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Abstract By extending the �-derivable approach in the
Nambu–Jona-Lasinio model to a finite magnetic field we cal-
culate the properties of pion, σ , and ρ mesons in a magnetic
field at finite temperature not only in the quark–antiquark
bound state scheme but also in the pion–pion scattering reso-
nant state scenario. Our calculation as a result makes manifest
that the masses of π0 and σ meson can be nearly degener-
ate at the pseudo-critical temperature which increases with
increasing magnetic field strength, and the π± mass ascends
suddenly at almost the same critical temperature. Meanwhile
the ρ mesons’ masses decrease with the temperature but
increase with the magnetic field strength. We also check the
Gell-Mann–Oakes–Renner relation and find that the relation
can be violated clearly with increasing temperature, and the
effect of the magnetic field becomes pronounced around the
critical temperature. With different criteria, we analyze the
effect of the magnetic field on the chiral phase transition and
find that the pseudo-critical temperature of the chiral phase
cross, T χ

c , is always enhanced by the magnetic field. More-
over, our calculations indicate that the ρ mesons will get
melted as the chiral symmetry has not yet been restored, but
the σ meson does not disassociate even at very high temper-
ature. Particularly, it is the first to show that there does not
exist a vector meson condensate in the QCD vacuum in the
pion–pion scattering scheme.

1 Introduction

The properties of strong interaction matter (QCD matter)
have attracted great attention in the past years, and plenty
of theoretical and experimental results were obtained (see,
for example, Refs. [1–42]). The complicated phase structure
of the matter provides rich information on the property of
the strong interaction at finite temperature and/or density,
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and it may shed light on the fundamental understanding for
some basic problems, e.g., the origin of most mass of visible
matter and the evolution of the early universe matter. The
chiral phase transition which is expected to occur in ultrarel-
ativistic heavy-ion collisions [1–4,35] and/or in the interior
of the highly compact stars [43–45] is one of the signifi-
cant issues for the research of QCD matter. An important
method to extract the information of the chiral phase transi-
tion is analyzing the variation of the hadrons’ properties in the
medium at finite temperature and/or density (chemical poten-
tial), even in a finite magnetic field, compared with those at
zero temperature, zero chemical potential, and zero magnetic
field strength [37,46–59]. Among the hadrons, mesons are
more important than baryons at present, because the former
are more sensitive to the change of the surroundings and
related to the chiral phase transition more directly [58,60]. It
is known that, when the early universe experienced the cos-
mological electro-weak phase transition, the strength of the
magnetic field may reach up to eB ≈ 200m2

π [61]. In heavy-
ion collision experiments, the magnetic field produced at the
early stage of non-central collisions can be of the order of
eB ≈ 0.1m2

π for SPS, eB ≈ m2
π for RHIC, and eB ≈ 15m2

π

for LHC [62]. Even though it is weaker than that at the early
stage of the universe, the magnetic field produced in RHIC
and/or LHC has been strong enough to influence the strong
interaction matter significantly [36]. The effects of the mag-
netic field on the masses of hadrons and weak decay constant
of the neutral pion have then been investigated [59,63–67].
Since they are significant to check the validity of the Vafa–
Witten theorem for the QCD vacuum, the variation behav-
iors of the ρ meson masses with respect to the magnetic
field strength have also been studied [63–67]. However, the
temperature and magnetic field strength dependence of the
ρ meson mass and the existence of the ρ meson condensate
in a very strong magnetic field at high temperature are still
under debate (see, e.g., Refs. [63–65] and Refs. [66,67]). In
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this paper, we consider further the 2 flavor QCD matter and
the properties of mesons, including not only the pseudoscalar
neutral pion and scalar σ meson but also the charged pion
and ρ mesons, and we show the impossibility of the ρ meson
condensate by analyzing the variation behavior of the masses
and the width of the mass pole.

In a general point of view, researches on the magnetic
field effect have been carried out much more widely and
much progress has been made, e.g., there may exist a chiral
magnetic effect, which demonstrates that imbalanced chi-
rality in a magnetic field can induce a current along the
magnetic field and this results in a separation of electric
charges [36,41,68–76]. Through the research simultaneously
some open questions have arisen. One of them is whether
there exists magnetic catalysis, which says that the quark
condensate would be enhanced with increasing the magnetic
field [77–81]. A direct consequence of magnetic catalysis
is that the critical temperature of the chiral phase transition
increases monotonically with the increasing of the magnetic
field [28,29,79–84]. However, the latter lattice QCD calcu-
lations show an opposite behavior, called inverse magnetic
catalysis, which presents a decreasing or non-monotonous
behavior of the critical temperature with increasing mag-
netic field [30–32,85]. Lots of works have been accom-
plished in order to determine whether the magnetic catal-
ysis or the inverse catalysis is correct (see, for instance,
Refs. [30–32,86–101]), but it is still a puzzle (for a review,
see Ref. [102]). Since mesons carry lots of information on the
dynamical chiral symmetry breaking (DCSB) and restoration
(in particular, pions), and the proposed enhancement of the
meson or quark–antiquark pair condensate induced by the
strong magnetic field [83,84,86] may be a signature of the
magnetic catalysis, it is then expected that studies of meson
properties in a strong magnetic field in this paper would shed
light on this open question.

If we consider the charged mesons (π± and ρ±) as point
particles in an external magnetic field B, which is along the
z direction, the energy level of the particle with mass m and
spin s can be expressed as [37]

ε2
n,sz (pz) = p2

z + (2n − 2sz + 1)eB + m2, (1)

where n denotes the order number of the Landau level. As
mentioned in Ref. [37], for the pion sz = 0, and for the ρ

meson sz = 1; then the ground state mass of the charged pion
and ρ meson are given as

m2
π±(B) = m2

π± + eB, (2)

m2
ρ±(B) = m2

ρ± − eB, (3)

where m2
π± and m2

ρ± are the zero-field vacuum masses of

the π± and ρ±. However, mesons are not point particles. We
cannot ignore the contribution of the internal quark structure
of the particle to its mass, so in this paper we will calculate

the mesons’ masses from the internal quark–antiquark con-
tribution and at the same time make a correction on the point
particle approximation.

