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Abstract The Gupta–Bleuler triplet for a vector-spinor
gauge field is presented in the de Sitter ambient space for-
malism. The invariant space of field equation solutions is
obtained with respect to an indecomposable representation
of the de Sitter group. By using the general solution of
the massless spin- 3

2 field equation, the vector-spinor quan-
tum field operator and its corresponding Fock space is con-
structed. The quantum field operator can be written in terms
of the vector-spinor polarization states and a quantum con-
formally coupled massless scalar field, which is constructed
on Bunch–Davies vacuum state. The two-point function is
also presented, which is de Sitter covariant and analytic.

1 Introduction

According to the highly redshift observation of the Super-
nova Ia [1,2], galaxy clusters [3,4], and cosmic microwave
background radiation [5], the current universe is expanding
in an accelerating way. Then our current universe may be
described by the de Sitter space-time. Moreover, the recently
observational data by BICEP2 [6] may confirm that the early
universe in a good approximation is also the de Sitter uni-
verse. Therefore, the construction of the quantum field theory
in de Sitter space is very important for better understanding
of the evolution of the early and current universe. The rig-
orous mathematical construction of quantum field theory in
de Sitter space-time, based on the unitary irreducible repre-
sentations of the de Sitter group and the analyticity of the
complexified de Sitter space-time, was previously presented
in [7]. The unitary irreducible representations of the de Sit-
ter group are extracted completely by Takahashi [8] and the
analyticity of the complexified de Sitter space-time is inves-
tigated by Bros et al. [9–12].

In this paper, the massless spin- 3
2 field or vector-spinor

gauge field is considered. The massless means that they prop-
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agate on the de Sitter light-cone. First by using the group
de Sitter algebra, the gauge-invariant field equation is pre-
sented [7,13,14]. For similarity to other gauge theories, such
as Yang–Mills gauge theory, the gauge-covariant derivative
and the gauge-invariant Lagrangian density can be envis-
aged along the lines proposed in [7]. The variation of this
Lagrangian density would give us an equation of motion
which is obtained by the group de Sitter algebra.

In the gauge-covariant derivative, the gauge potential is a
vector-spinor field. Consequently the corresponding gauge
group must have spinorial generator to justify a set of
well-defined gauge-covariant derivatives. Therefore, a set
of anti-commutative generators satisfy a superalgebra. The
all possible closed de Sitter superalgebra for even N (N
is the number of fermionic generators) had been obtained
[15,16]. In the de Sitter ambient space notation, a closed
N = 1 de Sitter supersymmetry algebra can be defined [17].
So, here we just consider one spinorial generator and, in
accordance with it, one vector-spinor field. The quanta of
this field is named gravitino which is supposed to be the
fermionic partner of graviton (spin-2 quanta of gravitational
field!).

In the gauge quantum field theory, it has been shown that
if we want to conserve casuality and covariance, an indef-
inite metric must be used [18]. In other words, there are
states with negative or null norm that establish a general
Fock quantization with field operators that are not essen-
tially self-adjoint [19], so, one has to adopt the well-known
Gupta–Bleuler quantization. The Gupta–Bleuler formalism
is an alternative way that is used by Gupta and Bleuler
to quantize the electromagnetic field [20,21]. But it seems
to be universal, and it has been extensively applied to the
quantization of gauge-invariant theories. Binegar et al. [22]
have shown a complete Gupta–Bleuler quantization proce-
dure of QED that is manifestly conformally invariant. In a
curved static space-time, the Gupta–Bleuler quantization of
the electromagnetic gauge fields is explained by Furlani [23]
as well as for globally hyperbolic space-times in [24]. The
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Gupta–Bleuler structure has been applied to the massless
minimally coupled scalar field [25,26], massless vector field
[27] and massless spin-2 field [28] in de Sitter space. Here,
we study this structure for a massless vector-spinor or spin- 3

2
fields.

