-effective high precision data for a wide vari-
ety of applications such as whole genome sequencing 
(WGS), metagenomics and transcriptomics. In medical 
genetics, WGS is increasingly applied to identify dis-
ease-causing genetic variation (SNPs or structural vari-
ants), disease susceptibility, cancer evolution and drug 
response, among a plethora of other applications [1–3].

Since the cost of next generation sequencing is still 
high and often the amount of available DNA from the 
biological source is limited, methodological efforts are 
constantly underway to improve the efficiency of WGS, 
i.e. extracting the most unique genetic information, with 
the highest possible quality and coverage, from a variety 
of input DNA amounts and qualities, at the lowest cost 
and shortest hands-on time.

Library preparation is an essential process preced-
ing sequencing itself, and comprises several aspects that 
affect the efficiency of WGS. It typically involves the fol-
lowing main steps: fragmentation of the input DNA, end-
repair and A-tailing of the DNA fragments, ligation of 
indexed sequencing adapters and optional amplification 
of the ligated products. In addition, one or more cleanup 
steps are necessary in between steps to purify the DNA 
reaction products of reagents from the previous reaction.

The most commonly used methods for fragmentation 
of genomic DNA are sonication, tagmentation (i.e., trans-
position of partial adapters into the DNA), and enzymatic 
digestion by DNA endonucleases. Prior to the wide-
spread adoption of enzymatic fragmentation, sonication 
was preferred, as it produces near-random fragmenta-
tion, and fragment length can be adjusted by varying son-
ication time and strength. However, this requires a DNA 
sonication instrument and in some cases also special 
consumable sonication tubes, adding considerable cost 
and handling time to the procedure. Based on sonication, 
Illumina’s Truseq PCR-free library preparation reagents 
were the first commercial kit enabling PCR-free library 
preparation for Illumina sequencers. However, this kit 
requires DNA input of 1 microgram DNA, which is in 
many cases not available.

Greater flexibility of input amount and a significantly 
quicker protocol was subsequently offered by Illumina’s 
tagmentation based Nextera reagents, albeit not allow-
ing PCR-free prep (until recently, in its renamed version 
Illumina DNA prep). The principle of tagmentation is the 

insertion by transposition of partial sequencing adapter 
sequences in genomic DNA that in effect fragments and 
adds adapters in a single step. Subsequently, the adapters 
are extended to full length by PCR (in the Nextera DNA 
flex kit) and through an undisclosed PCR-free method in 
the Illumina DNA PCR-free kit. The length of the DNA 
between the transposed adapters is dependent on the size 
of the beads and the concentration of the transposomes 
(transposase loaded with adapters) coating on them [4], 
which is fixed for the respective kit. The sole possibility 
to modulate this length is by means of size selection after 
library preparation is complete, which may discard a con-
siderable portion of the library.

Endonuclease-based fragmentation for NGS was ini-
tially feared to suffer from enzyme cut-site preference 
bias and the introduction of artefacts [5]. However, 
recent commercial enzyme preparations have largely 
alleviated these concerns [6], and several competing 
library prep kits that use enzymatic fragmentation have 
emerged. Offering quick and simple workflows, high flex-
ibility of DNA input amounts, PCR-free options with 
approximately 100 ng DNA, and importantly a lower 
price, these kits offer attractive alternatives to sonication 
and tagmentation. Here, we compare the performance of 
several of these kits.

In order to evaluate the performance and sequencing 
data quality produced with enzymatic fragmentation-
based library prep kits, we performed WGS using four 
such kits (from New England Biolabs, Quantabio, Swift 
Biosciences and Roche) and the Nextera DNA flex tag-
mentation based kit (from Illumina) with 10 and 100 ng 
DNA inputs, and sequenced them on an Illumina HiSeq 
X instrument. All of the tested kits reproducibly deliv-
ered similar high-quality data in terms of coverage and 
precision of single nucleotide variant (SNV) and indel 
detection. We observed that libraries with DNA insert 
size longer than the combined sequencing reads length 
exhibited improved performance than those with shorter 
length. However, there is an optimum insert length, 
beyond which further increase in insert length does 
not augment the sequencing data performance but can 
reduce clustering efficiency and data yields.