It has been known that the Nambu–Jona-Lasinio (NJL)
model is a QCD-inspired model [103–106], which demon-
strates the effects of chiral symmetry and its breaking well
and, in turn, can describe the meson properties at finite tem-
perature successfully. Meanwhile, the �-derivable approx-
imation [107–110] has been known as a non-perturbative
approach to the quantum field theory [111,112], at least a
two-particle-irreducible effective action formalism [113]. In
this paper, we take the NJL model with an extension of the
�-derivable scheme to a finite magnetic field to calculate the
meson properties in the conventional view that the mesons
are quark and antiquark bound states. However, the σ meson
may not be a simple quark–antiquark bound state (see, e.g.,
Refs. [114–116]) but a resonant state of pion–pion scattering,
and so does the ρ meson (for reviews, see e.g., Refs. [117–
121]). We will also study the mesons’ properties by analyzing
the π–π scattering lengths and the resonant states.

This paper is organized as follows. In Sect. 2, we briefly
reiterate the scheme of describing the mesons in view of
their internal quark–antiquark structure in the 2 flavor NJL
model with the �-derivable scheme at finite temperature but
zero magnetic field. In Sect. 3, we extend the formulation
to the case of a finite magnetic field. In Sect. 4, numer-
ical results and discussions of the dependence of meson
properties on the magnetic field are presented. In Sect. 5,
we re-calculate the masses and the widths of the σ and ρ

mesons in view of the π–π scattering resonant states to
reanalyze the effect of the magnetic field in an alternative
scheme. In Sect. 6, we will give a summary and make some
remarks.

2 Meson properties in the NJL model without magnetic
field

We begin with the NJL Lagrangian:

L = ψ(i∂/ − m0)ψ + gs[(ψψ)2 + (ψiγ5
−→τ ψ)2]

−gv(ψγ μ−→τ ψ)2, (4)

where ψ and ψ denote a quark and an antiquark field with
Nf flavors and Nc colors, m0 is the bare quark mass, τ i (i =
1, 2, 3) are the Pauli matrices in flavor space. The effective
four fermion interaction constant for scalar and pseudoscalar
channels is gs, and that for the vector channel is gv. In this
paper we always treat Nf and Nc as constants, Nf = 2 and
Nc = 3.

To make use of the �-derivable theory in practical
calculations, we follow exactly the scheme described in
Refs. [110,122]. We skip the complicated derivations and
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only list some important results as follows. At first, the con-
stituent quark mass can be derived from the gap equation,

M = m0 + � , (5)

where � is the quark self-energy function. In the lowest order
approximation, it reads

� = 2gs

∫
d4q

(2π)4 tr(i S(q)), (6)

with full quark propagator S(q) = 1/(q/ − M). The trace
notation, tr, acts in the Dirac, flavor, and color spaces. The
quark condensate 〈qq〉 is defined as

〈q̄q〉 = φ = −
∫

d4q

(2π)4 tr(i S(q)). (7)

To show the flavor dependence of the condensate, the trace
in Eq. (7) does not include that in flavor space usually. Com-
paring with Eqs. (6) and (5) we get

φ = −M − m0

4gs
. (8)

In view of the fact that mesons are bound states of a quark
and an antiquark, the meson propagators can be represented
in terms of its “polarization function” �α(p) as

Dσ (p) = 2gs

1 − 2gs�σ (p)
, (9)

Dπ (p) = 2gs

1 − 2gs�π(p)
, (10)

Dρ(p) = 2gv

1 − 2gv�ρ(p)
. (11)

The “polarization functions” can be written as

�α(p) = −i
∫

d4q

(2π)4 tr [i S(q + p)�αi S(q)�α], (12)

where α = σ, π, ρ denotes the scalar, pseudoscalar, and vec-
tor channel, respectively. The�α is correspondingly 1, iγ5

−→τ ,
and γ μ−→τ for the three channels. It is remarkable that, even
though Eq. (12) is similar to that in the usual NJL model
(see, e.g., Refs. [66,103]), it is in fact the same as that in
the Bethe–Salpeter equation when calculating the four quark
interaction kernel [58,122–124]. To show this we take the ter-
minology of polarization function(s) with quotation marks in
our context.

After some tedious calculations, one obtains the “polar-
ization functions” as

�σ (p) = 4i NcNf

[
I1 − 1

2
(p2 − 4M2)I (p)

]
, (13)

�π(p) = 4i NcNf

[
I1 − 1

2
p2 I (p)

]
, (14)

�ρ(p) = −8i NcNf

[
I1 − 1

2
(p2 + 2M2)I (p)

]
, (15)

where M is the constituent quark mass, and

I1 =
∫

d4q

(2π)4

1

q2 − M2 , (16)

I (p) =
∫

d4q

(2π)4

1

[(q + p)2 − M2](q2 − M2)
. (17)

From the pole of the meson propagators, we can obtain the
meson mass from the equation

1 − 2gα�α(mα) = 0 . (18)

The pion decay constant fπ can be calculated from the
vacuum to one-pion axial-vector matrix element. After some
calculations we have the following form for fπ :

f 2
π = −4i NcM

2 I (0), (19)

where I (0) is defined in Eq. (17), but with p = 0.
So far, we have only given formulas for the case of zero

temperature. To take into account the effect of the finite tem-
perature, we adopt in this paper the Matsubara formalism.
In this formalism, the energy part is replaced by the Mat-
subara frequencies iωn with ωn = 2nπT for bosons and
ωn = (2n + 1)πT for fermions. Then the integral can be
given as

∫
d4 p

(2π)4 f (p0,
−→p ) = iβ−1

∑
n

∫
d3 p

(2π)3 f (iωn,
−→p ) ,

(20)

where β = 1/T is the inverse of the temperature. Then the
gap equation can be rewritten by

M = m0 + 4gsNcNf

∫
d3q

(2π)3

M

Eq
[1 − 2n f (Eq)] , (21)

with

Eq =
√
q2 + M2 , (22)

n f (Eq) = 1

eβEq + 1
. (23)

For the “polarization functions”, the integrals are

I1 = −i
∫

d3q

(2π)3

1

2Eq
(1 − 2n f (Eq)) , (24)
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I (p) = i
∫

d3q

(2π)3

1

4Eq Eq+p

[ [
n f (Eq) − n f (Eq+p)

]

×
(

1

p0 + Eq − Eq+p
− 1

p0 − Eq + Eq+p

)

+ [
1 − n f (Eq) − n f (Eq+p)

]

×
(

1

p0 + Eq + Eq+p
− 1

p0 − Eq − Eq+p

)]
.

