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Abstract The Gribov ambiguity exists in various gauges.
Algebraic gauges are likely to be ambiguity free. However,
algebraic gauges are not Lorentz invariant, which is their
fundamental flaw. In addition, they are not generally com-
patible with the boundary conditions on the gauge fields,
which are needed to compactify the space i.e., the ambigu-
ity continues to exist on a compact manifold. Here we dis-
cuss a quadratic gauge fixing, which is Lorentz invariant. We
consider an example of a spherically symmetric gauge field
configuration in which we prove that this Lorentz invariant
gauge removes the ambiguity on a compact manifold S

3,
when a proper boundary condition on the gauge configura-
tion is taken into account. Thus, we provide one example
where the ambiguity is absent on a compact manifold in the
algebraic gauge. We also show that the BRST invariance is
preserved in this gauge.

1 Introduction

Defining the path integral in gauge theories is a major issue
of infinite redundant functional integrations. The fact that the
Yang–Mills action is invariant under the gauge transforma-
tion is the cause of the issue. The issue is addressed by invok-
ing a gauge condition such as the Landau gauge ∂μAμ = f .
However, it is shown in Ref. [1] that even after the Landau
gauge fixing, there still exist equivalent configurations, which
contribute to the measure of the path integral. This implies
that the Landau gauge does not uniquely choose a configura-
tion, which is the problem known as the Gribov ambiguity.
We need only inequivalent configurations in the measure in
order to properly quantize the theory. The inequivalent con-
figurations can be extracted out by restricting the space of
integration to the fundamental modular region C0, where
the Faddeev–Popov operator has positive eigenvalues [1].
However, the region C0 still contains Gribov copies [1]. The
restriction on the space of integration is achieved by adding
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suitable terms to the effective action Seff resulting from the
Landau gauge fixing [2,3]. This modified action is known
as the Gribov–Zwanziger action. The GZ action is not BRST
invariant [4]. So, in an attempt to eliminate the Gribov copies,
we lose the BRST invariance of the theory. The same ambi-
guity is claimed to exist in all gauges [5].

An essential reason why some gauges have the ambigu-
ity is the differential operator involved in the gauge. Alge-
braic gauges are likely to be ambiguity free since they do
not have a differential operator, but they have one disadvan-
tage. In general, they violate the Lorentz invariance, which
is a basic requirement for any theory, whereas the gauge
under consideration in this paper is Lorentz invariant. It also
turns out that the theory is BRST invariant. Alternative for-
mulations addressing the Gribov ambiguity are suggested in
Refs. [6,7]. The former reference particularly is an approach
using Lorentz invariant algebraic gauge conditions.

The contents of this paper are arranged as follows: in the
next section, we discuss a particular quadratic gauge and its
consequences at the infrared scale. In Sect. 3, we examine
the case of a spherically symmetric gauge configuration. We
prove that when a proper boundary condition on the gauge
configuration at ∞ is taken into account, the quadratic gauge
uniquely chooses the configuration on a compact manifold
S

3.

2 A quadratic gauge and effective Lagrangian

There have been studies using quadratic gauges in several
contexts. A few of the references are [8–13]. Here we con-
sider the particular quadratic gauge introduced in Ref. [14]
in the context of non-perturbative phenomena in QCD:

Ha[Aμ(x)] = Aa
μ(x)Aμa(x) = f a(x); for each a (1)

where f a(x) is an arbitrary function of x . This gauge condi-
tion results in an effective Lagrangian of the form [14]
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Leff = LYM + LGF + Lghost

= −1

4
Fa

μνF
μνa − 1

2ζ
(Aa

μA
μa)2 − ca Aμa(Dμc)

a (2)

where the first term is the Yang–Mills Lagrangian with
Fa

μν(x) = ∂μAa
ν(x)−∂ν Aa

μ(x)−g f abc Ab
μ(x)Ac

ν(x), the sec-
ond and third terms are gauge fixing and ghost Lagrangian
terms, respectively, and (Dμc)a = ∂μca − g f abc Ab

μc
c. In

terms of the auxiliary fields Fa , the effective Lagrangian can
be rewritten as

Leff = LYM + ζ

2
Fa2 + Fa Aa

μA
μa − ca Aμa(Dμc)

a . (3)