Results
Study design
We compared the WGS performance of four enzymatic 
fragmentation-based library preparation kits: NEBNext 
Ultra II FS from NEB (hereafter referred to as NEB), 
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Swift 2S Turbo flexible from Swift Biosciences (hereafter 
Swift2S), SparQ DNA Frag and Library Prep from Quant-
abio (Quanta) and KAPA HyperPlus from Roche (Kapa) 
with the tagmentation-based Nextera DNA FLEX kit 
from Illumina (Nextera). In our study design we prepared 
libraries from 10 ng and 100 ng input DNA amounts, 
whereby the 100 ng input reactions were PCR-free (or 
with minimal PCR cycles, where absolutely required; 
see Table 1 for details). An entirely PCR-free option was 
not possible for Nextera and NEB kits, in which PCR is 
necessary to complete the sequencing adapters (and add 
indexes). With four technical replicates for each input 
amount and kit, we aimed to test the reproducibility and 
robustness of the kits, with respect to fragment size dis-
tribution and quality of the sequencing data. As input 
DNA we used genomic DNA from the human fibroblast 
cell line NA12878 (purchased from Coriell Institute) 
that has been well characterized (e.g. for indels and sin-
gle nucleotide variants) and often used as standard con-
trol DNA source for genomic studies- called therefore 
also “genome in a bottle” [7, 8]. Library concentrations 
produced by each replicate are summarized in Addi-
tional Table  1. The libraries from 10 and 100 ng DNA 
inputs, each in four technical replicates, were pooled and 
sequenced over 20 lanes of HiSeq X flowcells (i.e. four 
lanes per kit), with 150 bp paired end reads.

Fragmentation
The enzymatic fragmentation-based protocols require 
different fragmentation conditions (time and tempera-
ture) depending on the input DNA amount and the 

desired insert fragment length. In each case, we used 
the manufacturer’s recommended conditions respec-
tively for 10 and 100 ng DNA input whilst aiming for 
average 350 bp insert DNA size (excluding the adapt-
ers; see Table 1). The fragment distribution of the final 
libraries was assessed by capillary electrophoresis 
(Fig.  1A and Additional Fig.  1A) and in addition cal-
culated from the mapped paired end sequencing reads 
(Fig.  1B and C, Table  1). Gel electrophoresis was not 
performed on PCR-free libraries, as their termini are 
partially single stranded (with Y-shaped or also called 
forked adapters) which affects migration by gel electro-
phoresis. Therefore, electrophoresis insert-sizes have 
been omitted for the PCR-free libraries produced from 
100 ng DNA with the Kapa, Quanta and Swift2S kits.

All kits except Kapa produced a relatively narrow 
distribution of fragment sizes (Fig.  1A). The fragment 
distributions of Quanta and NEB libraries exhibited 
a notable skewing towards inserts shorter than the 
median fragment length. Nonetheless, based on the gel 
migration profiles for 10 ng input libraries, all of the 
kits efficiently and reproducibly fragmented the DNA 
using the recommended settings. The average insert 
size was close to the 350 bp target length for Kapa and 
NEB libraries and 450 bp for Nextera, while Quanta 
and Swift2S libraries produced considerably shorter 
(245 bp) or longer (422 ng) average lengths respectively 
(summarized in Table 1). Note that we did not optimize 
experimentally the fragmentation conditions, as rec-
ommended in the manuals, but rather used directly the 
suggested settings.

Table 1  Mean DNA insert sizes upon fragmentation and after sequencing achieved with different library preparation kits

Libraries were prepared from 10 and 100 ng of human NA12878 DNA using enzymatic fragmentation and tagmentation (*) based library prep kits, employing the 
given fragmentation times and PCR cycles. Bead-based purifications were performed according to the individual instructions of the DNA library preparation kits. 
Insert DNA sizes were calculated by subtracting the adapter length from the mean fragment size based on Tapestation D1000 profiles and from the sequencing reads 
upon mapping after trimming of adapters, standard deviation is given in brackets. PCR-free libraries do not migrate properly on Tapestation, due to forked adapters, 
therefore there is no insert size data based on Tapestation. For additional information, see also Fig. 1 and Additional Fig. 1A

Kit Target 
insert size 
[bp]

10 ng input 100 ng input

frag. 
time 
[min]

Insert size [bp] PCR cycles frag. 
time 
[min]

Insert size [bp] PCR cycles

by Tapestation by seq. Reads by Tapestation by seq. Reads

Nextera DNA flex 
(Illumina)

450 15* 418(±5) 326(±2) 8 15* 479(±2) 366(±2) 5

Kapa HyperPlus 
(Roche)

350 20 345(±7) 240(±9) 9 20 - 227(±3) -

SparQ Fragment 
and Library Prep 
(Quantabio)

350 16 245(±8) 185(±3) 9 10 - 244(±10) -

Swift 2S turbo flex-
ible (Swift)