(25)

For the simple case that the external three-momentum �p = 0,
I (p) has a more simple form,

I (p) = i
∫

d3q

(2π)3 [1 − 2n f (Eq )]
(

1

p0 + 2Eq
− 1

p0 − 2Eq

)
.

(26)

With Eqs. (24) and (26) we can solve Eq. (18) to obtain the
mesons’ masses. One can notice easily then

(m2
σ − 4M2)I (mσ ) = m2

π I (mπ ) . (27)

Since the function I (p) is usually a very smooth function of
p and depends on p quite weakly [103], one can have the
approximation I (mσ ) = I (mπ ) = I (0). As a consequence,
one has

m2
σ = m2

π + 4M2 . (28)

It is apparent, as there exactly exist a chiral symmetry, M =
0, that mσ = mπ . Therefore the degeneracy of the σ meson
and pion masses is usually regarded as a signal of the chiral
symmetry restoration.

3 In an external magnetic field

With an external magnetic field, the NJL Lagrangian is given
as

L = ψ(i∂/ − q f eA/ − m0)ψ + gs[(ψψ)2 + (ψiγ5
−→τ ψ)2]

−gv(ψγ μ−→τ ψ)2 , (29)

where q f is the quark electric charge number, 2/3 for up
quark and −1/3 for down quark. We assume a homogeneous
external magnetic field B along the z-direction, then A can
be chosen as

A =
(

0,−1

2
Bx2,

1

2
Bx1, 0

)
. (30)

The quark propagator has the form

S(q) = 1

q/ − q f eA/ − M
= q/ − q f eA/ + M

(q − q f eA)2 − M2 . (31)

After some calculations, part of the denominator of the above
equation can be expressed as

(q − q f eA)2 = q2
0 − (q2

3 + 2n|q f |eB) , (32)

which means that, because of the existence of the external
magnetic field, the transverse part of the three-momentum
which is perpendicular to the z-direction is quantized as dis-
crete Landau levels. Then the �-derivable scheme and all the
equations in the previous section can easily be extended to
finite magnetic field. We list the main ones in the following.

The gap equation is given as

M = m0+2gsNc

∑
f

|q f |eB
2π

∞∑
n=0

αn

∫
dq3

2π

M

Eq
[1−2n f (Eq)] ,

(33)

with

E2
q = q2

3 + 2n|q f |eB + M2 , (34)

and αn is the spin degeneracy factor,

αn =
{

1 n = 0,

2 otherwise.
(35)

The “polarization function” of the σ meson in a magnetic
field is given by

�σ (p) = 2i Nc

∑
f

|q f |eB
2π

[
I1 − 1

2
(p2 − 4M2)I (p)

]
,

(36)

with

I1 = −i
∑
n

αn

∫
dq3

2π

1

2Eq
[1 − 2n f (Eq)] , (37)

I (p) = i
∑
n

αn

∫
dq3

2π

1

4Eq Eq+p

[
[n f (Eq) − n f (Eq+p)]

×
(

1

p0 + Eq − Eq+p
− 1

p0 − Eq + Eq+p

)

+[1 − n f (Eq) − n f (Eq+p)]
×

(
1

p0 + Eq + Eq+p
− 1

p0 − Eq − Eq+p

)]
.

(38)

Considering the zero three-momentum, �p = 0, the “polar-
ization function” can be simply written as

�σ (p0) = M − m0

2gsM
+ 2Nc

∑
f

|q f |eB
2π

1

2
(p2

0 − 4M2)
∑
n

αn
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×
∫

dq3

2π

1

4E2
q
[1 − 2n f (Eq )]

(
1

p0 − 2Eq
− 1

p0 + 2Eq

)
.

(39)

For the pion, we should notice that the form of the “polar-
ization function” in the case of zero magnetic field includes
the contributions of quark–antiquark loops for both u (ū) and
d (d̄) quarks, thus the mass we get is actually that of the neu-
tral pion π0. It is also obvious that without a magnetic field we
cannot distinguish the charged pion π± from the neutral π0 in
view of the “polarization functions”. In fact, when determin-
ing the parameters, one usually fixes the pion mass as the π0

mass. When considering a finite magnetic field, everything
changes. The isospin Pauli matrix for the neutral π0 takes τ 3,
and for the charged π± takes τ± = (τ 1±iτ 2)/

√
2. For the

neutral π0 we can directly get the “polarization function”,
which has almost the same form as Eq. (14) except for the
three-momentum integrations being replaced by a sum of the
Landau level and an integration of p3,

�π0(p) = 2i Nc

∑
f

|q f |eB
2π

[
I1 − 1

2
p2 I (p)

]
, (40)

where I1 and I (p) are the same as Eqs. (37) and (38). With
�p = 0,

�π0(p0) = M − m0

2gsM
+ 2Nc

∑
f

|q f |eB
2π

1

2
p2

0

∑
n

αn

×
∫

dq3

2π

1

4E2
q
[1−2n f (Eq)]

×
(

1

p0−2Eq
− 1

p0+2Eq

)
. (41)

For the charged π±, we can start from the inner structure of
π±. Different from π0, π+ is composed of u and d quark, so
that the quark loop structure of summing over the u (ū) and
d (d̄) quarks for π0 should be replaced by one u quark and
one d quark for π+. Similarly for π−. Thus the “polarization
function” has the form (here we also consider the case of zero
three-momentum)

�π±(p) = 2i Nc
eB

2π

[
I1 − 1

2
p2 I (p)

]
, (42)

with

I (p) = i
∑
n

αn

∫
dq3

2π

1

4Eq E ′
q

[
[n f (Eq) − n f (E

′
q)]