The ghost Lagrangian contains a term g f abccacc Aμa Ab
μ. For

each ghost bilinear cacc, one can introduce an auxiliary field
σ through a unity in the path integral as shown in [14]. The
ghost c3 can be given a propagator by an additional gauge fix-
ing. Then auxiliary fields can be given the effective potential,
which has non-trivial minima, by the Coleman–Weinberg
mechanism in which one-loop diagrams give the leading
quantum correction. In the present case, one-loop c3 dia-
grams give the leading contribution. The vacuum of the ghost
bilinears 〈cacc〉 can be shown to correspond to non-trivial
minima of the auxiliary fields [14]. Thus, with the assump-
tion that ghost bilinears undergo condensation as described,
the term g f abccacc Aμa

Ab
μ can be seen to provide the mass

matrix for gluons. The mass matrix has N (N − 1) non-zero
eigenvalues only and thus has nullity N − 1 [14]. The non-
zero eigenvalues correspond to massive off-diagonal glu-
ons and nullity corresponds to massless diagonal gluons.
The massive off-diagonal gluons are presumed to provide
evidence of Abelian dominance. Thus Abelian dominance,
which itself is an indication of the confinement, is evident
in this gauge. Moreover, the off-diagonal gluon after getting
mass acquires the propagator of the form

(O−1
ofd)

ab
μν(p) = − i δab

p2 − M2
gluon

(
ημν − pμ pν

M2
gluon

)
. (4)

Since a mass term for the off-diagonal gluon is purely imagi-
nary [14], the propagator has no poles on a real p2 axis, which
is a sufficient condition for the confinement [15]. Thus, the
two strong signatures of the confinement: (1) Abelian domi-
nance and (2) a pole of the off-diagonal gluon propagator is
on the imaginary p2 axis, become visible as a result of the
employment of the gauge. We now turn to the example.

3 Spherically symmetric gauge potential
and the quadratic gauge

Here we demonstrate that the quadratic gauge uniquely picks
up a spherically symmetric configuration on a compact man-
ifold S

3, when a proper boundary condition on the field is

required to be satisfied. Compactification of a Euclidean
space RN to a compact manifold S

N is achieved by the con-
dition U (∞) = I [5]. Since the space in this example is
R

3, the condition would compactify it to S
3. We begin by

adopting the parameterization for a vector potential shown
in Ref. [1],

Ai = f1(r)
∂ n̂

∂xi
+ f2(r)n̂

∂ n̂

∂xi
+ f3(r)n̂ni , i = 1, 2, 3,

(5)

where ni = xi
r , r =

√
�x2

i , n̂ = in jσ j σ j are Pauli matri-

ces, n̂2 = −1. For simplicity we choose A0 = 0. Now, the
spherically symmetric operator is given by

U = exp
(α(r)

2
n̂
)

= cos
(α(r)

2

)
+ n̂ sin

(α(r)

2

)
. (6)

Therefore, the compactification condition U (∞) = I
implies α(∞) = 4πn; n is an integer. The gauge transfor-
mation Aμ −→ Ãμ = U AμU−1 + i(∂μU )U−1 results in
transformations of f1, f2, and f3 as follows:

f̃1 = f1 cos α +
(
f2 + 1

2

)
sin α,

f̃2 + 1

2
= − f1 sin α +

(
f2 + 1

2

)
cos α, (7)

f̃3 = f3 + 1

2
α̇,

where the overdot indicates differentiation with respect to
r . Now, the ath component of Ai can be derived using the
following formula:

Aa
i = 1

2
Tr(Aiσa)

= 1

2
Tr

(
f1(r)

∂ n̂

∂xi
σa + f2(r)n̂

∂ n̂

∂xi
σa + f3(r)n̂niσa

)
.

(8)

To evaluate Eq. (8), we need to evaluate the following entities:

Tr
( ∂ n̂

∂xi
σa

)
= i

∂n j

∂xi
T r(σ jσa)

= i
∂n j

∂xi
T r(δ ja + iε jakσk)

= 2i
∂na
∂xi

, (9)

Tr
(
n̂

∂ n̂

∂xi
σa

)
= −Tr

(
nq

∂n j

∂xi
σqσ jσa

)

= −nq
∂n j

∂xi
T r

(
iε jak(δqk + iεqklσl)

)

= −2inq
∂n j

∂xi
ε jaq , (10)
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Tr(n̂niσa) = 2ini na . (11)

Using Eqs. (9), (10), and (11) we find

A1
1 = i

[
f1

(
1

r
− x2

1

r3

)
+ f3

x2
1

r2

]
, (12a)

