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Abstract The leading hadronic contributions to the anoma-
lous magnetic moments of the electron and the τ -lepton are
determined by a four-flavour lattice QCD computation with
twisted mass fermions. The results presented are based on the
quark-connected contribution to the hadronic vacuum polar-
isation function. The continuum limit is taken and system-
atic uncertainties are quantified. Full agreement with results
obtained by phenomenological analyses is found.

1 Introduction

The standard model of particle physics (SM) contains three
charged leptons l, mainly differing in mass, the electron, the
muon and the τ -lepton with me : mμ : mτ ≈ 1 : 207 :
3477 [1]. Their magnetic moments, in particular their so-
called anomalous magnetic moments, al = (g − 2)l/2, con-
trol their behaviour in an external magnetic field.

Being the lepton with the smallest mass, the electron is
stable. This leads to the electron magnetic moment being
one of the most precisely determined quantities in nature.
The difference between the latest experimental [2] and SM
values [3,4] is of O (

10−12
)

or approximately 1.3 standard
deviations, cf. [5] and references therein,

aExp
e = 11,596,521,807.3 (2.8) × 1013,

aSM
e = 11,596,521,817.8 (7.6) × 10−13,

aExp
e − aSM

e = −10.5 (8.1) × 10−13.

This constitutes one of the cornerstone results for quantum
field theories to be recognised as the correct mechanism for
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describing particle interactions. The very good agreement of
the electron magnetic moment between experiment and SM
calculations is not matched by the muon anomalous mag-
netic moment. In fact, here a two to four sigma discrepancy
is observed; see e.g. [6]. One reason for the observed dis-
crepancy could be that the magnetic moment of the muon
receives larger non-perturbative contributions than the one
of the electron. On the other hand, it is supposed also to be
more sensitive to beyond the SM physics, since for a large
class of theories new physics contributions are expected to
be proportional to the squared lepton mass. Thus it is a prime
candidate for detecting physics beyond the SM. Due to the
large mass of the τ -lepton, it would be the optimal lepton
for finding new physics. However, because its lifetime is
very short (O (

10−13
)
s) there currently only exist bounds

on its anomalous magnetic moment from indirect measure-
ments [7].

The QED [3,8] and the electroweak contributions [9,10]
to the lepton anomalous magnetic moments have been com-
puted in perturbation theory to impressive five and two loops,
respectively. The main uncertainties remaining in the theo-
retical determinations of the anomalous magnetic moments
originate thus from the leading-order (LO) hadronic contri-
butions. Since they are particularly sensitive to those virtual
photon momenta that are of O (

m2
l

)
, these contributions are

inherently non-perturbative and not accessible to perturba-
tion theory. In order to have a prediction of the anomalous
magnetic moments from the SM alone, a non-perturbative
method needs to be employed and the only such approach
we presently know, which eventually allows us to control all
systematic uncertainties, is lattice QCD (LQCD) which we
use here.

As highlighted in [5], the uncertainty in the comparison
between the experimental and the SM value for the electron
anomalous magnetic moment is currently dominated by the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4307-2&domain=pdf
mailto:florian.burger@physik.hu-berlin.de
mailto:karl.jansen@desy.de
mailto:marcus.petschlies@hiskp.uni-bonn.de
mailto:grit.hotzel@physik.hu-berlin.de


464 Page 2 of 13 Eur. Phys. J. C (2016) 76 :464

experimental uncertainty of its determination and the value
for αQED from atomic physics experiments with rubidium
atoms which both are to be reduced in the future. Recently,
the Harvard group has announced to be working on a more
accurate determination of the electron as well as the positron
(g − 2) [11]. According to Ref. [5], uncertainties in the sub-
10−13 region might be expected which would clearly provide
the opportunity to also detect new physics contributions in
the anomalous magnetic moment of the electron and thus to
cross-check the muon discrepancy. In this situation it will
again be of utmost importance to know the hadronic contri-
butions as precisely as possible.

Furthermore, even for the τ -lepton, Ref. [12] lists several
proposals for the first actual measurement of its anomalous
magnetic moment, e.g. [13]. A first successful measurement
in this direction has been reported in [14]. As we will show
in the following, compared to the case of the muon it will
be much easier to obtain a value for the LO QCD contribu-
tion to aτ from LQCD with the required precision to detect
new physics and it will probably not take very long before
the QCD contribution entering the official SM result will be
provided by LQCD.

As mentioned before, the hadronic LO contributions to the
anomalous magnetic moments of the three SM leptons, ahvp

l ,
strongly depend on the values of their masses. Since the mag-
nitude of the lepton masses spans four orders of magnitude,
the corresponding contributions to the anomalous magnetic
moments differ substantially and probe very different energy
regions; see also the discussion of Fig. 1 in Sect. 3.

In this article, we present the results of our four-flavour
computations of the quark-connected, LO hadronic vac-
uum polarisation contributions to the electron and τ -lepton
anomalous magnetic moments obtained from the (maxi-
mally) twisted mass formulation of LQCD. The muon case
has already been covered in [15]. The important feature of the
present calculation is that we adopt exactly the same strategy
as for the muon [15] including the same chiral and continuum
extrapolations.

Thus, the results presented here are not only interesting
in themselves, but also serve as an important cross-check for
our treatment of the hadronic vacuum polarisation function.
The consistent picture we obtain for all three standard model
leptons then reassures us of the validity of the approach of
the analysis.