×
(

1

p0 + Eq − E ′
q

− 1

p0 − Eq + E ′
q

)

+[1 − n f (Eq) − n f (E
′
q)]

×
(

1

p0 + Eq + E ′
q

− 1

p0 − Eq − E ′
q

)]
, (43)

E2
q = 2n|qu |eB + q2

3 + M2, (44)

E ′
q

2 = 2n′|qd |eB + q2
3 + M2. (45)

Due to the constraints of conservation of momentum, n
and n′ have the relation n′ = 2n. Then Eq. (43) can be
reduced to the simple form

I (p) = i
∑
n

αn

∫
dq3

2π
[1 − 2n f (Eq)]

×
(

1

p0+2Eq
− 1

p0−2Eq

)
, (46)

with

E2
q = 4

3
neB + q2

3 + M2 . (47)

Similar to the pion, we can easily get the neutral ρ0 and
charged ρ± “polarization functions”

�ρ0(p0) = M − m0

gsM
+4Nc

∑
f

|q f |eB
2π

1

2
(p2

0 +2M2)
∑
n

αn

×
∫

dq3

2π

1

4E2
q
[1 − 2n f (Eq)]

×
(

1

p0−2Eq
− 1

p0+2Eq

)
, (48)

with the Eq expressed in Eq. (34);

�ρ±(p0) = M − m0

gsM
+ 4Nc

eB

2π

1

2
(p2

0 + 2M2)
∑
n

αn

×
∫

dq3

2π

1

4E2
q
[1−2n f (Eq)]

×
(

1

p0−2Eq
− 1

p0+2Eq

)
, (49)

with the Eq expressed in Eq. (47).
Together with Eq. (18) we can get the corresponding

meson mass.
The magnetic field strength dependence of the quark con-

densate at finite temperature can still be determined by Eq. (8)
with the corresponding quark mass M . The pion decay con-
stant can be given by

f 2
π = −i NcM

2
∑
f

|q f |eB
2π

I (0), (50)

where I (0) is determined by Eq. (38) with p = 0.

4 Numerical results and discussions

The feature of four fermion contact interactions of the NJL
model makes the model nonrenormalizable, and an effec-
tive three-momentum cutoff � is thus needed to regulate
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the divergent quantities. Together with the small bare quark
mass m0, the scalar interaction constant gs, and the vec-
tor interaction constant gv, there are four parameters in
the NJL model. The parameters �, m0, and gs are usu-
ally taken as [106] � = 587.9 MeV, m0 = 5.6 MeV,
gs�

2 = 2.44, which are fixed by fitting the quantities at
zero temperature: fπ = 92.4 MeV, mπ = 135.0 MeV, and
〈uu〉1/3 = −240.8 MeV. The last parameter gv is fixed as
gv = 1.39 × 10−6 MeV−2 by fitting the zero temperature ρ

meson mass mρ = 770.0 MeV.
In the case of a strong magnetic field, the sharp three-

momentum cutoff θ(� − | �p|) suffers from a cutoff artifact
since the continuum momentum is replaced by the discrete
Landau quantized one. To avoid this problem, a smooth cutoff
f�( �p) is introduced [70] by

f�( �p) =
√

�2N

�2N + | �p|2N . (51)

It is apparent that, in the limit of N → ∞, f�( �p) is reduced
to the sharp cutoff form. In our practical calculation, we take
Eq. (51) with N = 10 for the cutoff parameter and the com-
monly used values listed above for the other three parameters.

In Fig. 1 we plot the calculated variation behavior of the
constituent quark mass as a function of temperature with
several values of the magnetic field strength. One can see
that the constituent quark mass decreases quickly around a
certain temperature for all the values of the magnetic field
strength. We also plot the generalized chiral susceptibility
∂M/∂T as a function of temperature in Fig. 2. From the
position of the peak of ∂M/∂T , we can obtain, as usual,
the chiral phase transition temperature for different magnetic
field strengths, e.g., Tc = 191 MeV at eB = 0. When there is
a finite magnetic field, Fig. 1 shows that the constituent quark
mass increases with the magnetic field, and the strength of
the phase transition increases with the magnetic field strength

Fig. 1 Calculated variation behavior of the constituent quark mass as
a function of temperature at several values of magnetic field strength

Fig. 2 Calculated chiral susceptibility ∂M/∂T as a function of T , cor-
responding to the same values of eB in Fig. 1, respectively

Fig. 3 Calculated phase diagram in the T –eB plane

as well, as shown explicitly in Fig. 2, where both the height
of the peaks and the (pseudo-)critical temperature increase
with eB.

We show the critical temperature, or the pseudo-critical
temperature more exactly, as a function of eB in Fig. 3 and
list some of the values in Table 1. One can find from the figure
and the table that the critical temperature increases with eB,
in particular for a large magnetic field. This result implies
a confirmation of the magnetic catalysis in the �-derivable
scheme with the NJL model. Figure 3 can also be treated as
a phase diagram in the T –eB plane, where the regions above
and below the curve correspond to the chiral symmetric phase
and the DCSB phase, respectively. We also plot the absolute
value of the quark condensate as a function of temperature in
Fig. 4. Because of Eq. (8), we can get the same phase diagram
as Fig. 3 via the criterion of ∂φ/∂T . In addition, the phase
boundary in the T –eB plane can be parameterized as

Tc = 191+1.827(eB)−0.109(eB)2 +0.00264(eB)3 , (52)

with eB in unit m2
π .
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Table 1 Calculated pseudo-critical temperatureTc ’s in the case without
and with external magnetic field, obtained with different criteria and the
melting temperature of the ρ meson, where the T χ

c stand for those with
the constituent quark mass M and the chiral quark condensate 〈q̄q〉,
T π0

c for the π0 and σ meson masses to begin to degenerate or nearly

degenerate, T fπ
c for the maximal decreasing rate of the fπ , T r

c for the

first minimum of the r , T ρ0

m for the mρ0 to degenerate with the 2M , and

T ρ±
m the highest for the mass solution to exist (all the temperatures are

in unit MeV and the eB in m2
π at zero temperature and zero magnetic

field)

eB T χ
c T π0

c T fπ
c T r

c T ρ0

m T ρ±
m

0.0 191 233 191 200 155

10.0 201 256 201 211 194 169

20.0 205 277 205 214 215 173

30.0 222 304 222 232 245 196

40.0 258 258

Fig. 4 Calculated absolute value of the quark condensate as a function
of the temperature at the same values of eB as those in Fig. 1

The calculated π and σ meson masses as functions of
temperature in the case of zero magnetic field are plotted in
Fig. 5. Considering together with the variation behavior of
the constituent quark mass, one can notice that the relation
m2

σ = 4M2 + m2
π is conserved precisely. The degeneracy

of the π and σ meson masses at high temperature implies
evidently the restoration of the chiral symmetry.