In Sect. 2, first, the notation and terminology of the de
Sitter ambient space formalism are recalled. Using de Sit-
ter group algebra, the gauge-invariant field equation is pre-
sented. The gauge-covariant derivative is defined. Also we
look closely at an action in which its associated equation
of motion, is exactly consistent with the group algebra result
[7]. Section 3 is devoted to the construction of Gupta–Bleuler
triplet for vector-spinor field and its corresponding indecom-
posable representation. The solution of the gauge-fixing field
equation is obtained in Sect. 4. The field solution can be writ-
ten in terms of a polarization vector-spinor state and a con-
formally coupled massless scalar field. The pure gauge state,
spinor state, physical state, divergence part, and general solu-
tion are presented. In Sect. 5, the vector-spinor quantum field
operators and their covariant two-point function are defined.
Finally, a brief conclusion and an outlook are given in
Sect. 6.

2 Field equations

2.1 de Sitter ambient space formalism

The de Sitter space-time is the vacuum solution of Einstein’s
equation with a positive cosmological constant. It can be
considered as a hyperboloid embedded in five-dimensional
Minkowski space:

MH = {x ∈ R5| x · x = ηαβx
αxβ = −H−2},

α, β = 0, 1, 2, 3, 4,

where ηαβ = diag(1,−1,−1,−1,−1). The de Sitter metric
is

ds2 = ηαβdxαdxβ |x2=−H−2 = gdS
μνdXμdXν,

μ = 0, 1, 2, 3.

Xμ is for the de Sitter intrinsic coordinates and xα is for
the five-dimensional de Sitter ambient space formalism. For
simplicity, the Hubble parameter is taken to be equal to unity,
H = 1. The isometry group of the de Sitter space-time is the
ten-parameter group SO0(1, 4). The de Sitter group has two
Casimir operators:

Q(1) = −1

2
LαβL

αβ, and Q(2) = −WαW
α,

where Wα = 1
8εαβγ δηLβγ Lδη. εαβγ δη is the antisymmetrical

Levi-Civita tensor and Lαβ = Mαβ+Sαβ are ten infinitesimal

generators of the de Sitter group. The orbital part Mαβ is
defined by

Mαβ = −i(xα∂β − xβ∂α) = −i
(
xα∂�

β − xβ∂�
α

)
,

where ∂�
β = θβ

α∂α is the transverse derivative (x .∂� = 0)
and θαβ = ηαβ + xαxβ known as the projection tensor. The
spinorial part Sαβ with half-integer spin, s = l + 1

2 , reads

S(s)
αβ = S(l)

αβ + S
( 1

2 )

αβ ,

in which the first term acts on a tensor index as

S(l)
αβ�γ1...γl

= −i
l∑

i=1

(
ηαγi �γ1...(γi→β)...γl − ηβγi �γ1...(γi→α)...γl

)
.

The second term is

S
( 1

2 )

αβ = − i

4
[γα, γβ ],

where the γ -matrices satisfy the basic Clifford algebra

{γ α, γ β} = 2ηαβ
I4×4.

The best γ -matrices representation for our discussion is [12,
32]:

γ 0 =
(
I2×2 0

0 −I2×2

)
, γ 4 =

(
0 I2×2

−I2×2 0

)
,

γ 1 =
(

0 iσ 1

iσ 1 0

)
, γ 2 =

(
0 −iσ 2

−iσ 2 0

)
,

γ 3 =
(

0 iσ 3

iσ 3 0

)
,

where I2×2 and σ i ’s are the unit 2 × 2 matrix and the Pauli
matrices, respectively.

2.2 Gauge-invariant equation

The field equation can be written by using the second-order
Casimir operator of the de Sitter group [7]:

(
Q(1)

j,p −
〈
Q(1)

j,p

〉)
�(x) = 0, (2.1)

where the eigenvalues of the Casimir operator, which classify
the unitary irreducible representations of the de Sitter group,
are

〈
Q(1)

j,p

〉
= (− j ( j + 1) − (p + 1)(p − 2)) .
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j and p are parameters which take values corresponding
to different types of representations, namely: the principal
(U ( j,p)), the complementary (V ( j,p)), and the discrete series
(
±

j,p). A la Wigner, the quantum field operator transforms
by the unitary irreducible representations of the de Sitter
group.

