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Abstract

Skin cutaneous melanoma (SKCM) is one of the most destructive skin malignancies and
has attracted worldwide attention. However, there is a lack of prognostic biomarkers,
especially tumour microenvironment (TME)-based prognostic biomarkers. Therefore,
there is an urgent need to investigate the TME in SKCM, as well as to identify effi-
cient biomarkers for the diagnosis and treatment of SKCM patients. A comprehensive
analysis was performed using SKCM samples from The Cancer Genome Atlas and
normal samples from Genotype-Tissue Expression. TME scores were calculated using
the ESTIMATE algorithm, and differential TME scores and differentially expressed
prognostic genes were successively identified. We further identified more reliable
prognostic genes via least absolute shrinkage and selection operator regression analy-
sis and constructed a prognostic prediction model to predict overall survival. Receiver
operating characteristic analysis was used to evaluate the diagnostic efficacy, and Cox
regression analysis was applied to explore the relationship with clinicopathological
characteristics. Finally, we identified a novel prognostic biomarker and conducted a
functional enrichment analysis. After considering ESTIMATEScore and tumour pu-
rity as differential TME scores, we identified 34 differentially expressed prognostic
genes. Using least absolute shrinkage and selection operator regression, we identified
seven potential prognostic biomarkers (SLC13A5, RBM24, IGHV30R16-15, PRSS35,
SLC7A10, IGHV1-69D and IGHV2-26). Combined with receiver operating characteris-
tic and regression analyses, we determined PRSS35 as a novel TME-based prognostic
biomarker in SKCM, and functional analysis enriched immune-related cells, functions
and signalling pathways. Our study indicated that PRSS35 could act as a potential
prognostic biomarker in SKCM by investigating the TME, so as to provide new ideas

and insights for the clinical diagnosis and treatment of SKCM.
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1 | BACKGROUND

Skin cutaneous melanoma (SKCM) is a malignant transformation of
melanocytes derived from neural crest stem cells.> Although SKCM
accounts for only approximately 5% of all skin tumours, it causes
more than 75% of deaths from skin tumours.? Recently, the approval
of targeted- and immune-based therapeutic agents with substan-
tial activity has brought new hope for the treatment of SKCM.%?
However, approximately half of the patients treated with these
therapies have no sustained response and display no satisfac-
tory improvement in prognosis.“"'7 Moreover, some patients have
immune-related adverse events.®*? Therefore, it is urgent and im-
portant to explore biomarkers that can identify the population that
is more likely to benefit from these treatments.

Tumour cells constantly interact with the surrounding microen-
vironment. Increasing evidence has demonstrated that the tumour
microenvironment (TME) plays a considerable role in the develop-
ment of various tumours,’* including SKCM,'? and targeting the
TME could complement traditional treatment and improve the ther-
apeutic response and clinical outcome for this malignancy. >34
Infiltrating stromal and immune cells form the major fraction of nor-
mal cells in tumour tissues, and not only perturb the tumour signal
in molecular studies but also play a vital role in cancer biology.**>*¢
Previous studies have shown that melanoma cells deeply interact
with the TME and the immune system®”*® This knowledge has led to
the identification of novel therapeutic targets and treatment strat-
egies, including TME-based predictive and prognostic biomarkers.'®
Estimation of stromal and immune cells in malignant tumour tissues
using the expression data (ESTIMATE) algorithm is an approach to
study tumour-infiltrating immune cells and their interactions with
cancer cells to infer the fraction of immune and stromal cells in tu-

mour samples underlying the expression of gene signatures.¢'?

2 | MATERIALS AND METHODS

2.1 | Dataprocessing

The public RNA-Seq data (fragments per kilobase of transcript per mil-
lion fragments mapped) and mRNA expression profile data of SKCM
from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov)
were retrospectively analysed, and relevant clinical data (sex, age, stage,
tumour-node-metastasis (TNM) classification and survival data) were
also obtained. A total of 471 cases of tumour tissue and one case of ad-
jacent tissue were included. Moreover, 812 normal tissue samples were

obtained from the Genotype-Tissue Expression (GTEXx) database %!