350 10 422(±9) 330(±12) 6 8 - 226(±7) -

NEBNext Ultra II FS 
DNA library prep 
(NEB)

200-450 15 303(±9) 206(±7) 7 15 276(±7) 188(±6) 3
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We also measured the insert sizes of the libraries 
obtained from the paired end sequencing reads (Fig. 1B 
and C, Table  1). Insert sizes observed by sequencing 
reflected the diverse sizes seen by electrophoresis, i.e., 
kits that had produced longer inserts observed by elec-
trophoresis, also showed longer inserts as measured by 
the distance between paired sequencing reads. Among 
all kits, the insert lengths varied from 185 to 366 bp, 
whereby Quanta and NEB libraries exhibited shorter 
insert sizes (in the range of 185-227 bp) than Swift2S 
and Nextera libraries (in the range of 326-366 bp), 
while KAPA libraries were in the middle range (227-
240 bp). The mean insert sizes were not significantly 
different for Nextera and Swift2S at 10 ng inputs, and 
for Kapa and Swift2S at 100 ng inputs, but for all other 
pairwise comparisons, there was a significant differ-
ence between the mean insert sizes (p < 0.04). We con-
sistently observed that the mean insert-sizes measured 
between sequencing reads were considerably shorter 

(by ca. 60-100 bp) than lengths estimated by Tapesta-
tion (Table 1). The kits yielded reproducible fragment 
size distributions, such that the mean insert sizes dif-
fer by only about 10 bp between replicates (Table  1). 
The jagged periodicity of the Nextera insert size pro-
files has been observed before and can be explained by 
steric hindrance between adjacent transposases influ-
enced by the helical pitch of DNA, which is ca. 10 bp 
long [9].

Sequence bias
To evaluate possible sequence coverage bias arising from 
use of the different library preps, we analysed the GC 
content of the mapped reads, but found this to be very 
similar for all kits. Overall, the differences observed were 
minor, being less than 2-fold deviation from expected 
GC-content across the 20-70% GC spectrum analysed 
(Additional Fig.  1B-E). The greatest differences were 
observed in libraries from 10 ng DNA input. A closer 

Fig. 1  DNA insert size assessment of libraries prepared with enzymatic fragmentation and tagmentation. A Tapestation D1000 electorphoresis 
profiles for libraries prepared with 10 ng input DNA in four technical replicates each with Nextera DNA flex (Illumina), NEBNext Ultra II FS (NEB), Kapa 
Hyper Plus (Roche), SparQ DNA library (Quantabio) and Swift2S turbo flex (Swift) kits. DNA insert size of libraries was assessed from the sequencing 
reads of (B) libraries from 10 ng and (C) 100 ng DNA input after trimming of adapter sequences. The shaded regions are 95 % confidence intervals of 
the distributions sampled by the replicates (The band is hardly visible for Nextera, because the replicates are very similar)
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look at these differences, represented by the observed 
vs. expected GC content of the whole reads, shows that 
Nextera and Quant libraries maintained the closest rela-
tionship between observed:expected GC content. Swift2S 
libraries exhibited a greater proportion of reads with 
lower than the expected 40% GC content, while Kapa and 
NEB libraries showed a slight bias towards high GC con-
tent (Additional Fig. 1D).

To determine whether enzymatic fragmentation is 
prone to sequence specific nuclease bias, we analysed the 
sequence composition at the beginning of the reads, cor-
responding to the endonuclease cut site. All enzymatic 
nuclease-based kits exhibit a similar sequence pattern in 
the first 10 bases, having a higher proportion of A and T, 
being followed by an even base distribution correspond-
ing to the expected 60 % AT and 40 % GC base content 
(Additional Fig.  1F). The Nextera kit exhibited TA-rich 
sequence bias at the beginning of the reads as has been 
previously observed [10], that is slightly higher than the 
bias of the enzymatic fragmentation preps (Additional 
Fig. 1F), also visible as a spike at low observed:expected 
GC ratio (Additional Fig. 1E).

Sequencing performance of library prep kits
Sequencing yielded a variable number of reads; ca. 100-
300 million reads per library (Additional Fig.  2A). The 
PCR-free libraries prepared with KAPA and Quanta kits 
from 100 ng input DNA yielded about three times fewer 
reads than their 10 ng input counterparts prepared with 
PCR amplification (Additional Fig.  2A). These observa-
tions can likely be attributed to imprecise quantification 
of the libraries (as the size of PCR-free libraries cannot be 
correctly determined by electrophoresis), but could also 
be due to lower clustering efficiency of PCR-free librar-
ies, which can contain incomplete molecules having only 
a single or no adapter ligated.