In the following, we will concentrate on the spin- 3
2 mass-

less vector-spinor field corresponding to the values j = p =
3
2 in the discrete series with

〈
Q(1)

3
2 , 3

2

〉
= − 5

2 . Therefore, (2.1)

becomes

(
Q(1)

3
2

+ 5

2

)
�α = 0, (2.2)

where Q(1)
j,p ≡ Q(1)

j and [12]

Q(1)
3
2

�α = Q(1)
0 �α + /x /∂

�
�α + 2xα∂� · � − 11

2
�α + γα /�.

The “scalar” Casimir operator Q(1)
0 is

Q(1)
0 = −1

2
MαβMαβ = −∂�

α ∂α�.

The vector-spinor solution of the field equation (2.2) with the
condition ∂�.� = 0 is singular [29]. This condition is neces-
sary for the transformation of the field operator by an unitary
irreducible representation of the de Sitter group. One can
solve the problem of the singularity by release of the diver-
gencelessness condition, i.e. ∂�.� �= 0. Then the quantum
field operator transforms by an indecomposable represen-
tation of the de Sitter group and the field equation must be
gauge invariant [7]. The massless vector-spinor gauge invari-
ant field equation is [7,13,14]

(
Q(1)

3
2

+ 5

2

)
�α + ∇�

α ∂� · � = 0. (2.3)

∇�
α is a transverse-covariant derivative which maps a tensor-

spinor field of rank l to a tensor-spinor field of rank l + 1 on
the de Sitter ambient space formalism [7]:

∇�
β �α1...αl ≡ (∂�

β + γ �
β /x)�α1...αl

−
l∑

n=1

xαn�α1...αn−1βαn+1...αl ,

where /x = γαxα and γ �
α = θ

β
α γβ . It is clear that if someone

eliminates γ �
β /x from the above definition, the transverse-

covariant derivative will be transverse again. But the de Sitter
algebra and the definition of the Casimir operator persuade
us to add this term [7]. Then one can prove the following
identities:

Q(1)
3
2

∇�
α = ∇�

α Q(1)
1
2

, ∂� ·∇�ψ = −
(
Q(1)

1
2

+ 5

2

)
ψ. (2.4)

By using these identities, one can show that the field equation
(2.3) is invariant under the following gauge transformation:

�α −→ �g
α = �α + ∇�

α ψ.

ψ is an arbitrary spinor field and

Q(1)
1
2

ψ =
(
Q0 + /x /∂

� − 5

2

)
ψ.

2.3 Gauge-covariant derivative

The local or gauge symmetries are fundamental in the
nature to explain the electromagnetic, weak and strong
nuclear interactions by the gauge vector fields. To construct
a gauge-invariant Lagrangian, the gauge-covariant derivative
is defined such that any gauge fields are associated with the
generators of the local symmetry group.

Here, the gauge field is a vector-spinor field (�α) which
satisfies an anti-commuting algebra, then the associated gen-
erator must be a spinor and satisfy the anti-commutation rela-
tions. In this case, the super-gauge-covariant derivative is
defined by [7]

D�
β ≡ ∇�

β + i
(
�β

)†
γ 0Q = ∇�

β + i
(
−�̄βγ 4

)i
Qi ,

where Q is a fermionic generator which transforms as a
spinor under the de Sitter group [17]. �̄β = �

†
βγ 0γ 4 and

i = 1, . . . , 4 is the spinorial index. By this fermionic gener-
ator, one cannot define a closed algebra. It was proved that
this spinor generator, Q, with the de Sitter group algebra sat-
isfies the following N = 1 supersymmetric de Sitter algebra
in the ambient space formalism [17]:

{Qi ,Q j } =
(
S

( 1
2 )

αβ γ 4γ 2
)

i j
Lαβ,

[Qi , Lαβ ] =
(
S

( 1
2 )

αβ Q
)

i
, [Q̂i , Lαβ ] = −

(
Q̂S

( 1
2 )

αβ

)

i
,

[Lαβ, Lγ δ] = −i(ηαγ Lβδ + ηβδLαγ − ηαδLβγ − ηβγ Lαδ),

(2.5)

where Q̂i ≡ (
Qtγ 4C

)
i . Q

t is the transpose of Q and C is
the charge conjugation [30]. One can prove that Q̂γ 4Q is a
scalar field under de Sitter group transformations [30].