Now we focus on the π mass in the case of finite magnetic
field. For the charged π±, we need to consider the contribu-
tion not only from the internal constituent quark and anti-
quark, but also from the point particle correction. In Eq. (2),
the point particle correction is given for the case of zero tem-
perature. We can directly extend it to the finite temperature
case:

M2
π±(T, eB) = m2

π±(T, eB) + eB . (53)

In the above expression, mπ±(T, eB) denotes the pion mass
calculated from the constituent quark and antiquark contri-
bution, where we can make the simplification of zero external

Fig. 5 Calculated π and σ meson masses as functions of temperature
T in the case of a vanishing magnetic field

momentum. This means that we consider the internal contri-
bution to the meson mass in a static meson coordinate system.
When considering the pion as a point particle moving in the
external magnetic field, the momentum of the pion perpen-
dicular to the direction of the magnetic field is quantized
as the Landau levels, and the lowest Landau level governs
the ground state of the pion mass, so that the point particle
correction is a kinetic effect. The calculated masses of π0

and π± in the case of a very weak magnetic field and zero
temperature are 135.1, 142.4 MeV, respectively. Comparing
with the experimental data mπ+ = 139.6 MeV, one sees that
the theoretical result of the π± mass agrees with experiment
very well (the error is only about 2 %).

In Fig. 6 we illustrate the calculated masses of the π0 and
π± mesons together with that of the σ meson as functions of
temperature in two cases of nonzero magnetic field strength.
Theσ meson mass, at a fixed temperature, shows a monotonic
increasing behavior with the magnetic field strength. We can
also find that in a weak magnetic field theσ meson mass keeps
the same behavior as that in the case of zero magnetic field,
but with increasing magnetic field strength the temperature
dependence of the σ meson mass becomes weaker, espe-
cially at the temperature around the (pseudo-)critical one.
This feature indicates that the σ meson mass depends on the
magnetic field more drastically than on the temperature. For
the pions, it shows that there is almost no qualitative differ-
ence between the dependence of π0 and π± masses on the
temperature. When the temperature is lower than 191 MeV,
which is the (pseudo-)critical temperature of the chiral phase
transition without magnetic field, T χ

c , the π0 mass is almost
a constant. Once the temperature gets higher than the crit-
ical value, the behavior becomes a little complicated. The
π0 mass decreases slightly around T χ

c , and then it increases
suddenly so as to become nearly degenerate with the σ mass
when the temperature is higher than the critical value T χ

c .
Different from the zero magnetic field case, the degeneration
is not so precise. The temperatures for the mass difference
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Fig. 6 Calculated π0 and π± masses (in black solid, blue dashed line,
respectively) together with σ meson mass (in red dotted) as functions
of temperature at two values of the magnetic field strength

(mπ0 −mσ ) to be about 2 % of the mπ0 are listed in Table 1.
The reason for the degeneracy to be not exact is the follow-
ing. The existence of the magnetic field enhances the quark
condensate and the constituent quark mass, but the tempera-
ture makes them decrease and the constituent quark mass will
drop to that in dynamical chiral symmetry at higher temper-
ature. From the relation between the masses of the σ meson
and the pion in Eq. (28), it is obvious that the degeneracy
occurs at higher temperature. Another aspect is the finite cur-
rent quark mass. When the temperature is above the critical
one, the quark mass returns, in fact, to the current quark mass
but not to zero. Therefore the pion mass does not equate the
σ mass precisely. From Fig. 6 we can also find that the crit-
ical temperature extracted from the π0 mass increases with
the magnetic field strength, which gives us similar informa-
tion of the phase diagram in T –eB plane as shown in Fig. 3.
However, there is a difference between the critical tempera-
tures in the two cases, which implies that the phase transition
is not a sharp (low order) phase transition, but a crossover.
Moreover, the π± mass increases with the magnetic field, no
matter if the temperature is lower or higher than the critical
value. The critical temperature for the π± mass to increase

Fig. 7 Calculated pion decay constant fπ as a function of temperature
at several values of magnetic field strength

abruptly is almost the same as that for the π0 meson (only
about 6 MeV lower).

It is well known that the Gell-Mann–Oakes–Renner
(GOR) relation, which connects the π mass and decay con-
stant with the current quark mass and quark condensate, is a
direct demonstration of the DCSB. The GOR relation reads

f 2
πm

2
π = −2m0〈qq〉, (54)

where 2〈qq〉 includes the contributions of both the u and
the d quarks. From Eqs. (19) and (50) we can get the π

decay constant. The obtained results at several values of the
magnetic field strength are displayed in Fig. 7. We should
note that the π decay constant in Eq. (19) is related to the
neutral pion π0, so we only consider the decay constant for
π0 as shown in Eq. (50), even though the π0 and π± can be
distinguished in a magnetic field. From Fig. 7 we can notice
that fπ at a certain temperature increases with the magnetic
field strength; and at a fixed magnetic field, fπ decreases
monotonously with the increasing of temperature and falls
to zero at high temperature, which is just qualitatively the
same as that given in Ref. [59]. Comparing the variation
behavior with those of the constituent quark mass and the
quark condensate, one can find that the critical temperature
at which the decreasing rate of the fπ takes its maximal
value is exactly the same as that given with the constituent
quark mass criterion (see Table 1). It is easy to check that
the GOR relation is preserved very well at zero temperature
and vanishing magnetic field. To examine the relation in the
case of finite magnetic field, following Ref. [54] we define
the ratio

r = f 2
πm

2
π

−2m0〈qq〉 . (55)