All libraries exhibited low duplication rates after 
excluding duplicates produced during Illumina’s 
ExAmp™ amplification (Additional Fig.  2B). The dupli-
cation rates were below 3% for PCR-free libraries and as 
expected were slightly higher for PCR-amplified libraries, 
in the range of 3-6% (Additional Fig. 2B). In the absence 
of PCR amplification, “duplicate” reads originate from 
true biological duplicates (DNA fragments with the same 
start and end), which are expected due to the sequence 
specificity of enzymatic DNA digestion and tagmenta-
tion, in addition to the high sequencing coverage. The 
base quality of all libraries was similarly high (> 80%; 
Additional Fig. 2C), enabling their comparison.

Since the number of reads output by the sequencer is 
influenced strongly by the loading concentration, (which 
is affected by variations in pipetting, QC practices, and 
library insert size), to avoid any undue bias we used the 

same number of reads for the functional data analyses 
(genome coverage, SNV and indel detection) for each kit, 
by randomly down-sampling to 90-million read pairs per 
replicate. We then computed the mean coverage of the 
human genome (Fig.  2A and B). Nextera (both 10 and 
100 ng inputs) and Swift2S (10 ng input only) exhibited 
considerably higher depths than the other kits (Fig.  2A 
and B) with significance p < 1e-4. This closely mirrors 
the fragment and insert sizes of the libraries, whereby 
Nextera and Swift2S turbo 10 ng libraries had the long-
est insert sizes (ca. 330 bp), while at 100 ng input DNA, 
only Nextera exhibited an average insert size above 300 
bp (namely 366 bp), (Fig. 1, Table 1).

The observed lower coverage per read for librar-
ies with short inserts can be explained with the differ-
ence between the insert DNA length and the cumulative 
length of the sequencing reads (2x150 bp=300 bp). An 
insert shorter than 300 bp will result in overlap of the 150 
bp sequencing reads. This results in redundant sequenc-
ing data that reduces the effective overall genome cover-
age, but nonetheless contributes to sequencing depth.

The distribution of coverage depth per genomic locus 
should ideally follow a Poisson distribution if the reads 
are randomly distributed across the genome [11]. High-
throughput sequencing data are known to deviate from 
this ideal [12], but the extent of the disagreement can be 
used to estimate biases in the coverage distribution. The 
coverage histograms were fitted with Poisson distribu-
tions (Additional Fig. 3A). We expected deviation at zero 
coverage compared to the Poisson distribution, because 
the reference genome contains some regions that are dif-
ficult to cover with short-read technology, as well as the Y 
chromosome, which should not be present in NA12878. 
The number of nucleotide positions without coverage 
over the expected quantity from the Poisson model, as 
a percentage of the genome size, is between 3.4 and 4.1 
% for the different kits (Additional Fig. 3B). The longer-
insert libraries (Nextera at both 10 and 100 ng, and 
Swift2S at 10 ng) left a smaller percentage of the genome 
without coverage compared to the other kits (p < 1e-6).

To evaluate how the sequencing data from each library 
prep performs in terms of ability to detect true genomic 
SNP and insertion-deletion (indel) variants while avoid-
ing false positives, we compared the calls to a database of 
known true variants in the NA12878 cell line. The recall 
is defined as the fraction of known true variants that are 
called, and the precision is the fraction of the called vari-
ants that are actually true. To find a single number per 
library representing the performance, we computed the F1 
scores, defined as the harmonic mean of the precision and 
recall of variant detection [13]. Compared to the arithme-
tic mean, the harmonic mean puts more emphasis on the 
smaller of its arguments. For this purpose, we used either 



Page 6 of 11Ribarska et al. BMC Genomics           (2022) 23:92 

random samples of 90 million sequencing read pairs or a 
normalized high quality coverage depth of 5.4x for each 
library. The SNP calling performance was highest for the 
libraries with longer inserts using the fixed input read 
number (Fig. 2C), while this trend disappeared if we used 
a fixed coverage depth as input (Fig. 2D). Correlating the 
individual library insert sizes with F1 scores revealed a 
strong relationship between insert size and SNP detection 
with a fixed read number, which was lost if correlated to 

fixed coverage depth (Additional Fig. 4A and B). At a fixed 
read number, the higher coverage in longer-insert librar-
ies therefore allows better SNP detection.