Therefore, naturally the vector-spinor gauge field �β

(associated to the fermionic generator Q) must be coupled
with a tensor gauge field Kβ

γ δ (associated to the generator
Lγ δ) [7]. Kβ

γ δ is a massless spin-2 rank-3 mixed-symmetric
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tensor field [7]. In this case, the general gauge-covariant

derivative, with Hα
A ≡

(
Kβ

γ δ,� i
β

)
as gauge fields, can

be defined by

DH
β = ∇�

β + iHβ
ATA,

where TA ≡ (Lαβ,Qi
)

are the generators of N = 1 super-de
Sitter algebra (2.5). For simplicity, they can be written in the
following compact form:

[TA, TB} = CBA
CTC .

The symbol of [ } is an anti-commutation if and only if the two
T ’s are fermionic; otherwise, it is a commutation symbol. The
general form of a local infinitesimal gauge transformation
acting on the gauge field can be written as

δεHβ
A = DH

β εA = ∇�
β εA + CBC AHβ

CεB .

According to the general framework, one can obtain

[DH
α , DH

β } = Rαβ
ATA,

where R is the “curvature” and is defined as

Rαβ
A = ∇�

α Hβ
A − ∇�

β Hα
A + Hβ

BHα
CCBC A,

xαRαβ
A = 0 = xβ Rαβ

A.

Here we only consider the vector-spinor field part, then
the curvature for this part is

Rαβ
i = ∇�

α �β
i − ∇�

β �α
i + Hβ

BHα
CCBC i ,

where the transverse-covariant derivative acts on �β in the
following form:

∇�
α �β = ∂�

α �β + γ �
α /x�β − xβ�α.

2.4 Gauge invariant Lagrangian density

The super-gauge-invariant action or the supergravity Lagran-
gian in the de Sitter ambient space formalism is [7,31]

Sg =
∫

dμ(x)Rαβ
AgAB R

αβB,

where gAB is numerical constant matrix and dμ(x) is the de
Sitter invariant volume element [10]. For the vector-spinor
field part, the action is given by

Sg[�,K] =
∫

dμ(x)
(
R̃i
)

αβ

(
Ri
)αβ

,

where

R̃i
αβ = ∇̃�

α �̃β
i − ∇̃�

β �̃α
i + Hβ

BHα
CCBC i .

The conjugate spinor is defined as �̃α ≡ �†
αγ 0 and its trans-

verse covariant derivative must be defined by [7]

∇̃�
β �̃α ≡ ∂�

β �̃α − xα�̃β, ∇̃�
α ψ̃ = ∂�

α ψ̃. (2.6)

In the approximation of the linear field equation, the action
is

S[�, �̃] �
∫

dμ(x)
[(

∇̃�
α �̃β − ∇̃�

β �̃α

)

×
(
∇�α�β − ∇�β�α

)]
. (2.7)

Using the Euler–Lagrange equation, the field equations
for two dynamical variables, � and �̃, can be obtained
[Appendix A]:

(xα − ∂�
α )
(
∇�α�β − ∇�β�α

)
= 0, (2.8)

(
∂�α − γ α/x

) (
∇̃�

α �̃β − ∇̃�
β �̃α

)
= 0. (2.9)

The above equations of motion in terms of the Casimir oper-
ator can be rewritten in the following forms:

(
Q(1)

3
2

+ 5

2

)
�α + ∇�

α ∂� · � = 0, (2.10)

(
Q(1)

3
2

+ 5

2

)
�̃α + ∂�

α

(
/x /̃� + ∂� · �̃

)

−2
(
γα /̃� + /x /∂

�
�̃α − �̃α

)
= 0. (2.11)

It is also shown that (2.10) is completely consistent with
Eq. (2.3) that is calculated on the basis of the group
theory approach. The vector-spinor Lagrangian density is
then invariant under the following gauge transformations
[Appendix B]:

�α −→ �g
α = �α + ∇�

α ψ,

�̃α −→ �̃g
α = �̃α + ∂�

α ψ̃.