Additionally to the systematic uncertainties investigated
in our previous paper, we quantify the light-quark discon-
nected contributions on one of our N f = 2 + 1 + 1 ensem-
bles in order to arrive at a rough estimate of their systematic
effect on our estimates for the hadronic LO anomalous mag-
netic moments. A full quantitative constraint on the quark-
disconnected contribution, however, is beyond the scope of
this work.
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Fig. 1 Upper plot Comparison of the dependence on the upper inte-
gration bound in Eq. (5) of the four-flavour lepton anomalous magnetic
moments. The blue curve represents the ratio defined in Eq. (10) for
the electron, the orange one for the muon, and the dark red one for
the tau. Q2

peak,l denotes the momentum value where the kernel function
in Eq. (5) attains its maximum. Lower plot Comparison of the depen-
dence of the relative statistical uncertainties of the integrands in Eq. (5)
on the squared momenta scaled by the lepton masses. The plots are
based on data for the D30.48 ensemble featuring a = 0.061 fm, mPS =
318 MeV, and L = 2.9 fm

Another very important feature is that incorporating the
complete first two generations of quarks enables us to directly
and unambiguously compare our results with the values
obtained from phenomenological analyses relying on experi-
mental data and a dispersion relation. We note that the contri-
butions from third-generation quarks can be neglected, since
they are smaller than the current theoretical accuracy, as can
be inferred e.g. from the data tables of Ref. [16]. Recently,
the bottom-quark contribution to ahvp

μ has been explicitly
computed on the lattice [17] confirming it to be one order of
magnitude smaller than the current uncertainty of the phe-
nomenological determinations of ahvp

μ .
Additionally to the N f = 2 + 1 + 1 flavour ensem-

bles [18,19] at unphysically large pion masses studied in [15],
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we computed the dominant light-quark contributions to the
anomalous magnetic moments on a N f = 2 flavour ensemble
directly at the physical point [20,21]. This allows us to test the
chiral extrapolations performed when using the reparametri-
sation introduced in [22,23]. Since we currently only have
one ensemble at the physical point with one lattice spacing
and we neglect the small influence of the strange and charm
sea quarks when comparing the results from N f = 2 and
N f = 2+1+1 ensembles, a final conclusion is precluded at
this point. The significance of this comparison is based on the
empirically observed weak dependence on the lattice spac-
ing of the light-quark contribution as well as the marginal
sea-quark effects from strange and charm on the latter.

The next section comprises a short repetition of the most
important equations needed to follow the discussion of the
results for the LO hadronic vacuum polarisation contribu-
tions to the anomalous magnetic moments of the electron in
Sect. 3 and the τ -lepton in Sect. 4. In Sect. 5 we summarise
our results and draw our conclusions.

2 Computation of ahvpl

The LO hadronic contribution to the lepton anomalous mag-
netic moments, ahvp

l , can be directly computed in Euclidean
space-time according to [24,25]

ahvp
l = α2

∫ ∞

0

dQ2

Q2 w

(
Q2

m2
l

)

ΠR(Q2), (1)

where α is the fine structure constant, Q2 the Euclidean
momentum, ml the lepton mass, and ΠR(Q2) the renor-
malised hadronic vacuum polarisation function,

ΠR(Q2) = Π(Q2) − Π(0).

It is obtained from the hadronic vacuum polarisation tensor

Πμν(Q) =
∫

d4x eiQ·(x−y)〈Jμ(x)Jν(y)〉

=
(
QμQν − Q2δμν

)
Π(Q2), (2)

which is transverse because of the conservation of the elec-
tromagnetic current

Jμ(x) = 2

3
ū(x) γμu(x) − 1

3
d̄(x)γμd(x)

+ 2

3
c̄(x)γμc(x) − 1

3
s̄(x)γμs(x). (3)

Hereu stands for the up quark,d for the down quark, c denotes
the charm quark, and s the strange quark. Equation (2) shows
that Πμν(Q) results from the Fourier transformation of the
correlator of two such currents. Taking up and down quarks
together, since they are mass-degenerate in our setup, we

decompose the quark-connected part of the hadronic vacuum
polarisation tensor according to

Πμν(Q) = Πud
μν (Q) + Π s

μν(Q) + Πc
μν(Q). (4)

In our lattice calculation this decomposition into flavour
contributions is particularly straightforward, because for all
quark flavours we use the one-point-split vector currents,
which are conserved at non-zero lattice spacing and thus do
not require further multiplicative or additive normalisation.
From Eq. (4), we can stepwise add the flavour contributions
which will be done in the sections below.

The standard integral definition in Eq. (1) results in a
strong non-linear pion mass dependence, in particular for
the light-quark contribution to ahvp

l . This behaviour orig-
inates from the introduction of the lepton mass ml as an
external scale, which is not related to the lattice parameters
and in particular does not have an inherent value in lattice
units. Employing Eq. (1) in the lattice calculation requires
the input of the dimensionless combination a · ml and this
renders the initially dimensionless quantity ahvp

l effectively
dependent on the lattice scale setting. In view of this external
scale problem, Refs. [22,23] proposed a modified definition
of a new family of observables

ahvp
l̄

= α2
∫ ∞

0

dQ2

Q2 w

(
Q2

H2

H2
phys

m2
l

)

ΠR(Q2). (5)

H denotes some hadronic scale determined on the lattice at
unphysically high pion masses, which fulfills the constraint
that H (mPS) → Hphys as mPS → mπ . For each choice of H
we thus obtain a correspondingly modified, mPS dependent
lepton mass on the lattice ml̄ (mPS) = ml · H (mPS) /Hphys.

Our choice for the hadronic scale H is the mass mV of
the lowest-lying state in the light vector meson channel, i.e.
the ρ-meson state. This choice uniquely fixes the pion mass
dependence of the lepton mass ml̄ (mPS) and is subsequently
used for all single-flavour contributions to the vacuum polar-
isation function.