2.2 | TME scores generation
ESTIMATE is a tool to predict tumour purity, as well as the pres-
ence of infiltrating immune and stromal cells in tumour tissues.'® The

ESTIMATE algorithm is based on single-sample gene set enrichment

analysis (ssGSEA) and mainly generates three scores: ImmuneScore
(which infers the infiltration of immune cells in tumour tissues),
StromalScore (which represents the presence of stromal cells in tumour
tissues), and ESTIMATEScore (which captures tumour purity).!® Here,
we generated StromalScore, ImmuneScore and ESTIMATEScore using
the ESTIMATE package (version 1.0.13) to estimate the presence of im-
mune and stromal cells in the TME for each tumour tissue. The higher
the three TME scores, the larger the presence of the corresponding
cells in TME.?? Tumour purity was negatively correlated with the three

scores. Moreover, we introduced tumour purity as a supplement.

2.3 | TME scores and clinicopathological
characteristics

We generated four TME scores (ImmuneScore, StromalScore,
ESTIMATEScore and tumour purity) and analysed the stage and
TNM classification data of SKCM to determine the relationship be-
tween the ratio of stromal and immune components with clinico-

pathological characteristics.

2.4 | Identification of differentially expressed
prognostic genes

We grouped all SKCM samples into high or low score groups accord-
ing to the median score of TME scores, and then applied the survival
package (version 3.2-7) and survminer package (version 0.4.8) to sur-
vival analysis.?® The Kaplan-Meier method with the log rank test was
used to plot the survival curve. We defined those that could group
the population into different survival statistically as differential TME
scores. After the identification of differential TME scores, we used
the limma package (version 3.12) to screen differentially expressed
genes in differential TME scores. We then used a Venn diagram to
display the overlapping genes between differential TME scores and
used these genes as differentially expressed prognostic genes.

2.5 | Univariate Cox regression analysis
We performed univariate Cox regression analysis on differentially ex-
pressed prognostic genes to assess their correlation with SKCM prog-

nosis and used the forestplot package (version 1.10.1) for visualization.

2.6 | Development of a prognostic
prediction model

Least absolute shrinkage and selection operator (LASSO) is a
regression-based method that allows numerous covariates in the
model and thus could regulate those covariates that might influ-
ence the overall regression.z“'25 Here, we further obtained more

reliable prognostic genes by LASSO to prevent overfitting of highly
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correlated genes from further filtering. The Kaplan-Meier method
with a log rank test was used to plot the survival curve of a single
filtered gene and their combination. We used the survivalROC pack-
age (version 1.0.3) and pROC package (version 1.17.0.1) to draw re-
ceiver operating characteristic (ROC) curves and quantified the area
under the ROC curves (AUCs) to evaluate the diagnostic performance
of these genes alone and in combination. To verify the clinical sig-
nificance of the differentially expressed prognostic gene-based risk
model, we used univariate and multivariate Cox regression analyses
to determine the clinical relevance of the model. We then explored
the possibility of using these genes as prognostic factors to indepen-
dently affect the survival prognosis of SKCM. Finally, a prognostic

prediction model was constructed to predict the overall survival (OS).

2.7 | Identification of a novel prognostic
biomarker and functional enrichment analysis

Based on previously established AUCs, we identified a novel prog-
nostic biomarker. The limma package was used to evaluate the ex-
pression of the novel prognostic biomarker in SKCM tissues and
normal tissues. Moreover, we also conducted clinicopathological
characteristics analysis.

CIBERSORT is an algorithm that is widely used to characterize the
cell composition of complex tissues through biomarker expression.?
The LM22 signature, a special genetic marker that contains 547 genes,
is usually used to distinguish 22 immune cell subtypes downloaded
from CIBERSORT. In this study, the CIBERSORT package was used and
the LM22 signature algorithm was used to calculate the infiltration
abundance of 22 immune cells between the high and low novel prog-
nostic biomarker expression groups in 195 SKCM samples, including
different T cells, B cells, plasma cells, natural killer cells and different
myeloid subgroups. Subsequently, we also analysed the correlation be-
tween the expression distribution of 22 infiltrating immune cells in the
high and low novel prognostic biomarker expression groups and used
the corrplot package (version 0.84) to draw the correlation heat map.

Moreover, we grouped all SKCM samples into high and low ex-
pression groups according to the median expression of the novel
prognostic gene and used the ssGSEA package27 to perform enrich-
ment analysis of the Gene Ontology, Kyoto Encyclopedia of Genes
and Genomes, and MsigDB dataset (msigdb.v7.0.entrez.gmt). The
ggplot2 package (version 3.3.3) was used for visualization. The flow

chart was shown in Figure S1.