We show the calculated result of the ratio as a function of
temperature without magnetic field in Fig. 8. It shows obvi-
ously that, at low temperature, the ratio stays almost constant,
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Fig. 8 Calculated temperature dependence of the ratio r defined in
Eq. (55) in the case of vanishing magnetic field

Fig. 9 Calculated temperature dependence of the ratio r defined in
Eq. (55) at several values of magnetic field strength eB

1, which is a demonstration of the DCSB represented by the
GOR relation. However, when the temperature increases, it
deviates significantly from 1, which means that the tempera-
ture damages the GOR relation drastically or, in other words,
induces the dynamical chiral symmetry to be restored. Fur-
thermore, we illustrate the dependence of the ratio on the
temperature in the case of a nonzero magnetic field strength
in Fig. 9. One can recognize easily from Fig. 9 that with
different strengths of the magnetic field, the ratio does not
distinctly deviate from 1 either if the temperature is lower
than the critical one. Once the temperature reaches up to
around the critical value, r fluctuates seriously and both the
temperature for the fluctuation to reach its first minimum and
that for it to take its maximum increase with the ascension of
the magnetic field strength, which implies that the fluctuation
of the ratio r may be a signal for the chiral phase transition.
The temperatures for the fluctuation to take its first minimum
in several cases of the magnetic field are listed in Table 1.
These characteristics indicate that the external magnetic field
preserves the DCSB.

Fig. 10 Calculated ρ meson mass and twice the constituent quark mass
as functions of temperature in the case of vanishing magnetic field

Fig. 11 Calculated ρ meson masses and twice the constituent quark
mass as functions of temperature at several values of the magnetic field
strength. The black lines stand for the results with eB = 10m2

π , red for
those with eB = 20m2

π , and blue for eB = 30m2
π

The same as for pions, we can get the masses of the neutral
and the charged vector mesons ρ0 and ρ± from the vector
“polarization function” �ρ0(p) and �ρ±(p). For ρ±, we also
make the point particle correction

M2
ρ±(T, eB) = m2

ρ±(T, eB) − eB. (56)

We consider at first the case of vanishing magnetic field
where we cannot distinguish the charged ρ± from the neu-
tral ρ0, and illustrate the temperature dependence of the ρ

meson mass on the temperature in Fig. 10. The figure dis-
plays evidently that the ρ meson mass decreases with tem-
perature. When T = 155 MeV, the ρ meson mass falls to
the value of twice the constituent quark mass and there is no
longer a solution for the ρ meson mass at higher tempera-
ture. This phenomenon implies that at a critical temperature
the ρ meson gets disassociated, or melts to two quarks (more
exactly, a quark and an antiquark), and in turn, there is no ρ

meson condensate at high temperature. In Fig. 11 we plot the
results of both ρ0 and ρ± meson masses and twice the con-
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stituent quark mass as functions of the temperature in the case
of nonzero magnetic field strength. It shows that with finite
magnetic field the ρ0 meson mass has the same behavior as
that in the case without magnetic field, i.e., the ρ0 meson will
melt at the critical temperature when its mass is equal to the
twice of the constituent quark mass and the melting temper-
ature increases with magnetic field strength. For the charged
ρ± in a magnetic field, the mass also decreases with temper-
ature and remains smaller than the mass of the ρ0 meson.
Similar to the behavior of ρ0, there are no longer solutions
for the ρ± mesons as the temperature gets higher than a crit-
ical value. It indicates that the ρ± mesons also melt at high
temperature, and the melting temperature is lower than that
for the ρ0 meson in the same magnetic field. All the melt-
ing temperatures of ρ0 and ρ± are also listed in Table 1 for
comparison.

Inspecting Table 1, one can recognize that not only
the pseudo-critical chiral symmetry restoration temperatures
determined with different criteria but also the ρ meson melt-
ing temperatures in the case without magnetic field are all
smaller than those in nonzero magnetic field strength. The
temperatures increase with strengthening the magnetic field.
These features indicate that the external magnetic field can
at least maintain the DCSB, so that there may exist mag-
netic catalysis in the region of the magnetic field strength we
have considered. Comparing the melting temperatures of the
neutral ρ meson and the charged ρ meson with the pseudo-
critical temperature of the chiral phase crossover, one can
find that the ρ mesons will get melted as the DCSB is still
quite strong if the magnetic field is not strong enough (for
instance, eB < 30m2

π for ρ± and eB < 10m2
π for ρ0), and in

turn, there may not have been vector meson condensates in
the QCD vacuum, which is consistent with the lattice QCD
result [63] and the model calculation results [64,65]. One
may also infer that there exists magnetic inhibition for the
vector hadrons.

5 An alternative view

Considering the structure of the σ meson discussed above,
one may realize that it is the one having the quantum num-
bers of the vacuum, so that it plays a significant role in label-
ing the dynamical chiral symmetry restoration. However, it
most likely does not correspond to the meson observed in
QCD [114–121], since it has been well known that the σ

meson and the ρ meson could be recognized as the resonant
states of the π–π scattering (see, e.g., Refs. [117–121]). In
order to check the results we obtained in last section, we re-
calculate the temperature and magnetic field strength depen-
dence of the masses of the σ meson and ρ meson in the Roy
equation [125] formalism of π–π scattering [54,117,126–

131]. To analyze the stability of the mesons in magnetic field,
we also calculate the widths of the mesons’ mass poles.

It is well known that the significant inputs to determine
the masses and their widths of the resonant states in π–π

scattering in the Roy equation scheme are the π–π scattering
lengths [117,125,127–131], which can be determined by the
mass and the decay constant of the pion and the relation in the
case of vanishing temperature and magnetic field has been
well described in Ref. [126]. For convenience we outline the
scheme and quote only the main formulas as follows. For
the channel with isospin I , the scattering length aI can be
determined by the scattering amplitudes Ti (i = a, c, d, e
stands for the mode of scattering represented in terms of the
Feynman diagrams shown in Fig. 1 of Ref. [126]), which
can be fixed by the pion–quark–quark coupling constant, the
“polarization functions” and so forth. After some calculation
one has [126]

a0 = 7

32π

(
mπ

fπ

)2 [
1 + O(m2

π )
]

, (57)

a1 = 0 , (58)

a2 = −2

32π

(
mπ

fπ

)2 [
1−(1−5z+ 9

4
z2)

m2
π

4M2 +O(m4
π )

]
,

(59)

where z = �4M2

π2(�2+M2)2 f 2
π

, M is the constituent quark mass,

mπ is the pion mass, fπ is the pion decay constant, and � is
the cutoff in the NJL model.