H = Hphys = 1 reproduces the standard definition in
Eq. (1). Up to lattice artefacts, the standard definition is also
recovered at the physical value of the pion mass when the
ratio H/Hphys becomes one

lim
mPS→mπ

ahvp
l̄

(mPS) = ahvp
l (mπ ) .

Henceforth we always use the definition in Eq. (5) with H =
mV and drop the bar on the label for the lepton.

The weight function w is known from QED perturbation
theory:

w(r) = 64

r2(1 + √
1 + 4/r)4

√
1 + 4/r

. (6)
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It has a pronounced peak at rpeak = Q2
peak/m

2
l = √

5 − 2.
As an illustrating example the corresponding peak locations
for the electron, muon and tau are shown by the labels on the
upper x axis in the upper plot of Fig. 1 for ensemble D30.48
in Table 1 below.

For a thorough description of the lattice calculation and a
proof of automatic O(a) improvement of the vacuum polar-
isation function we refer to [15,26], respectively. In order
to discuss systematic uncertainties later on, we briefly sum-
marise our method of fitting the hadronic vacuum polarisa-
tion function here.

First, the lowest-lying vector meson masses,mi , and decay
constants, fi , are determined from the time dependence of
the two-point function of the light, strange, and charm point-
split vector current, individually, at zero spatial momentum.
Then Π(Q2) determined in the momentum range between 0
and Q2

max is split into a low-momentum part for 0 ≤ Q2 ≤
Q2

match and a high-momentum one for Q2
match < Q2 ≤ Q2

max
and is fitted separately for each flavour and each ensemble.
The low-momentum fit function is given by

Πlow(Q2) =
M∑

i=1

f 2
i

m2
i + Q2

+
N−1∑

j=0

a j (Q
2) j , (7)

and the high-momentum piece is parametrised as follows:

Πhigh(Q
2) = log(Q2)

B−1∑

k=0

bk(Q
2)k +

C−1∑

l=0

cl(Q
2)l . (8)

Table 1 Parameters of the N f = 2 + 1 + 1 flavour gauge field con-
figurations that have been analysed in this work. a denotes the lattice
spacing (cf. [31]), mPS the value of the light pseudoscalar meson mass
(cf. [18]) and L the spatial extent of the lattices. The right-most column
gives the value formPS ·L . The ensemble in the last line has N f = 2 and
physical pion mass. It is described in Refs. [20,21,32]. The ensemble
name in the first column gives the bare-quark mass in lattice units as
the first pair of digits times 10−4 and the spatial lattice size L/a as the
second pair of digits

Ensemble a (fm) mPS (MeV) L (fm) mPS · L
D15.48 0.061 227 2.9 3.3

D30.48 0.061 318 2.9 4.7

D45.32sc 0.061 387 1.9 3.8

B25.32t 0.078 274 2.5 3.5

B35.32 0.078 319 2.5 4.0

B35.48 0.078 314 3.7 5.9

B55.32 0.078 393 2.5 5.0

B75.32 0.078 456 2.5 5.8

B85.24 0.078 491 1.9 4.7

A30.32 0.086 283 2.8 4.0

A40.32 0.086 323 2.8 4.6

A50.32 0.086 361 2.8 5.1

cA2.09.48 0.091 135 4.4 3.0

They are combined according to

Π(Q2) =
(

1 − Θ
(
Q2 − Q2

match

))
Πlow(Q2)

+Θ
(
Q2 − Q2

match

)
Πhigh(Q

2), (9)

where Θ(x) is the Heaviside function.
This defines our so-called MNBC fit function. Our stan-

dard fit for the light- and strange-quark contributions is
M1N2B4C1 which means M = 1, N = 2, B = 4, andC = 1
in Eqs. (7) and (8) above. As value of Q2

match in the Heavi-
side functions in Eq. (9) we have chosen 2 GeV2. We have
checked that varying the value of Q2

match between 1 GeV2

and 3 GeV2 does not lead to observable differences as long
as the transition between the low- and the high-momentum
part of the fit is smooth. For the upper integration limit we use
Q2

max = 100 GeV2, since the integrals are saturated there, as
can be seen in Fig. 1 below.

For each ensemble and flavour we perform a fit for Π as
given in Eq. (9). From this fit we obtain the corresponding
Π(0) and thus the subtracted polarisation function. The latter
is integrated using Eq. (5) and the contributions from indi-
vidual quark flavours are summed including the appropriate
charge factors e2

u + e2
d, e2

s , and e2
c . This results in an esti-

mate for the hadronic leading-order lepton anomalous mag-
netic moment for each gauge field ensemble, which depends
on the lattice spacing, the pion mass, and the lattice size,
ahvp
l = ahvp

l

(
a,m2

PS, L
)
. As final step we perform a com-

bined extrapolation to the continuum and to physical quark
masses. For this extrapolation some dependencies turn out to
be negligible. The strange- and charm-quark mass in the sea-
and valence-quark action have been tuned for each ensemble,
so we do not need to consider these dependencies explicitly in
ahvp
l . Moreover, the detailed discussion of the lattice data in

the following sections will show that we only find significant
lattice artefacts in the strange- and charm-quark contribution
to ahvp

l and we will use an appropriately adapted fit ansatz.
The dependence on the finite volume is discussed in detail as
part of the systematic error analyses in Sects. 3.3.1 and 4.3.1
and thus not part of the extrapolation described above.