3 | RESULTS

3.1 | TME scores and clinicopathological
characteristics

We generated four TME scores (ImmuneScore, StromalScore,
ESTIMATEScore and tumour purity) and analysed the stage and
TNM classification data of SKCM to determine the relationship

between different TME cells and clinicopathological characteristics.
Unfortunately, the results were not statistically significant (Figure

S2), but the overall trends were relatively consistent.

3.2 | Survival analysis of TME scores

We analysed the correlation between the four TME scores and
survival of SKCM patients. We found that there was no signifi-
cant difference between StromalScore and SKCM OS (p = 0.084,
Figure 1A) or ImmuneScore (p = 0.069, Figure 1B). In contrast,
the ESTIMATEScore was positively correlated with OS (p = 0.037,
Figure 1C), and tumour purity was negatively correlated with
prognosis (p = 0.036, Figure 1D). Therefore, we considered the
ESTIMATEScore and tumour purity as differential TME scores. Our
results indicate that different TME cells might help predict the out-
come of SKCM patients.

3.3 | Screening of differentially expressed
prognostic genes

We identified the differentially expressed genes in differen-
tial TME scores through a comparison analysis of high- and low-
differential TME score groups. There were 35 and 37 differentially
expressed genes in ESTIMATEScore and tumour purity, respectively
(Figure 2A,B). Using the intersection, we identified 34 differentially
expressed prognostic genes (Figure 2C).

3.4 | Univariate analysis

Univariate analysis revealed that the prognosis was correlated with
SLC7A10 (p = 0.073), IGKV2D-30 (p = 0.048), IGHV3OR16-15
(p =0.051), IGHV2-26 (p = 0.095), SLC13A5 (p = 0.015), IGHV1-69D
(p =0.077), PRSS35 (p = 0.072) and RBM24 (p = 0.047) (Figure 3).

3.5 | Development of a prognostic
prediction model

LASSO was used to generate the key differentially expressed prognos-
tic genes. In LASSO, as log) changed, the corresponding coefficients
of certain differentially expressed prognostic genes were reduced to
zero, indicating that their effects on the model could be omitted be-
cause they were shrinking parameters (Figure 4A). Following cross-
validation, a total of seven differentially expressed prognostic genes
(SLC13A5, RBM24, IGHV30OR16-15, PRSS35, SLC7A10, IGHV1-
69D and IGHV2-26) achieved the minimum partial likelihood devi-
ance (Figure 4B) and thus were used to develop the risk model. The
clinical relevance heat map of the risk model showed the influence
of the model on the clinical variables related to SKCM (Figure 4C).
As IGHV3OR16-15, IGHV1-69D and IGHV2-26 are pseudogenes,
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FIGURE 1 Correlation of TME scores with the survival of SKCM. A, ImmuneScore. B, StromalScore. C, ESTIMATEScore. D, Tumour
purity. SKCM, Skin cutaneous melanoma; TME, tumour microenvironment

we only included SLC13A5, RBM24, PRSS35 and SLC7A10 in fur-
ther analyses. The survival curves showed that whether the four dif-
ferentially expressed prognostic genes were separated or combined
together, they were able to effectively predict the outcome of SKCM
patients (Figure 4D, Figure S3). The combination of four differentially
expressed prognostic genes had a favourable diagnostic performance
(AUC = 0.582, Figure 4E). Furthermore, we calculated the AUCs of
each differentially expressed prognostic biomarker and concluded
that PRSS35 had the best diagnostic performance (AUC = 0.721,
Figure 4F); therefore, PRSS35 was considered as a novel prognostic
biomarker.

We compiled data from 346 SKCM patients with complete clini-
cal information to perform univariate and Cox multivariate regression
analyses. In the univariate analysis, several factors, such as age, stage,
TNM classification and the risk score obtained by the constructed risk

model, can affect the prognosis of SKCM (Table 1). In the multivariate
Cox regression analysis, age, T classification, N classification and risk
score could still affect the prognosis of SKCM (Table 1). This shows
that the risk model we constructed can be utilized independent of
other clinical traits and can aid in identifying prognostic biomarkers.
Therefore, we determined the characteristics of the prognostic predic-
tion model in SKCM patients (Figure 5A) and conducted a nomogram
to predict the 1-, 3- and 5-year survival of SKCM patients (Figure 5B).