It is apparent that the above relation can be extended to
the case at finite temperature and finite magnetic field with
only taking the M , mπ , fπ , and � in the case of finite tem-
perature and finite magnetic field as the inputs. With those
obtained in the last section as the inputs we get the scatter-
ing lengths in the case of vanishing and nonzero magnetic
field strength. The obtained results are shown in Fig. 12.
The figure manifests evidently that, in both the cases of zero
and nonzero magnetic field strength, a0 and a2 all remain
correspondingly constant in low temperature region. With
increasing magnetic field strength, the absolute value of the
“constant” gets smaller. As the temperature increases to the
pseudo-critical temperature denoted T r

c in last section, both
the a0 and the a2 diverge to positive infinity rapidly. Extend-
ing the discussion in Ref. [54], such divergences mean that
the pion may get melted at the temperature. In addition, com-
bining such a feature with the meaning of T r

c , we can infer
that the dynamical chiral symmetry restoration and the quark
deconfinement coincide with each other [20,21].

Having the π–π scattering lengths at hand, one can obtain
the masses and their widths of the σ and ρ mesons in the
scheme of the Roy equation [117,125,127–131]. Following
the method of Ref. [130], we can fix the mass and width of
the σ meson as
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Fig. 12 Calculated scattering lengths a0 and a2 as functions of tem-
perature in cases of zero and several nonzero magnetic field strengths

mσ = m0 + m1�a0 + m2�a2, (60)

where

�a0 = (a0 − 0.22)/0.005 , (61)

�a2 = (a2 + 0.0444)/0.001 , (62)

with m0 = 441 − i272 MeV, m1 = −2.4 + i3.8 MeV, and
m2 = 0.8− i4.0 MeV. We can then have the temperature and
magnetic field strength dependence of the σ meson mass and
width when the results illustrated in Fig. 12 are taken as the
inputs. The obtained results of the temperature dependence of
the mass and the width at zero and several nonzero magnetic
field strengths are shown in Fig. 13. It shows obviously that,
at zero temperature and zero magnetic field strength, σ meson
mass mσ = 488 MeV and its width �σ = 633 MeV. They
all agree very well with the data given in PDG [119,120] and
Refs. [121,130,131]. We can also see from the figure that the
variation behavior of the mass in the low temperature region
is qualitatively consistent with the result we obtained by ana-
lyzing the internal quark–antiquark structure described in the
last section except for that there exists a roughly factor 2 dif-
ference between the mσ (T = 0, eB = 0). The feature for
the mass to decrease to 0 but not increase at high tempera-

Fig. 13 Calculated σ meson mass and its width as functions of temper-
ature in the cases of zero and several nonzero magnetic field strengths

ture is due to the divergence of the scattering length. More-
over, the decreasing characteristic of the width with respect
to the temperature indicates that such a scalar meson may
not melt at high temperature, which is consistent with the
lattice QCD result for heavy scalar mesons [132,133]. Fig-
ure 13 also makes manifest distinctly that the σ meson mass
increases with increasing magnetic field strength in the low
temperature region, which is consistent with the result we
obtained in the last section. Meanwhile the width of the σ

meson mass pole increases with the magnetic field strengths.
In a similar way, we can also fit the ρ meson mass and

width in view of π–π scattering in the form

mρ = m0,ρ + m1,ρ�a0 + m2,ρ�a2 , (63)

with the �a0 and �a2 being the same as Eqs. (61), (62),
respectively, and parameters m0,ρ = 715.5 − i73.5 MeV,
m1,ρ = −3.9 − i0.9 MeV, and m2,ρ = 4.5 + i0.2 MeV.

The obtained results of the temperature dependence of
the ρ meson mass and width at zero and several nonzero
magnetic field strengths are shown in Fig. 14. It is apparent
that the ρ meson mass 774 MeV and width 121 MeV at zero
temperature and zero magnetic field strength agree with the
experimental data quoted in PDG excellently. Meanwhile, in
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Fig. 14 Calculated ρ meson mass and its width as functions of temper-
ature in the cases of zero and several nonzero magnetic field strengths

Table 2 Calculated critical temperature for ρ meson mass to be zero
(T ρ

c ), the ρ meson disassociation temperature (T ρ
da) and comparison

with the melting temperature (T ρ
m ) obtained in the last section (all the

temperatures are in units of MeV and the eB in m2
π at zero temperature

and zero magnetic field)

eB 0 10 20 30

T ρ
c 177 196 202 222

T ρ
da 187 204 207 226

T ρ0

m 155 194 215 245

the low temperature region, the ρ meson mass almost main-
tains a constant value, and it decreases to zero quite rapidly as
the temperature gets close to the critical value T ρ

c . With the
increasing of the magnetic field strength, both the constant
value and the critical temperature ascend (some values of the
T ρ

c are listed in Table 2). Such a feature is exactly the same as
we obtained in the last section. Furthermore our calculations
make manifest that at any finite magnetic field strength, the
width of the ρ meson mass pole increases with the increasing
of temperature; at a certain temperature, it decreases as the
magnetic field gets stronger. Especially the width diverges
at a certain critical temperature which increases as the mag-

netic field strength becomes larger. The divergence of the ρ

meson mass width means that the life-time of the ρ meson
becomes zero, so that the ρ meson will disassociate at the
critical temperature. The obtained divergence temperature
or the disassociation temperature T ρ

da is listed in Table 2. For
comparison we re-quote the temperature for the ρ0 meson to
melt, T ρ0

m , in Table 2. The figure and the table show obviously
that the properties of the ρ meson in view of the resonant state
of pion–pion scattering are just the same as those obtained
with analyzing the internal quark–antiquark structure of the
mesons in the last section.