In [27,28] the usage of Padé approximants has been advo-
cated for fits in the small momentum region. The Padé fit
functions are formally identical to the MN series of fits. We
analysed the Padé approximants for our data in [29]. We
found agreement for the location of the poles provided the
same number of fit parameters were used in both cases (See
also the more elaborate study for the case of the muon per-
formed by the RBC-UKQCD Collaboration in [30]). We can
thus employ the same procedure as for the muon and show
that it produces results compatible with phenomenological
determinations for both the electron and the τ -lepton with-
out any modification.
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Our analysis has been performed on the same set of gauge
field configurations [18,19] as have been used in our previous
work [15]. A detailed list of the lattice parameters can be
found in Table 1 below.

3 The electron (g − 2)

The LO hadronic contribution to the electron anomalous
magnetic moment ae is dominated by momenta below
10−4 GeV2. To a good approximation it can even be deter-
mined from the slope of the vacuum polarisation at zero
momentum ae ∝ dΠ/dQ2(Q2 = 0). Therefore, we only
use the low-momentum part, Πlow(Q2), of the hadronic vac-
uum polarisation function Eq. (7). The saturation of the
integral for one of our ensembles, namely B55.32 featuring
mPS ≈ 390 MeV, a ≈ 0.08 fm and L = 2.5 fm, is shown in
the upper plot of Fig. 1 for all three leptons by plotting

Rl(Q
2
max) = ahvp

l (Q2
max)

ahvp
l (100 GeV2)

, (10)

where ahvp
l (Q2

max) is the LO hadronic contribution to the
lepton anomalous magnetic moment integrated up to Q2

max.
This plot also implies that for the electron we have to

rely mostly on the extrapolation of our vacuum polarisation
data to the small momentum region. Although saturating well
beyond momenta of O (

1 GeV2
)
, also for the τ , the renor-

malised vacuum polarisation function requires the subtrac-
tion of Π(0), which is determined from the same extrapola-
tion to the small momentum region.

Despite the different masses of the leptons, the lower plot
of Fig. 1 shows that the relative statistical uncertainties are
of the same orders of magnitude for all three leptons and
display a universal dependence on Q2/m2

l .

3.1 Contribution from up and down quarks

The light-quark contribution is depicted in Fig. 2. Here, we
compare aude with the result at the physical value of the pion
mass obtained with the standard definition Eq. (1) on one
ensemble [20,21] with only one lattice spacing.

For the extrapolation in the upper plot of Fig. 2 we initially
use aude from all our ensembles, i.e. all volumes, lattice spac-
ings, and pion masses. As the figure shows, with the present
accuracy of the data we do not resolve any statistically signif-
icant dependence of aude on the lattice spacing or the lattice
size. Using the modified definition (Eq. 5) with H = mV the
ansatz

aude

(
a,m2

PS, L
)

= A + B m2
PS (11)

2.00e-13

4.00e-13

6.00e-13

8.00e-13
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a = 0.086 fm, L = 2.8 fm

aude (mPS, 0.061 fm)
aude (mPS, 0.078 fm)
aude (mPS, 0.086 fm)

Fig. 2 Upper plot Light-quark contribution to ahvp
e with filled symbols

representing points obtained with Eq. (5), open symbols refer to those
obtained with Eq. (1), i.e. H = 1. In particular, the two-flavour result
at the physical point has been computed with the standard definition.
The light grey errorband belongs to the linear fit, whereas the dark
grey errorband is attached to the quadratic fit. Lower plot Combined
chiral and continuum extrapolation of the light-quark contribution to
ahlo

e allowing for lattice artefacts

is then already sufficient to describe our data. The result of
this extrapolation is shown as the light grey band in Fig. 2.
In principle, we are to add terms of higher order in m2

PS for
the extrapolation formula in Eq. (11),

aude

(
a,m2

PS, L
)

= A + B m2
PS + B2 m

4
PS + · · · (12)

to account for any non-linear dependence on m2
PS. The dark

grey band in the background in Fig. 2 shows the extrapola-
tion with an additional term B2 m4

PS. The difference between
this extrapolation and the previous one linear in the squared
pion mass is insignificant. This insignificance of terms inm2

PS
beyond the linear one when using the improved definition in
Eq. (5) turns out to be a universal property of a f

l for all lep-
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tons and all flavour combinations f = ud, udsc considered
here and below. In addition, we check explicitly for lattice
artefacts in the extrapolation by adding a term C a2 to Eq.
(11) with the result shown in the lower plot of Fig. 2.

We assume that lattice artefacts for the data at the physical
point are negligible as well, which gives merit to the observed
compatibility of the physical point result with the value
determined by the linear extrapolation of the data described
here.

3.2 Adding the strange- and the charm-quark contributions

When incorporating the heavy, second-generation flavours,
which are described by the Osterwalder–Seiler action [33,34]
and whose masses have been tuned to their physical values as
shown in [15], we take O(a2) lattice artefacts into account.
The four-flavour result for ahvp

e at the physical point in the
continuum limit is obtained from simultaneously extrapolat-
ing in the pion mass, mPS, and to zero lattice spacing a using
the ansatz

ahvp
e (mPS, a) = A + B m2

PS + C a2. (13)

A, B,C denote the free parameters of the fit. In the pres-
ence of the strange and charm contributions to ahvp

e , the
parameter C will also contain terms ∼m2

c,R, m2
s,R from

the renormalised charm- and strange-quark mass and also
receives contributions from lattice artefacts possibly present
in the light-quark contribution to ahvp

e . The reason for omit-
ting a linear term in a is that automatic O(a) improve-
ment is retained for our definition of the hadronic vac-
uum polarisation function at maximal twist [26]. As we
have discussed in [15], systematic effects from varying
the heavy valence- and sea-quark masses within the range
given there have been found to be negligible. This is
partly due to the contribution of strange- and charm-quark
current correlators to vacuum polarisation being at least
an order of magnitude smaller than those from the light
quarks.