We would like to introduce a gauge-fixing parameter c:

(
Q(1)

3
2

+ 5

2

)
�α + c∇�

α ∂� · � = 0. (2.12)

Equation (2.3), which is a gauge-invariant equation, is a spe-
cial case of the above equation. When c �= 1, we have a
field equation which is not gauge invariant. The choice of
the gauge-fixing parameter c determines the space of gauge
solutions, which will be considered in the next section.
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3 Gupta–Bleuler triplet

The appearance of the Gupta–Bleuler triplet is crucial for the
covariant quantization of the gauge fields [18,22,27]. The
ambient space formalism allows us to exhibit this triplet for
the vector-spinor gauge field in exactly the same manner as
it occurs for the Minkowskian counterpart. We start with the
gauge-fixing field equation (2.12). The de Sitter invariant
bilinear form (or inner product) on the space of solutions
is defined for two modes of the field equation (2.12). Let
us now define the structure of the space of solutions as the
Gupta–Bleuler triplet Vg ⊂ V ⊂ Vc.

The indefinite inner product space Vc includes all the solu-
tions of the field equation (2.12). In other words, the elements
of this space are physical and unphysical states with all possi-
ble norms such as negative, null, and positive. The subspace
V is defined as the space of solutions with the divergence-
lessness condition, ∂� · � = 0. This subspace V is a semi-
definite inner product space and an invariant subspace of Vc
(but not invariantly complemented). According to (2.12), it
is a manifestly c-independent subspace of solutions. Finally,
the gauge subspace Vg ⊂ V is defined as �

g
α = ∇�

α ψ p,
where p stands for a pure gauge state. It establishes a sub-
space with the null norm, which is an invariant subspace of
V (but not invariantly complemented). The elements of Vg
are orthogonal to all states in V including themselves. The
coset space V/Vg is the space of the physical states. In the
following, we present these three spaces.

3.1 The pure gauge state

Putting the gauge solution �
g
α = ∇�

α ψ p into (2.12) and by
using (2.4), we obtain

(1 − c)∇�
α

(
Q(1)

1
2

+ 5

2

)
ψ p = (1 − c)∇�

α (Q0 + /x /∂
�
)ψ p

= 0, (3.1)

where ψ p is a spinor field. We will make the following
assumptions:

• If c = 1, the spinor field ψ p is arbitrary and unlimited.
The field equation is gauge invariant. The gauge vector-
spinor space is constructed by a spinor field ψ p.

• If c �= 1, then ψ p obeys the following field equation:

∇�
α

(
Q(1)

1
2

+ 5

2

)
ψ p = 0,

or, for simplicity, we can choose

(
Q(1)

1
2

+ 5

2

)
ψ p = (Q0 + /x /∂

�
)ψ p = 0. (3.2)

In this case, the gauge is fixing and the field equation is
not a gauge invariant.

This field can be associated to the de Sitter group represen-
tation 
 1

2 ,− 1
2
.

3.2 The divergence spinor state

The divergence vector-spinor state is defined as ∂� ·�d �= 0.
If one takes the divergence of the field equation (2.12),

∂�α

[(
Q(1)

3
2

+ 5

2

)
�d

α + c∇�
α ∂� · �d

]
= 0,

then one obtains [Appendix C]

(1−c)

(
Q(1)

1
2

+ 5

2

)
∂�·�d = (1−c)(Q0+/x /∂

�
)∂�·�d = 0.