6 Summary and remarks

In this paper, we have calculated some properties of the
scalar meson σ , pseudoscalar meson π0,±, and the vector
meson ρ0,± at finite temperature and finite magnetic field in
two distinct schemes in the NJL model. One is the conven-
tional scheme, which takes the mesons as quark and antiquark
bound states. Another is one that regards the σ and ρ mesons
as the pion–pion scattering resonant states.

To calculate the masses of the mesons sophisticatedly in
the NJL model, we extend the �-derivable method to a finite
magnetic field at first. Our calculation results make manifest
that the mass of the σ meson in magnetic field keeps the same
behavior as that in the case of zero magnetic field, but with
increasing magnetic field, the temperature dependence of the
σ meson mass becomes weaker. For the pseudoscalar meson
π , the behavior becomes a little complicated. In a finite mag-
netic field, the neutral π0 and the charged π± separate from
each other, but they have similar dependence behaviors on the
temperature, except for a slight quantitative difference. When
the temperature is lower than the critical value for nonzero
magnetic field, the π0 mass keeps almost a constant value.
Once the temperature reaches the critical value, the π0 mass
increases abruptly with the increase of the temperature, and
it becomes degenerate with the σ meson mass. However, the
degeneracy is not precise because of the magnetic catalysis
and the finite current quark mass effect. The charged π± mass
increases with the magnetic field, no matter if the tempera-
ture is lower or higher than the critical value. We also find that
the critical temperature obtained from the π mass is overall
a little higher than that gained by analyzing the properties of
the quark. Such a feature, that different criteria give distinct
critical temperatures, implies that the chiral phase transition
at finite temperature and finite magnetic field is a crossover.
For the vector meson, we also distinguish the neutral ρ0 from
the charged ρ± in our calculation. The obtained results dis-
play the masses of not only the neutral but also the charged
particles increase with the strengthening of the magnetic field
at low temperature. At a certain magnetic field, the masses
decrease generally with the increasing of temperature. When
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the temperature increases to the critical value, both the ρ0

and the ρ± mass solutions disappear, which implies that the
vector mesons will melt. The melting temperature increases
with the ascension of the magnetic field, and the ρ0 melting
temperature is slightly higher than that for ρ±. Because the
ρ meson will melt at high temperature, there may not exist a
ρ meson condensate in the QCD vacuum.

We have also calculated the temperature and the magnetic
field strength dependence of the neutral pion decay constant
and checked the GOR relation in the case of finite temperature
and finite magnetic field. Our calculation results of the decay
constant agree very well with the previous one. Meanwhile,
we find that the temperature influences the GOR relation
more than the magnetic field and the fluctuation of the ratio

r = f 2
πm

2
π−m0〈qq〉 can be a signal for the chiral phase transition.

Such an aspect shows again that the magnetic field preserves
the DCSB.

To calculate and analyze the properties of the σ and ρ

mesons in the case of vanishing and nonzero magnetic field
strength in the pion–pion scattering scenario, we take the
formalism of the Roy equation by extending, for the first
time, the calculation of the π–π scattering lengths to finite
magnetic field. The masses and their widths at zero tempera-
ture and zero magnetic field strength we obtained excellently
agree with the experimental data. Our calculated results of the
temperature and magnetic field strength dependence of the
scattering lengths (a0 and a2) and the mass widths indicate
that the π meson and the ρ meson will get disassociated at
high temperature and strong magnetic field, and the disasso-
ciation temperature of each kind of the mesons is almost the
same as the corresponding melting temperature obtained by
analyzing the internal quark structure. Meanwhile increasing
the magnetic field strength retards the disassociation. These
features confirm that there does not exist a (charged) vec-
tor meson condensate in the QCD vacuum at finite magnetic
field. The scalar meson σ will not disassociate, which agrees
with what a lattice QCD calculation on heavy flavor mesons
makes manifest.

All the obtained variation behaviors of the mesons’ prop-
erties with respect to the temperature and the magnetic field
strength provide further evidence that the external magnetic
field enlarges the dynamical chiral symmetry breaking area,
i.e., there exists a magnetic catalysis. However, it does not
mean that we have reached the end, since we have not
taken into account explicitly the magnetic inhibition [87],
the sphaleron [90], and other effects. Furthermore the NJL
model is only a contact interaction approximation of the
strong interaction, which neglects the contributions of the
complicated quark–gluon interaction vertex and the dressed
gluon propagator. Extending the result obtained in the lin-
ear sigma model [134], one may infer that such a neglect
should be the origin of the magnetic catalysis in the models.

In addition, we have not taken into account the tempera-
ture and magnetic field strength dependence of the cutoff in
the calculations, either. Investigations on the meson proper-
ties with more sophisticated approaches (e.g., the Dyson–
Schwinger equation approach, incorporating explicitly the
magnetic field dependence of the quark–gluon interaction
vertex and the gluon propagator, and so on) are necessary.
On the other hand, the practical situation may, in fact, be
more complicated, for instance, the effect of the magnetic
field on the phase transition may depend on the field strength
non-monotonically.
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131. R. García-Martín, R. Kamiński, J.R. Peláez, F.R. de Elvira, Phys.

Rev. Lett. 107, 072001 (2011)
132. G. Aarts, C. Allton, S. Kim, M.P. Lombardo, M.B. Oktay, S.M.

Ryan, D.K. Sinclair, J.-I. Skullerud, J. High Energy Phys. 11, 103
(2011)

133. G. Aarts, C. Allton, S. Kim, M.P. Lombardo, M.B. Oktay, S.M.
Ryan, D.K. Sinclair, J.-I. Skullerud, J. High Energy Phys. 03, 084
(2013)

134. A. Ayala, C.A. Dominguez, L.A. Hernández, M. Loewe, R.
Zamora, Phys. Rev. D 92, 096011 (2015)

123


	Properties of mesons in a strong magnetic field
	Abstract 
	1 Introduction
	2 Meson properties in the NJL model without magnetic field
	3 In an external magnetic field
	4 Numerical results and discussions
	5 An alternative view
	6 Summary and remarks
	Acknowledgments
	References