A1
2 = i

[
− f1

x1x2

r3 + f2
x3

r2 + f3
x1x2

r2

]
, (12b)

A1
3 = i

[
− f1

x1x3

r3 − f2
x2

r2 + f3
x1x3

r2

]
, (12c)

A2
1 = i

[
− f1

x1x2

r3 − f2
x3

r2 + f3
x1x2

r2

]
, (13a)

A2
2 = i

[
f1

(
1

r
− x2

2

r3

)
+ f3

x2
2

r2

]
, (13b)

A2
3 = i

[
− f1

x2x3

r3 + f2
x1

r2 + f3
x2x3

r2

]
, (13c)

A3
1 = i

[
− f1

x1x3

r3 + f2
x2

r2 + f3
x1x3

r2

]
, (14a)

A3
2 = i

[
− f1

x2x3

r3 − f2
x1

r2 + f3
x2x3

r2

]
, (14b)

A3
3 = i

[
f1

(
1

r
− x2

3

r3

)
+ f3

x2
3

r2

]
. (14c)

We now impose a boundary condition on the A j
k . We require

that

A j
k → 0 as

1

r
, as r → ∞. (15)

From Eqs. (12), (13), and (14), it is clear that this condi-
tion is achievable and the general boundary condition on
f1, f2, and f3 can easily be interpreted, as follows:

f1, f2 → const. as r → ∞ and f3 → 0

as fast as
1

r
as r → ∞. (16)

Here we note the following. We want to address the ambiguity
onS3, therefore a boundary condition on f3 needs to be a little
stronger (faster than 1

r as r → ∞) because of the equation
for copies (25) that we shall come across later in the section.
Hence, we consider a stronger condition on f3 only. We will
use these boundary conditions to prove our claim. We first
evaluate the condition

Aa
i A

ia = Aa
1 A

1a + Aa
2 A

2a + Aa
3 A

3a; for each a.

For example taking a = 1, the gauge above takes the form

A1
i A

i1 = A1
1A

11 + A1
2A

21 + A1
3A

31

= (A1
1)

2 + (A1
2)

2 + (A1
3)

2

= −
[
f 2
1

r2

(
1 − x2

1

r2

)
+ f 2

2

r2

(
1 − x2

1

r2

)
+ f 2

3
x2

1

r2

]
.

In spherical polar coordinates, the condition can be written
as

A1
i A

i1 = − 1

r2 ( f 2
1 + f 2

2 )

+ sin2 θ cos2 φ

(
1

r2 ( f 2
1 + f 2

2 ) − f 2
3

)
. (17)

Hence,

Ã1
i Ã

i1 = − 1

r2 ( f̃ 2
1 + f̃ 2

2 )

+ sin2 θ cos2 φ

(
1

r2 ( f̃ 2
1 + f̃ 2

2 ) − f̃ 2
3

)
.

The gauge equivalence Ã1
i Ã

i1 = A1
i A

i1 implies

1

r2 [( f̃ 2
1 + f̃ 2

2 ) − ( f 2
1 + f 2

2 )] + sin2 θ cos2 φ

×
[
f̃ 2
3 − f 2

3 − 1

r2 (( f̃ 2
1 + f̃ 2

2 ) − ( f 2
1 + f 2

2 ))

]
= 0. (18)

Since α is a function of r only, the first term and the coef-
ficient of sin2 θ cos2 φ in the second term of Eq. (18) must
individually vanish, giving us two different copy equations,

f̃ 2
1 + f̃ 2

2 = f 2
1 + f 2

2 ⇒ f2 + 1

2
= − f1 cot

α

2
, (19)

f̃ 2
3 = f 2

3 ⇒ f3α̇ + 1

4
α̇2 = 0 ⇒ α̇ = 0 or α̇ = −4 f3.

(20)

For a non-trivial copy to exist, Eq. (19) has to be satisfied,
with a parameter α satisfying either of two equations in
Eq. (20). There are two choices to make, since f1 and f2
are arbitrary functions:

1. f2 + 1
2 �= − f1 cot α

2 ,

2. f2 + 1
2 = − f1 cot α

2 .