At this point, one must consider the two cases c = 1 and
c �= 1:

• If c = 1, ∂� · �d ≡ ψ s , where s stands for spinor
state, ψ s is an arbitrary spinor field and we have a gauge
invariant.

• If c �= 1, then ψ s satisfies the following field equation:

(
Q(1)

1
2

+ 5

2

)
ψ s = 0, (3.3)

and the gauge is fixed.

The quotient space Vc/V is the space of spinor states ψ s .
This field, similar to the pure gauge state, can be associated
with the representation 
 1

2 ,− 1
2
.

3.3 The physical state

The quotient space V/Vg is the space of the physical states.
These states are the solutions of the field equation (2.2) with
the conditions: ∂� · �phy = 0, γ · �phy = 0, and �

phy
α �=

∇�
α ψ . These fields are transformed by the discrete series

representation 
±
3
2 , 3

2
.

In this way, we obtain approximately what is known as
the indecomposable group representation structure for the
massless vector-spinor field,


 1
2 ,− 1

2︸ ︷︷ ︸
spinor representation

−→ 
+
3
2 , 3

2
⊕ 
−

3
2 , 3

2︸ ︷︷ ︸
physical representation

−→ 
 1
2 ,− 1

2︸ ︷︷ ︸
pure gauge representation

123



260 Page 6 of 13 Eur. Phys. J. C (2016) 76 :260

where the arrows indicate the state leak under the group
action. The spin- 3

2 unitary irreducible representations of the
de Sitter group with the helicity ± 3

2 get involved in the central
part 
±

3
2 , 3

2
and one can see that they contract to the Poincaré

massless spin- 3
2 representations when the curvature tends to

zero [7]. As we can see, the spinor and pure gauge states are
associated with the representation 
 1

2 ,− 1
2
.

4 Field solution

For simplicity, the vector-spinor field solution is divided into
three parts:

�α(x) = �g
α + �d

α + �
phy
α ,

where�
g
α is the pure gauge solution,�d

α is the divergence part

solution and �
phy
α is the physical solution. We have defined

�
g
α = ∇�

α ψ p, so, if one takes the divergence of it, one obtains

∂� · �g = −
(
Q0 + /x /∂

�)
ψ p.

The gauge solution satisfies the divergencelessness condition
∂�·�g = 0. Then the spinor field equation is (3.2). Also, one
cannot impose the condition /�

g = 0 for spinor and gauge
state due to the homogeneous degree of spinor field states
(see Eq. (4.4)). From the unitary irreducible representations
of the de Sitter group, we know that the physical solution
must satisfy the conditions ∂� · �phy = 0 and /�

phy = 0.
Therefore, the only divergence part is ∂� · �d �= 0. For a
classification, see Table 1.

4.1 The pure gauge and divergence spinor solution

The pure gauge field ψ p and the spinor state ψ s satisfy sim-
ilar field equations, see Eqs. (3.2) and (3.3):

(
Q(1)

1
2

+ 5

2

)
ψ p,s = 0, or

(
Q(1)

0 + /x /∂
�)

ψ p,s = 0.

(4.1)

By using the identity

Q(1)
0 =

(
3 − /x /∂

�)
/x /∂

� = /x /∂
� (3 − /x /∂

�)
, (4.2)

there exist two possibilities for the first-order field equation.
The first one is

/x /∂
�
ψ p,s = 0, Q(1)

0 ψ p,s = 0, (4.3)

with the degree of homogeneity −3 and 0 [7]. The other field
equation reads

(
/x /∂

� − 4
)

ψ p,s = 0,
(
Q(1)

0 + 4
)

ψ p,s = 0, (4.4)

with the degree of homogeneity −4 and 1. For the second
case, due to the positive homogeneous degree 1, one cannot
construct a covariant quantum field operator [7].