Longer insert libraries also performed slightly bet-
ter at indel calling, at a fixed read number, but with a 
less clear trend (Fig.  2E). We observed a similar corre-
lation between F1 score and insert size for indel calling 
(Additional Fig.  4C and D). In this case, the correlation 
was weaker than for SNP-calling (r2 = 0.66, versus r2 = 

Fig. 2  Performance of sequencing data produced with different WGS library preparation kits. Human genome coverage from 90 million reads from 
libraries from 10 ng and 100 ng input DNA in four technical replicates represented as distribution (A) or as average value (B). Precision score (F1) for 
SNP detection (C) and indel calling E) using 90 million reads, or using a fixed coverage of 5.4x - respectively (D) and (F)
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0.93 for SNPs) indicating that the performance is driven 
by other variables than just insert size. However, when 
comparing library performance using fixed-coverage data 
(Fig.  2F), 100 ng input libraries consistently performed 
better than 10 ng input libraries, suggesting that indel 
calling performance can be negatively affected by PCR 
amplification. PCR amplification has been reported to 
introduce a number of error-prone indels into the library, 
and therefore the PCR cycles should be kept to a mini-
mum [14].

We also analysed the intersections of variant calls, 
shown in Additional Fig.  5. If specific kinds of variants 
are preferentially called by some of the kits, due to biases, 
we might expect to see a larger overlap of calls for those 
kits. The results show that approximately 40 % of the true 
positive SNPs and 20 % of the true positive indels were 
called by all kits. This low level of sensitivity is not sur-
prising given the low (5.4x) coverage. Nonetheless, the 
data indicated that kit performance was generally similar.

Discussion
In this study we examined the performance of four WGS 
library preparation kits that employ enzymatic DNA 
fragmentation in comparison to the “tagmentation”-
based Illumina DNA library preparation kit. We evalu-
ated the reproducibility of fragmentation, sequence bias, 
quality and coverage of the sequencing as well as the 
combined precision and recall (F1 score) for SNV and 
indel detection.

Our results show that the four tested enzymatic frag-
mentation-based library preparation kits produce WGS 
libraries with reproducible DNA insert sizes, but require 
experimental optimization of the fragmentation condi-
tions in order to achieve the optimal sequencing insert 
size. While we have not tested different conditions, the 
amounts and sources of DNA and elution buffers are 
factors that will likely affect the fragmentation, and may 
need optimization on a per-case basis. In contrast, the 
need for initial optimization is largely avoided when using 
bead-linked tagmentation, as in the Nextera flex kit. With 
this method, the degree of fragmentation is limited by the 
size of the bead, allowing a saturating amount of input 
DNA to bind and be “tagmented” by the anchored trans-
posases. As such, the average fragment length can only 
be modulated by size selection following completion of 
the library prep. According to the manufacturer, the frag-
mentation profile and library output should be constant 
for inputs above 100 ng that saturate the transposase on 
the beads [4]. We observed slightly shorter insert sizes 
from lower inputs suggesting that initial optimization is 
advisable also with this kit when using low inputs.

We consistently observed that the mean insert-
sizes measured between sequencing reads were 

considerably shorter (by ca. 60-100 bp) than lengths 
estimated by Tapestation. This phenomenon is based on 
the fact that shorter sequences cluster more efficiently 
than longer fragments on the patterned flow cell dur-
ing exclusion amplification [15]. This effect was small-
est for Quanta libraries, likely because their average size 
before sequencing was shortest and most optimal in 
terms of clustering efficiency, and largest with Nextera 
libraries, which exhibited the highest proportion of long 
fragments.

The enzymatic nuclease-based kits exhibited a simi-
lar sequence insertion bias as indicated by a similar 
sequence pattern in the first 10 bases of each read. This 
suggests that they employ a similar mix of nucleases. 
The tagmentation by Nextera exhibited a different bias, 
as described previously [16]. There was no clear rela-
tionship between observed:expected GC content and 
number of PCR cycles applied during the preps, nor 
with insert size, so it would appear that these are intrin-
sic properties of the enzymes employed in the kits. 
When examining the observed:expected GC content of 
the whole reads, the differences between the libraries 
are minimal, mostly visible in libraries from 10 ng DNA 
input and can largely be attributed to the low DNA 
input and PCR.