For ahvp
e the corresponding fit is shown in Fig. 3. Again

we use data for ahvp
e for all lattice spacings, pion masses, and

lattice volumes in this extrapolation. The ansatz in Eq. (13) is
sufficient for a good description of all our data. This is shown
by the three dashed lines, which evaluate the fit function for
the individual lattice spacings. We have checked that amend-
ing the fit function by higher powers in m2

PS does not lead
to significantly different results for the extrapolated value.
Comparing the results for different lattice volumes for lat-
tice spacing a = 0.078 fm in Fig. 3 suggests the absence of
observable finite volume effects. However, for the compila-
tion of our complete error budget we investigate these effects
in more detail below.
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ae(mPS, 0.061 fm)

a = 0.086 fm, L = 2.8 fm
a = 0.078 fm, L = 3.7 fm
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a = 0.061 fm, L = 1.9 fm

dispersive analysis
a → 0 result
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PS GeV2

au
ds

c
e

0.250.20.150.10.050 m2
π

2.0e-12
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1.6e-12

1.4e-12

1.2e-12

1.0e-12

8.0e-13

6.0e-13

Fig. 3 Chiral and continuum extrapolation of the N f = 2 + 1 + 1

contribution to ahvp
e . The inverted red triangle shows the value extrapo-

lated to the continuum and to the physical value of the pion mass. It has
been displaced to the left to facilitate the comparison with the dispersive
result in the black square [35]

Our result with only statistical uncertainty is

ahvp
e = 1.78 (06) · 10−12. (14)

3.3 Systematic uncertainties

In this section, we give an account of systematic uncertain-
ties of our result for ahvp

e given in Eq. (14). We have inves-
tigated finite-size effects (FSE), the dependence of our chi-
ral extrapolation on the incorporation of large pion masses,
vector meson fit ranges, and the dependence of our results
on different vacuum polarisation fit functions. Moreover, for
one ensemble the light-quark-disconnected contribution is
quantified.

3.3.1 Finite-size effects

As described in detail in Ref. [15], the N f = 2 + 1 + 1
ensembles analysed in this work feature 3.35 < mPS L <

5.93, where L is the spatial extent of the lattice. Restricting
our data to the condition mPS L > 3.8 and mPS L > 4.5,
respectively, yields

ahvp
e (mPS L > 3.8) = 1.77 (07) · 10−12, (15)

ahvp
e (mPS L > 4.5) = 1.83 (10) · 10−12, (16)

after combined chiral and continuum extrapolation. This
matches the result given in Eq. (14) and thus indicates that
FSE are negligible in our computation. This finding is sup-
ported by comparing the results of two ensembles only dif-
fering in lattice size provided in Table 2.
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Table 2 Comparison of light-quark contribution to ahvp
e and total ahvp

e
from ensembles of different volumes

Ensemble
( L
a

)3 × T
a ahvp

e,ud ahvp
e

B35.32 323 × 64 1.44(05) · 10−12 1.66(05) · 10−12

B35.48 483 × 96 1.44(05) · 10−12 1.69(05) · 10−12

The numbers do not change when restricting the momenta
of the larger ensemble to those of the smaller one. The
FSE attributed to the lowest achievable momentum being 2π

L
mixes with FSE entering the choice of different fit functions.
We take a conservative approach and consider these effects
separately.

3.3.2 Chiral extrapolation

We have checked the validity of the chiral extrapolation by
restricting the data, comprising pion masses between 227 and
491 MeV, to the condition mPS < 400 MeV. The value we
obtain

ahvp
e = 1.78 (07) · 10−12 (17)

only features a slightly larger uncertainty compared to the
result in Eq. (14). Thus, we do not assign a systematic uncer-
tainty to the usage of pion masses above 400 MeV.

3.3.3 Vector meson fit ranges

Our standard computation involves the determination of the
masses and decay constants of the vector meson ground states
for the different flavours. Their values depend on the choice
of fit ranges. We have analysed different fit ranges for the
two-point functions of the light, strange, and charm vector
currents and propagated the uncertainties to the values for
ahvp

e . This showed that excited state contaminations are sig-
nificant only for mV and fV determined from the light vec-
tor current–current correlator. Variations of the standard fit
ranges by 0.1 fm to the left, right and both simultaneously do
not lead to any observable differences in ahvp

e for the sγμs-
and the J/ψ correlator. Furthermore, the heavy flavour con-
tributions are approximately one order of magnitude smaller
than the light-quark contribution such that their systematic
uncertainties would not noticeably impact the overall uncer-
tainty of ahvp

e .
In the upper plot of Fig. 4, the dependence of the

light-quark contribution to the electron anomalous magnetic
moment on the fitrange for the ρ-correlator is plotted. The
lower limit 0.6 fm is a lower bound for the time region, where
a single-state fit describes the 2-point correlation function.
The upper end at 1.3 fm is less stringent, but the signal to

Fig. 4 Dependence of aude on the fitrange of the ρ-correlator (upper
plot) and on values chosen for M, N in the vacuum polarisation fit func-
tion (lower plot). The standard ρ-correlator fit range is [0.7 fm, 1.2 fm]
and the standard fit function corresponds to M1N2

noise ratio for the masses deteriorates quickly and the differ-
ences in a plot like Fig. 4 become insignificant.