3.6 | Identification of a novel prognostic
biomarker and functional enrichment analysis

After identification of PRSS35 as a novel prognostic gene, we vali-
dated that PRSS35 was highly expressed in SKCM tissues compared
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FIGURE 2 Screening of differentially expressed prognostic genes. A, Heat map of differentially expressed genes based on
ESTIMATEScore. Red indicates genes that had higher expression level and blue indicates genes with lower expression in the different
groups. B, Heat map of differentially expressed genes based on tumour purity. Red indicates genes that had higher expression level and
blue indicates genes with lower expression in the different groups. C, Venn diagram analysis of differentially expressed genes based on
ESTIMATEScore and tumour purity
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Univariate analysis

Multivariate analysis

TABLE 1 Univariate and multivariate
Cox regression analysis of prognostic

Characters  HR (95%Cl) p-Value  HR (95%Cl) p-Value prediction model
Age 1.0195 (1.0085-1.0307)  0.0005  1.0119 (1.0008-1.0232)  0.0357
Gender 1.0319 (0.7326-1.4535)  0.8574  1.0429 (0.7369-1.4759)  0.8128
Stage 1.5671(1.2851-1.9111)  0.0000  0.8556 (0.6052-1.2097)  0.3775
T 1.4445(1.2363-1.6877)  0.0000  1.4973 (1.247-1.7978) 0.0000
M 2.6154(1.0609-6.4475)  0.0368  2.2022(0.8069-6.0105)  0.1233
N 1.4984 (1.2785-1.7562)  0.0000 1.632 (1.2861-2.0708)  0.0001
Risk score 3.6269 (2.0117-6.5387)  0.0000  3.5256(1.7975-6.9153)  0.0002

Bold indicates p < .05.
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FIGURE 5 Characteristics of the prognostic prediction model and nomogram. A, Characteristics of the prognostic prediction model (top:
the risk score of each SKCM patient; middle: overall survival and survival status of patients; bottom: heat map of gene expression profiles of

SKCM patients). B, Nomogram. SKCM, Skin cutaneous melanoma

to normal tissues (p < 0.0001, Figure 6A). Moreover, the explora-
tion of clinical clinicopathological characteristics indicated that
PRSS35 was associated with age (p = 0.0105) and T classification
(p < 0.0001) (Figure 6B-G), which was consistent with the results of
the multivariate Cox regression analysis.

The infiltration abundance of 22 immune cells between the high
and low PRSS35 expression groups in 195 SKCM samples is shown
in Figure 7A,B. By further analysing 22 types of infiltrating immune
cells, we found that CD8" T cells were significantly high in tissues
with low PRSS35 expression (Figure 7C). Subsequently, the correla-
tion heat map showed that neutrophils and activated mast cells were
positively correlated (r = 0.76), and CD8" T cells were negatively
correlated with MO macrophages (r = -0.65) (Figure 7D). Combined
with the above enrichment analysis results, the occurrence and de-
velopment of SKCM may be related to inflammation and metabolic
pathways, and may improve the distribution of immune cells by pre-
dicting the target small-molecule drugs of CD8" T cells, thereby im-

proving the prognosis of SKCM.

The results suggest that it is functionally enriched in many
immune-related functions and important signalling pathways, such
as in the regulation of lymphocyte activation, the immune response-
regulating cell surface receptor signalling pathway, and the immune
response-regulating signalling pathway, and is enriched in the MAPK
signalling pathway, the interaction pathway between cell factors
and cytokine receptors, as well as other signalling pathways, such as
Rapl, Ras, cAMP and RNA transport (Figure 8). It is suggested that
PRSS35 may regulate the TME and may affect the occurrence and
development of SKCM by participating in the above enriched signal-

ling pathways or by expressing immune-related functions.

4 | DISCUSSION

Skin cutaneous melanoma is one of the most aggressive malignan-
cies worldwide. Despite advanced therapeutic methods, there are

still persistent limitations, such as unsatisfactory sustained response,
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drug tolerance or resistance, toxicity and the considerable expense of
these methods.”?® Moreover, there is still a lack of robust prognos-
tic biomarkers to guide clinical decision-making. Consequently, we

attempted to identify a novel prognostic biomarker based on TME
to contribute to SKCM therapy. In this study, we sought to develop
a TME-related prognostic biomarker and to classify TNM in SKCM
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FIGURE 7 Immune infiltration analysis. A, Infiltration abundance. B, Heat map. C, Histogram. D, Correlation heat map. Red represents
positive correlation, blue represents negative correlation, the darker the colour, the value closer to 1, the stronger the correlation

patients through a combined analysis of multiple databases. We iden-
tified that PRSS35 is involved in the TME of SKCM. More importantly,
we further concluded that PRSS35 might reflect the TME status of
SKCM and act as a novel TME-based prognostic biomarker in SKCM.