We obtained different numbers of sequence reads 
from the libraries, which can be attributed to impre-
cise quantification and differences in clustering effi-
ciency. Nevertheless, the base calling quality (Q30) was 
above 80% for all libraries and the duplication rates were 
comparably low for all. To fairly compare the perfor-
mance of the libraries in terms of genome coverage and 
SNV and indel detection, we either considered a fixed 
number of sequencing reads for each library, or a fixed 
coverage. All of the tested kits reproducibly delivered 
similar high-quality data in terms of coverage and preci-
sion of single nucleotide variant (SNV) and indel detec-
tion. Surprisingly, we observed that libraries with DNA 
insert size longer than the combined sequencing reads 
length exhibited improved coverage and variant detec-
tion performance than those with shorter length. This 
is achieved by avoiding overlap of the sequencing reads 
by libraries and allowing for more unique information to 
be gathered. When computing the coverage, bases in the 
overlap region are only counted once for each read pair, 
because they do not give additional unique information 
as independent fragments. In extreme cases, where the 
insert is shorter than the read length, further loss of cov-
erage occurs as sequence is wasted as part of the read 
extends into the library adapter sequence. Since shorter 
insert fragments cluster and sequence more efficiently 
on Illumina sequencing instruments, this is of particu-
lar concern for libraries with a broad size distribution, 
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or those with a size distribution skewed towards shorter 
inserts.

We underline that we are not advocating that research-
ers aim for as long inserts as possible. There is an opti-
mum insert length, beyond which further increase in 
insert length does not augment the sequencing data 
performance but can reduce the clustering efficiency 
and data yields. Once above the threshold where inserts 
do not result in overlapping paired reads, there are no 
further expected benefits to genome coverage. On the 
contrary, over-long libraries are in our experience more 
difficult to quantify accurately in order to obtain optimal 
loading and output of Illumina sequencers. They are also 
at a disadvantage compared to shorter libraries during 
the clustering on Illumina patterned flow cells, evident by 
the greatly reduced lengths of the sequenced fragments 
as comparted to the input fragments. Furthermore, long 
fragments have been shown to achieve lower base quality, 
especially in the second read [17].

We also wish to underline that whilst the above con-
clusions are particularly relevant to whole-genome rese-
quencing of organisms from which high quality DNA is 
routinely available (e.g. human WGS), alternative applica-
tions of WGS may benefit from different choices of insert 
length. For example, applications that entail low-coverage 
sequencing such as genome-skimming, may benefit from 
avoiding a wide range of insert sizes and resulting wider 
range of genome coverage, as this may in some instances 
lead to consistent drop-out of low-coverage areas, despite 
a higher average coverage [18, 19]. Overlapping reads 
not only increase the accuracy of base-calls, but the 
resulting longer merged reads can aid in read mapping, 
particularly if ambiguous base calls are present. Applica-
tions that may benefit from the deliberate use of overlap-
ping paired end reads include ancient-DNA and forensic 
sequencing [20]. In addition, the software and analysis 
strategy chosen should also be considered on a per-appli-
cation basis prior to choosing a desired insert length (for 
example see [21]).

A recent publication detected increased insertion /
deletion artefacts in libraries prepared with enzymatic 
fragmentation relative to those prepared by sonication 
[22]. Although the authors produced a software tool to 
detect such artefacts, this finding reinforces the reputa-
tion of sonication as the “gold-standard“ method of DNA 
fragmentation, even though some simple steps must also 
be taken with sonication to avoid introducing sequencing 
artefacts [23]. Nonetheless, we speculate that our obser-
vation that library insert size affects genome coverage 
and variant detection will also be valid for libraries pro-
duced by sonication.

Optimization of library insert sizes has previously 
been discussed as a factor in genome assembly [24], or 

for exome-sequencing applications [25, 26]. Here, we 
have observed the effect of insert size applied to rese-
quencing of the human genome, but we expect the 
conclusions to be more widely applicable also to other 
genomes. Importantly, our results show that independ-
ent of the kit, libraries with DNA insert size longer than 
the sum length of both sequencing reads, yield better 
sequencing data in terms of coverage and variant detec-
tion than libraries with shorter insert lengths by avoid-
ing “loss” of sequencing information due to overlapping 
sequencing reads.

Conclusions
Recent developments in commercially-available whole 
genome library preparation kits for NGS have ena-
bled faster and more streamlined workflows, starting 
from flexible DNA input amounts and allowing PCR-
free library preparation at lower costs. We tested the 
performance of four WGS library prep kits employing 
enzymatic fragmentation in comparison to the transpo-
sition-based Nextera DNA flex kit. We observed compa-
rable quality of the sequencing results that led to efficient 
detection of genomic variants, from which we conclude 
that enzymatic-fragmentation based kits are a good alter-
native to the tagmentation based Nextera Flex kit.