Taking half the difference of the central values obtained
for [0.6 fm, 1.2 fm] and [0.7 fm, 1.2 fm] gives a systematic
uncertainty of

�V = 0.035 · 10−12. (18)

3.3.4 Number of terms in MN fit function

The number of terms in the fit function Eq. (7) is given by M
and N. M1N2 is our standard choice. Repeating the whole
analysis with different numbers of terms for the light-quark
contribution leads to the results shown in the lower plot of
Fig. 4. We observe that the chirally and continuum extrap-
olated results of fit functions involving one and two poles
are not compatible and thus we assign a systematic error by
taking half the difference of the central values of the result
of the M2N3 and the M1N2 fit. This leads to a systematic
uncertainty of
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�ud
MN = 0.071 · 10−12. (19)

This results in the dominant systematic uncertainty of the
determination of ahvp

e .
For the strange quark the systematic uncertainty from dif-

ferent values of M and N is

�s
MN = 0.007 · 10−12 , (20)

which we add to the light-quark one. The differences of the
results from different fit functions for the charm-quark con-
tribution have turned out to be negligible such that the total
systematic error originating from employing various num-
bers of terms in the fit function amounts to

�MN = 0.078 · 10−12. (21)

3.3.5 Disconnected contributions

Leaving out the quark-disconnected contributions is a sys-
tematic uncertainty we cannot completely quantify, yet. We
have started investigating their magnitude on the B55.32
ensemble mentioned already before. Using the local vector
current we have detected a signal for the light-quark part of
the vacuum polarisation function when using 24 stochastic
volume sources on 1548 configurations and 48 stochastic vol-
ume sources on 4996 configurations. Employing the one-end
trick [37], the isovector part

Π3
μν(x, y) =

〈
J 3
μ(x)J 3

ν (y)
〉

(22)

with J 3
μ = 1

2χγμτ 3χ is significantly different from zero.
However, this is a pure lattice artefact and will not contribute
in the continuum limit. On the other hand, the more interest-
ing isoscalar part

Π0
μν(x, y) = 1

9

〈
J 0
μ(x)J 0

ν (y)
〉

(23)

with J 0
μ = 1

2χγμ1χ is compatible with zero. The connected
and disconnected pieces of the polarisation function for the
light flavours are depicted in Fig. 5.

A comparison of the values of ahvp
l,ud for all three lep-

tons on the B55.32 ensemble with and without incorporat-
ing the disconnected contributions is presented in Table 3.
Here, we have combined the connected pieces obtained from
the point-split current correlator with the isoscalar part of
the disconnected contributions obtained from the local cur-
rent correlator using the renormalisation constant ZV deter-
mined from the ratio of the connected pieces of the con-
served and the local vector current two-point functions.
Therefore and because we only have results for one ensem-
ble, the numbers below can only give hints on the influence

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 0.2 0.4 0.6 0.8 1 1.2

Z
2 V

Π
(Q

2 )

Q2/GeV2

-0.004

0

0.004

0 0.2 0.4 0.6 0.8 1

connected, combined isospin components
disconnected, isospin 0 component
disconnected, isospin 1 component

Fig. 5 Comparison of the light-quark contributions to the unsubtracted
hadronic vacuum polarisation function from quark-connected and dis-
connected diagrams of the local current correlator. ZV has been obtained
from the ratio of the connected part of the conserved and local current–
current correlators. The values have been computed with the analytical
continuation method described in [36] without correcting for finite-size
effects

Table 3 Comparison of light-quark contributions toahvp
l with and with-

out disconnected pieces in the low-momentum region for the B55.32
ensemble. For all contributions the redefinition Eq. (5) and our standard
analysis have been used

Without disc With disc

ahvp
e,ud 1.44(04) · 10−12 1.39(07) · 10−12

ahvp
μ,ud 5.42(14) · 10−8 5.26(25) · 10−8

ahvp
τ,ud 1.27(03) · 10−6 1.24(04) · 10−6

of the disconnected pieces. We observe the tendency that
for all three leptons ahvp

l,ud decreases when incorporating the
disconnected contributions as has been predicted in [38].
However, this is statistically not significant. Furthermore,
we find that the magnitude of the disconnected contribu-
tions is comparable to our current uncertainty. Hence, it
will be mandatory to compute them when aiming at more
precise results. For the muon the value shifts by ≈3 %,
which is also not statistically significant at this stage, but
is in accordance with the upper bound of 4–5 % given
in [39] as well as more recent high-statistics evaluations in
[40,41].

The disconnected heavy flavour contributions need to be
considered as well. We plan to check their size in future
calculations. The pure charm-quark contributions have been
computed in perturbation theory and shown to be suppressed

by a factor
(

q2

4 m2
c

)4
[42], where q2 is the relevant energy

scale of the problem.
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3.4 Comparison with the phenomenological value

Adding the quantified systematic uncertainties in quadrature
we obtain as final result

ahvp
e = 1.782 (64)(86) · 10−12. (24)

This can directly be compared with the phenomenological
determination of [35]

ahvp
e = 1.866 (10) (05) · 10−12. (25)

They are fully compatible with each other although our lattice
result still is afflicted with larger errors.

4 The τ -lepton (g − 2)

The large mass of the tau lepton, mτ ≈ 1.8 GeV, implies
a peak of the weight function in the expression for the LO
hadronic contribution to its magnetic moment in Eq. (1) at
Q2

peak = 0.745 GeV2. This is very different from the peak
position of the electron weight function. Hence, the saturation
of ahvp

τ requires data from a different part of the subtracted
vacuum polarisation function, in particular, also the high-
momentum piece of our fit function Eq. (8) is important here.