Tumour microenvironment has a considerable role in tumorigen-
esis and development. Transcriptome analysis of SKCM from TCGA
showed that different immune components from the TME facilitate
the prognosis of SKCM patients. Our results highlight the signifi-
cance of exploring the interaction between SKCM cells and TME.
The National Comprehensive Cancer Network recommends anti-
programmed cell death protein 1 monotherapy (pembrolizumab,
nivolumab) as first-line therapy for metastatic or unresectable SKCM
and combination targeted therapy (dabrafenib/trametinib, vemu-
rafenib/cobimetinib, encorafenib/binimetinib) as first-line therapy
for the BRAF V600-activating mutation SKCM.?? Despite the prom-
ising efficacy of immune checkpoint inhibitors, approximately half
of the patients either still have no durable response or suffer from
immune-related adverse events.®'° Therefore, the universality of
these regimens and the identification of patients who are more likely
to have survival benefits from these treatments are unknown, and it
is necessary to explore TME-based prognostic biomarkers in SKCM.
In our study, we started with the transcriptome analysis of SKCM

from TCGA and found that the ESTIMATEScore and tumour purity
were correlated with survival. We then identified seven potential
prognostic markers and narrowed it down to PRSS35, which showed
the most promise as a novel prognostic biomarker.

Serine proteases play an important role in cancer progression and
metastasis.>*3! As a member of the serine protease family, PRSS35
may also contribute to the aetiology of several cancers. Our results
suggest that PRSS35 is upregulated in SKCM tissues, which is con-
sistent with the results obtained from studies on ovarian cancer.>?
Unfortunately, PRSS35 has not been reported to be immune-related,
except in aortic stenosis and aortic insufficiency.>® In other words,
we report for the first time that PRSS35 upregulation is significantly
associated with SKCM prognosis.

Furthermore, we uncovered the relationship between PRSS35 and
TME. CIBERSORT indicated that immune-related cells, such as CD8*
T cells, neutrophils, activated mast cells and MO macrophages. It is well
known that these are immune-related cells.>* The GSEA results suggested
that it was functionally enriched in many immune-related functions and
important signalling pathways, such as regulating lymphocyte activation,
the immune response-regulating cell surface receptor signalling path-
way, immune response-regulating signalling pathway, and is enriched in
MAPK signalling pathways, the interaction pathways between cell factors
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FIGURE 8 Functional enrichment analysis

and cytokine receptors, as well as signalling pathways, such as Rapl, Ras,
cAMP and RNA transport. These enriched functions and signalling path-
ways indicated that PRSS35 might reflect the TME status of SKCM.
There are some limitations to this study, although the estab-
lished novel TME-based prognostic biomarker in SKCM is power-
ful. First, the transcriptome data used in the present study were
obtained from TCGA and GTEx databases. Although we conducted
homogenization, the source bias could not be ignored and might
have affected the extrapolation of our results. Second, we were
not able to obtain satisfactory results in the relationship between
TME scores/PRSS35 and clinicopathological characteristics due to
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the limited clinical information and clinical sample size included in
our study. Third, only one SKCM data set was applied in the present
study; however, more data sets with richer clinical information and a
larger sample size were collected to verify our findings. Finally, this
was an in silico analysis; therefore, molecular biology experiments, as
well as prospective, well-designed, multicentre studies are required
to validate the findings.

In conclusion, we obtained TME scores using ESTIMATE and
screened the differentially expressed prognostic genes after the
identification of differential TME scores, and finally identified
PRSS35 as a novel prognostic biomarker. LASSO, Cox regression
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and functional enrichment analyses were also conducted using
CIBERSORT and ssGSEA. By investigating the TME to obtain new
insights for the clinical diagnosis and treatment of SKCM, our study
determined that PRSS35 might act as a potential prognostic bio-
marker for this malignancy.
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