Independent of kit chosen to prepare WGS libraries, 
we observed superior genome coverage and indel call-
ing in libraries with average insert sizes longer than the 
sum of the paired read lengths. In contrast, shorter-insert 
fragments are preferentially sequenced with Illumina 
technology. The ideal sequencing library for WGS would 
therefore consist of a narrowly distributed peak of DNA 
fragments, the majority of which lie above the sum of the 
paired read lengths.

Both enzymatic and tagmentation fragment sizes can be 
refined after library preparation by size selection, although 
this comes at the expense of library yield, as unwanted frag-
ments are discarded. Compared to the Nextera Flex kit, the 
enzymatic fragmentation reagents allow greater control 
of fragment size through variation of fragmentation time. 
However, despite following manufacturer’s instructions 
and using a high-quality preparation of reference genomic 
DNA as input, we observed deviations from the intended 
insert size with three out of four enzymatic fragmentation 
kits. It may therefore be necessary to invest more time opti-
mizing the fragmentation conditions in order to reap the 
cost benefits these kits offer.

Materials and methods
Library preparation
Whole genome DNA library preparation was performed 
using DNA NA12878 as input (Coriell Institute, NJ, 
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USA). For each library preparation kit under study, four 
replicate libraries were prepared from both 10 ng and 
100 ng input DNA. The following library prep kits were 
used according to the manufacturer’s manuals with the 
given modifications: NexteraTM DNA flex library prep 
(Cat. Nr. 20018705, Illumina) using IDT for Illumina 
– Nextera DNA UD Indexes Set A (Cat. Nr. 20027213, 
Illumina): kit manual version 1000000025416v00; NEB-
Next® UltraTM II FS DNA Library Prep Kit for Illumina® 
(Cat. Nr. E7645S, New England Biolabs) with NEB-
Next Multiplex Oligos for Illumina (96 Unique Dual 
Index Primer Pairs, Cat. Nr. 6440L, New England Bio-
labs), kit manuals “E7805, E6177 & INPUTS ≤ 100 ng” 
(as of 04.08.2019); KAPA HyperPlus DNA library prep 
kit (Cat. No. KK8510, Roche) using IDT for Illumina – 
TruSeq DNA UD Indexes (Cat. Nr 20020178, Illumina), 
kit manual version KR1145-v4.17; SparQ DNA Frag and 
Library Prep kit (Cat. Nr. 95194-024, Quantabio) using 
IDT for Illumina – TruSeq DNA UD Indexes (Cat. Nr 
20020178, Illumina) according to the kit manual (ver-
sion: 95194/IFU-122.1 REV 01); Swift 2S Turbo flexible 
DNA library kit (Cat. No. 44024) using IDT for Illumina 
– TruSeq DNA UD Indexes (Cat. Nr 20020178, Illu-
mina), kit manual version 2.0.

Fragmentation times and amplification cycles were 
applied according to the ranges recommended in each kit 
as summarized in Table  1. SparQ PureMag beads (Cat. 
Nr. 95196-450, Quantabio)-based cleanups used were 
performed according to the individual instructions of the 
DNA library preparation kits.

Quality control, pooling and sequencing of libraries
Quantity and fragment sizes of all libraries were 
assessed by capillary electrophoresis on a Tapestation 
2200 (Agilent) using D1000 Screen Tapes. Libraries 
were quantified by qPCR using KAPA library quanti-
fication kit (Cat. Nr. KK4854 – 07960298001, Roche) 
using a Roche Lightcycler 480 II real time PCR sys-
tem. Separate pools were prepared for the libraries of 
each kit, whereby each pool consisted of 8 equimolar 
libraries (4 with 10 ng input and 4 with 100 ng input). 
Each pool was sequenced on four lanes of a HiSeq X 
(Illumina; RTA v. 2.7.7) with 150 bp paired end reads 
and demultiplexed into individual fastq datasets using 
bcl2fastq v. v2.18.0.12.

Data analysis
Sequence data quality was checked using FastQC 
0.11.3 [27]. Raw sequence reads were aligned to 
the human reference genome GRCh38 using BWA-
MEM v. 0.7.17 [28] and sorted by genomic position 
using samtools [29]. Picard v. 2.20.2 MarkDuplicates 

(https://​broad​insti​tute.​github.​io/​picard/) was used 
to mark duplicate reads, and at the same time merge 
data from multiple lanes. To identify ”ExAmpTM” 
duplicates (occurring when a library molecule that 
has formed one cluster is free to go back into solution 
and create a second cluster, usually close together), we 
configured MarkDuplicates to use a distance thresh-
old of 2500 pixels. This means that duplicates that are 
closer than 2500 pixels apart on the images taken by 
the sequencer get tagged with a Duplicate Type of SQ, 
to indicate that they are likely to originate from the 
ExAmpTM process.