4.1 Contribution from up and down quarks

As for the electron, we start off by showing the contribution
of the first-generation flavours to ahvp

τ in the upper plot of
Fig. 6. The data show a qualitatively similar behaviour to
those of the electron in Fig. 2. Their values differ, however,
by six orders of magnitude. In particular, by comparing the
upper and lower plot of Fig. 6 we find that no significant lat-
tice artefacts are present and that the data at unphysical pion
masses obtained with Eq. (5) can be linearly extrapolated to
the physical point. This demonstrates again that the method
of including H

Hphys
in the weight function is advantageous for

the chiral extrapolation. The value extrapolated in this way
and using all available lattice ensembles agrees with our cal-
culation directly at the physical pion mass shown as the open
square in Fig. 6.

4.2 Adding the strange- and the charm-quark contributions

As for the electron, we perform the chiral and continuum
extrapolation of the complete four-flavour result using a fit
of the form given in Eq. (13) and data for all lattice spacings,
pion masses, and lattice volumes simultaneously. It is shown
in Fig. 7. Comparing this with Fig. 3, we see that the lattice
artefacts are much smaller than for the electron such that we
would have obtained a compatible result when omitting the

1.40e-06
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2.20e-06
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m2
π
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d

e

m2
PS GeV2

Nf = 2 result
a = 0.086 fm, L = 2.8 fm
a = 0.078 fm, L = 1.9 fm
a = 0.078 fm, L = 2.5 fm
a = 0.078 fm, L = 3.7 fm
a = 0.061 fm, L = 1.9 fm
a = 0.061 fm, L = 2.9 fm
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2.00e-06

2.20e-06
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2.80e-06

m2
π

0 0.05 0.1 0.15 0.2 0.25

0 0.05 0.1 0.15 0.2 0.25

au
d

e

m2
PS GeV2

a → 0 result
Nf = 2 result

a = 0.061 fm, L = 1.9 fm
a = 0.061 fm, L = 2.9 fm
a = 0.078 fm, L = 1.9 fm
a = 0.078 fm, L = 2.5 fm
a = 0.078 fm, L = 3.7 fm
a = 0.086 fm, L = 2.8 fm

aude (mPS, 0.061 fm)
aude (mPS, 0.078 fm)
aude (mPS, 0.086 fm)

Fig. 6 Upper plot Light-quark contribution to ahvp
τ with filled symbols

representing points obtained with Eq. (5), open symbols refer to those
obtained with Eq. (1), i.e. H = 1. We note that the two-flavour result at
the physical point has been computed with the standard definition. The
light grey errorband belongs to the linear fit (dotted black line), whereas
the dark grey errorband is attached to the quadratic fit (solid green line).
Lower plot Combined chiral and continuum extrapolation taking into
account leading-order lattice artefacts

a2 term in Eq. (13). As can be seen in Figs. 8 and 9, for the
tau lepton both, the strange and the charm contribution do not
show significant cut-off effects and hence, also for the total
contribution a2 effects are small. We nevertheless perform
the continuum extrapolation in order to use exactly the same
analysis strategy as for the other leptons.

Our four-flavour result with only statistical uncertainty
reads

ahvp
τ = 3.41 (8) · 10−6. (26)

4.3 Systematic uncertainties

We have investigated the same systematic uncertainties for
our determination of ahvp

τ as for the case of the electron. The
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ae(mPS, 0.086 fm)
ae(mPS, 0.078 fm)
ae(mPS, 0.061 fm)

a = 0.086 fm, L = 2.8 fm
a = 0.078 fm, L = 3.7 fm
a = 0.078 fm, L = 2.5 fm
a = 0.078 fm, L = 1.9 fm
a = 0.061 fm, L = 2.9 fm
a = 0.061 fm, L = 1.9 fm

dispersive analysis
a → 0 result

m2
PS GeV2

au
ds

c
τ

0.250.20.150.10.050 m2
π

3.5e-06

3.0e-06

2.5e-06

2.0e-06

Fig. 7 Chiral and continuum extrapolation of the N f = 2 + 1 + 1

contribution to ahvp
τ . The inverted red triangle shows the value in the

continuum limit at the physical value of the pion mass. It has been
displaced to the left to facilitate the comparison with the dispersive
result depicted as black square [43]

CL with linear fit
data at fixed mPS ≈ 320MeV2

a2 fm2

as τ

0.010.0080.0060.0040.0020

5.5e-07

5.0e-07

4.5e-07

4.0e-07

3.5e-07

3.0e-07

Fig. 8 Continuum limit of strange-quark contribution to ahvp
τ at

approximately fixed pion mass

influence of the disconnected contributions has already been
discussed in the section of ahvp

e .

4.3.1 Finite-size effects

Restricting our data to the conditions mPS L > 3.8 and
mPS L > 4.5 yields

ahvp
τ (mPS L > 3.8) = 3.40 (09) · 10−6, (27)

ahvp
τ (mPS L > 4.5) = 3.54 (13) · 10−6. (28)

This is compatible with the result in Eq. (26). Comparing
again the two ensembles at mPS ≈ 315 MeV, which only
differ in the extent of the lattices, also indicates negligible
finite-size effects as shown in Table 4. Hence, we do not
assign a FSE related systematic uncertainty.