If

f2 + 1

2
�= − f1 cot

α

2
(21)

then it is clear that no copy exists for this choice.
However, if

f2 + 1

2
= − f1 cot

α

2
(22)

then we encounter two copies corresponding to Eqs. α̇ = 0
and α̇ = −4 f3. They are obtained by putting Eq. (22) in the
transformation (7)

f̃1 = − f1,

f̃2 = f2.
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Therefore for α̇ = 0 [(putting α̇ = 0 back in transforma-
tion (7)], we obtain

f̃1 = − f1,

f̃2 = f2,

f̃3 = f3,

which yields a copy:

Ã j
j = A j

j − 2i f1
(1

r
− x2

j

r3

)
, (23)

Ã j
k = A j

k + 2i f1
x j xk
r3 . (24)

However, on a compact manifold S
3 this copy no longer

exists. Because α̇ = 0 ⇒ α = const. everywhere includ-
ing infinity. We set α(r) = α(∞) = 4πn, for which the
copy equation (22) implies f2 = ∞ everywhere giving a
copy which is also ∞. We want finite copies of A j

k which
are well behaved and finite at finite distances, which is not
possible for α̇ = 0 on S

3. Therefore, Eq. (22) is not valid
on S

3, thus the copy vanishes on it. The other possibility is
f1 = 0 everywhere for a given f2(r) but by Eqs. (23) and
(24) we get the original configuration as a copy.

Now, we are left with only one copy, which corresponds
to

α̇ = −4 f3 ⇒ α = −4
∫

f3 dr + const. (25)

Putting α̇ = −4 f3 back in the transformation (7), we get

f̃1 = − f1,

f̃2 = f2,

f̃3 = − f3,

which yields a copy

Ã j
j = −A j

j , (26)

Ã j
k = −Ak

j . (27)

It can also be removed on S
3. We recall the boundary con-

ditions (16). Since f3 → 0 faster than 1
r as r → ∞,

Eq. (25) implies that α(∞) = const.. As for the previ-
ous copy, we set α(∞) = 4πn for which Eq. (22) implies
f2 → ∞ as r → ∞. Hence it is clear that on S

3, Eq. (22)
is an obstruction for the boundary condition on f2 (Eq. (16))
to be satisfied; therefore it is not valid. We conclude that this
copy does not exist on S

3.
The result is true under stronger general boundary con-

ditions, such as 1
r2 , e−r , and all cases where cot α

2 → ∞
faster than f1 decays. Similarly, it can be shown that the con-
dition for the other two components, Ã2

i Ã
i2 = A2

i A
i2 and

Ã3
i Ã

i3 = A3
i A

i3, produce the same two equations for the
copy.

For Coulomb gauge, we have [2]

∂Ai

∂xi
= n̂

(
ḟ3 + 2

r
f3 − 2

r2 f1

)
. (28)

Because the Pauli matrices σa are unit vectors in 2×2 matrix
space, the condition

∂ Ãa
i

∂xi
= ∂Aa

i

∂xi
(29)

for all three components yields the equation

α̈ + 2

r
α̇ − 4

r2

((
f2 + 1

2

)
sin α + f1 cos α

)
= 0. (30)

This equation is known to be solvable and therefore the ambi-
guity exists even on S

3.

4 BRST symmetry in quadratic gauge

In this section, we prove that this theory is BRST invari-
ant. We begin by writing the BRST transformations in the
quadratic gauge:

δcd = ω

2
f dbccbcc, (31a)

δcd = 2ω

g
Fd , (31b)

δAd
μ = ω

g
(Dμc)

d , (31c)

δFd = 0. (31d)

Nilpotency of the transformations (31) can easily be checked.
Under these transformations, variation of the Leff in Eq. (3)
is as follows:

δLeff = δ

(
ζ

2
Fa2 + Fa Aa

μA
μa − ca Aμa(Dμc)

a
)

(
δLYM = 0

)
= 2ω

g
Fa Aμa(Dμc)

a − 2ω

g
Fa Aμa(Dμc)

a

− ω

g
ca(Dμc)

a(Dμc)a(
we have used δ(Dμc)

a = 0
)

= − ω

g
ca(Dμc)

a(Dμc)a

= 0
(
(Dμc)

a is a grassmann variable
)
. (32)

Thus, we prove that the theory is BRST invariant.
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5 Conclusion

We discussed a particular quadratic gauge, which is a Lorentz
invariant algebraic gauge. We worked out an example of the
spherically symmetric configuration in the quadratic gauge
and proved that the configuration with a proper boundary
condition does not have any copy on S

3. Thus, we provided
one example where an algebraic gauge is compatible with the
boundary condition on the fields and the compactification of
the space is possible in an algebraic gauge. We also proved
that the theory is BRST invariant.
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