The Picard tool DownsampleSam was used to ran-
domly sample reads from each of the libraries, to 
correct for variations in data yield incurred during 
pooling and sequencing. Downsampling was per-
formed in two different ways: The first way was to 
sample 90 million read pairs from each of the input 
data files. MarkDuplicates was repeated after down-
sampling. The second way was to select reads corre-
sponding to an average 5.4x genome coverage by the 
following method. First, we computed the coverage 
on the full datasets using Picard, and then determined 
scaling factors for each of the libraries based on the 
mean coverage. By default, Picard only measures the 
mean coverage based on non-duplicate reads with 
a mapping quality of at least 20, base quality Phred 
score of at least 20, counting overlapping read pairs 
only once in the overlapping region. Duplicates were 
removed from the datasets by using samtools to filter 
on the duplicate flag set by MarkDuplicates. The data-
sets were then downsampled to the same mean cover-
age level (as defined above).

Metrics related to alignment and coverage were 
extracted using both deepTools v. 3.1.3 [30] and Picard. 
Picard was used to compute the mean coverage and 
insert size histograms. The tool computeGCBias from 
deepTools was used to generate Additional Fig. 1B-E, to 
assess how the observed GC content compares to the 
GC content expected with a perfectly unbiased method. 
The nucleotide biases at the start of the reads, in Addi-
tional Fig. 1F, were derived from the metrics produced by 
FastQC.

Short variants were called using GATK v. 4.1.7.0 
[31] HaplotypeCaller, and then scored using the 
GATK tool CNNScoreVariants. The default param-
eters and model were used. Variant calls were com-
pared to the “confident calls” from the Platinum 
Genomes [32] version 2017-1.0 dataset, using hap.
py v. 0.3.8 (https://​github.​com/​Illum​ina/​hap.​py). To 
condense the SNV and indel calling performance 
into two single numbers per library, the F1 score was 
computed at a threshold -5 of the GATK machine 

https://broadinstitute.github.io/picard/
https://github.com/Illumina/hap.py
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learning model (CNNScoreVariants) quality score. 
The threshold was chosen because all the libraries 
had the peak F1 scores around this value, and the 
precision and recall were at reasonable levels. The 
score is defined as F1=2 / (recall^-1 + precision^-1), 
and the precision and recall values are taken from 
the outputs of hap.py. Insertions and deletions of all 
sizes were included in the indel calling performance. 
The visualisation of the intersections of variant calls 
was created using a custom Python script to iterate 
over the VCF files from hap.py, in combination with 
UpSet plots [33].

Statistical analysis
The significance of the difference in the mean insert 
sizes was computed with Student’s t-test, with unequal 
variances. The test was applied between all pairs of rep-
licate groups, testing the libraries with 10 ng and 100 ng 
inputs separately. The hypothesis that the mean coverage 
depths of Swift2S (10 ng only) and Nextera were differ-
ent from the other kits was also tested using two t-tests, 
one for each input concentration value. These tests 
were applied to the libraries in question, versus all other 
libraries as a group.

Regression analysis of the coverage distributions 
was done using the curve_fit function from the SciPy 
Python library [34]. The number of nucleotides cov-
ered at a read depth of k is was modelled as a Poisson 
probability mass function multiplied with a normali-
sation constant: f(k; λ, N) = N*(λk e-λ) / (k!). The 
parameter λ is equal to the expected value of the 
distribution. The observed number of genomic posi-
tions with zero coverage can be written as X0 + f(0; 
λ, N), where X0 represents an excess due to regions 
that cannot be sequenced. The two terms are corre-
lated due to the fixed reference genome size (X0 + N 
= reference size). Accounting for fixed read-counts, 
as in our experiment (λ =constant/N), we can find 
the derivative df(0; λ(X0), N(X0)) / dX0 = -e- λ(λ-1). 
Because the value of λ is approximately 5 in our data-
set, the correlated changes in f(0) are less than 3 % 
of the changes in X0. We can therefore ignore this 
correlation and consider the variance in X0 only. We 
then applied the t-test to the observed number of 
nucleotides with zero coverage, after subtracting the 
estimated Poisson contributions, to test if the per-
centage of the genome that cannot be sequenced is 
significantly different between the Nextera kit and 
the others.

The linear regression of the insert size versus F1 score 
was done using a linear model (lm) in the R software 
package.
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