CL with linear fit
data at fixed mPS ≈ 320MeV2

a2 fm2

ac τ

0.010.0080.0060.0040.0020

5.0e-07

4.5e-07

4.0e-07

3.5e-07

3.0e-07

Fig. 9 Continuum limit of charm-quark contribution to ahvp
τ at approx-

imately fixed pion mass

Table 4 Comparison of light-quark contribution to ahvp
τ and total ahvp

τ

from ensembles of different volumes

Ensemble
( L
a

)3 × T
a ahvp

τ,ud ahvp
τ

B35.32 323 × 64 2.62 (06) · 10−6 3.40 (07) · 10−6

B35.48 483 × 96 2.60 (06) · 10−6 3.41 (07) · 10−6

4.3.2 Chiral extrapolation

Restricting the analysed ensembles to those featuring pion
masses mPS < 400 MeV, we get

ahvp
τ = 3.45 (09) · 10−6. (29)

This is again compatible with the value given in Eq. (26).
Hence, we do not assign a systematic uncertainty to the fact
that ensembles with pion masses above 400 MeV have been
employed when extrapolating to the physical value of the
pion mass.

4.3.3 Vector meson fit ranges

The situation is similar to the case of the electron reported
above. Only the excited state contamination in the ρ-
correlator has to be taken into account as systematic uncer-
tainty. In the upper plot of Fig. 10 the dependence of the light-
quark contribution, audτ , on the fit range chosen to extract the
spectral information from the ρ-correlator is depicted.

Taking half the difference of the central values obtained for
[0.6 fm, 1.2 fm] and our standard fit range [0.7 fm, 1.2 fm]
results in an estimated systematic uncertainty of

�V = 0.046 · 10−6. (30)
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Fig. 10 Dependence of audτ on the fit range of the ρ-correlator (upper
plot) and on the values chosen for M, N, B, and C in the vacuum
polarisation fit function (lower plot). The standard ρ-correlator fit
range is [0.7 fm, 1.2 fm] and the standard fit function corresponds to
M1N2B4C1

4.3.4 Number of terms in MNBC fit function

Due to the large Q2
peak we have to take the whole vacuum

polarisation function Eq. (9) into account, including in par-
ticular the high-momentum piece in Eq. (8). Thus, we have
four different types of terms in the fit function that can have
different numbers of summands. We only find observable
differences in the light-quark sector. But also here the results
from different fits are all compatible as shown in the lower
plot of Fig. 10. Conservatively, we take half the difference
between the M2N3B4C1 and M1N2B4C1 fit and assign a
systematic uncertainty of

�MNBC = 0.032 · 10−6 (31)

to our choice of the fit function.

4.4 Comparison with the phenomenological value

Including the identified systematic uncertainties added in
quadrature, our final four-flavour result reads

ahvp
τ = 3.41 (8)(6) · 10−6. (32)

This agrees with the one obtained by a dispersive analy-
sis [43]

ahvp
τ = 3.38 (4) · 10−6. (33)

Compared to the electron, even better agreement between
the lattice and the phenomenological result is observed for
the τ -lepton. In this case, the uncertainty of our twisted mass
LQCD calculation is only about twice the phenomenological
one.

5 Summary and conclusions

In this article we have presented the first four-flavour LQCD
computation of the LO hadronic vacuum polarisation con-
tributions to the anomalous magnetic moments of the elec-
tron and the τ -lepton. Our results have been obtained with
N f = 2+1+1 twisted mass fermions mostly at unphysically
large pion masses but, at least for the light-quark contribu-
tion, also directly at the physical point. We find that for both,
the electron and the tau lepton, the chirally extrapolated val-
ues for the light-quark contributions agree with the one at the
physical point.

For our data at unphysically large values of the pion
mass we have investigated the systematic uncertainties of the
method used to obtain our final results. In particular, we have
addressed the effects of non-zero lattice spacings, the finite
volumes, the fit range for extracting the vector meson mass,
and using different fit functions for the vacuum polarisation
function. As an additional uncertainty we have investigated
the disconnected contributions on one of our four-flavour
ensembles (B55.32) by using the local vector current. This
led to the first observation of a signal for the disconnected
diagrams during our calculations, which, however, is com-
patible with zero within our current errors and which we
therefore have neglected. This will no longer be justified
once the uncertainties of the connected pieces are reduced
and a full quantification of the quark-disconnected contribu-
tion will become significant.

Our final results are summarised in Table 5 below and
agree with the phenomenological determinations of the elec-
tron and tau lepton magnetic moments which are also shown
there. This universal agreement across all three leptons and
thus distinct weightings of the subtracted polarisation func-
tions is elucidated by our findings in Ref. [44]. There it
was shown that the subtracted vacuum polarisation func-
tion itself calculated with the methods used in this work
and described in more detail in Ref. [15], is compatible
with the phenomenological result for ΠR(Q2) in the range
0 ≤ Q2 ≤ O (

10 GeV2
)
.
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Table 5 Comparison of our first-principle values for ahvp
e , ahvp

μ , and

ahvp
τ with phenomenological results

This work Dispersive analyses

ahvp
e 1.782 (64)(86) · 10−12 1.866 (10) (05) · 10−12 [35]

ahvp
μ 6.78 (24)(16) · 10−8 6.91 (01) (05) · 10−8 [45]

ahvp
τ 3.41 (8)(6) · 10−6 3.38 (4) · 10−6 [43]

As expected from the graph in the lower plot of Fig. 1 the
relative statistical uncertainties in all three cases are similar.
For the electron the systematic uncertainty already exceeds
the statistical one.

As in the case of the muon, also for the electron and tau
lepton anomalous magnetic moments the errors of our cal-
culations are still larger than those from the dispersive anal-
yses quoted above. However, it can be expected that with
future lattice QCD calculations at the physical value of the
pion mass, increased statistics and an even better control over
systematic uncertainties the phenomenological error can be
matched, if not even beaten, especially for the τ -lepton.
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