The solution of the field equation (4.3) can be written in
the following form:

ψ p,s =
(

3 − /x /∂
�)Uφm, (4.5)

where φm is a massless minimally scalar field (Q(1)
0 φm =

0). U is an arbitrary constant spinor which can be fixed by
imposing the condition that it becomes the spinor field in
the null curvature limit [12,32]. The solution of the massless
minimally coupled scalar field can be written in terms of the
de Sitter plane wave: (x · ξ)σ [7,10], where ξ is a five-vector
in the positive cone C+:

ξ ∈ C+ = {ξ ∈ R5; ηαβξαξβ = (ξ0)2 − �ξ · �ξ − (ξ4)2

= 0, ξ0 > 0}. (4.6)

For the massless minimally coupled scalar field, the degree
of homogeneity is σ = 0,−3. The constant solution poses
the famous zero mode problem for this field. By using the
following relation between the minimally coupled and the
conformally coupled scalar fields ((Q0 − 2)φc = 0) in the
de Sitter ambient space formalism [7]:

φm =
[
Z · ∂� + 2Z · x

]
φc, (4.7)

this problem can be surmounted [34]. Zα is a constant five-
vector. The solution of the massless conformally coupled

Table 1 The Gupta–Bleuler
triplet states State Field equation Condition I Condition II

Physical state

(
Q(1)

3
2

+ 5
2

)
�

phy
α = 0, ∂� · �phy = 0 /�

phy = 0

Pure Gauge state

(
Q(1)

3
2

+ 5
2

)
�

g
α = 0 ∂� · �g = 0 /�

g �= 0

Divergence state

(
Q(1)

3
2

+ 5
2

)
�d

α + c∇�
α ∂� · �d = 0 ∂� · �d �= 0 /�

d = 0
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scalar field can be written in terms of the de Sitter plane
wave: (x · ξ)σ , σ = −1,−2 [7,10]. Then the spinor field
(4.5) can be written in terms of the massless conformally
coupled scalar field as

ψ p,s =
(

3 − /x /∂
�)U

[
Z · ∂� + 2Z · x

]
φc. (4.8)

There appear an arbitrary constant spinor U and an arbitrary
constant five-vector Zα , which will be fixed in the null cur-
vature limit.

4.2 The physical state solution

The physical part, which is defined by the conditions ∂� ·
�

phy
α = 0 and /�

phy = 0, satisfies the following field equa-
tion:

(
Q(1)

3
2

+ 5

2

)
�

phy
α =

(
/x /∂

� − 3
) (

−/x /∂
� + 1

)
�

phy
α = 0.

There are two possibilities for the relevant first-order field
equation:

(
/x /∂

� − 3
)

�
phy
α = 0, Q(1)

0 �
phy
α = 0,

and

(
/x /∂

� − 1
)

�
phy
α = 0,

(
Q(1)

0 − 2
)

�
phy
α = 0.

The latter is conformal invariant [14], and in the following,
only this solution will be considered. The physical vector-
spinor field solution can be written in terms of a polarization
vector-spinor Dphy

α and a spinor field ψ1 [14]:

�
phy
α = Dphy

α (x, ∂�, Z)ψ1,

where

Dphy
α (x, ∂�, Z) ≡ Z�

α +
[

1

2
∇�

α (1 + 3/x) − 5

4
γ �
α (1 − /x)

]

× [/Z + (1 + 3/x)x .Z
]
.

The spinor field ψ1 satisfies
(
/x /∂

� − 1
)

ψ1 = 0,
(
Q(1)

1
2

− 1

2

)
ψ1 =

(
Q(1)

0 − 2
)

ψ1 = 0.

Its solution can be written in terms of a massless conformally
coupled scalar field φc as [14]:

ψ1 =
(

2 − /x /∂
�)Uφc. (4.9)

This spinor field and its related two-point functions can in
fact be extracted from a massive spinor field in the principal
series representation by setting ν = −i [32].

4.3 �d
α solution with c = 2

3

The divergence part is defined as ∂� · �α = ∂� · �d
α �= 0

and /�
d = 0. It satisfies the field equation:

(
Q(1)

3
2

+ 5

2

)
�d

α + c∇�
α ∂� · �d = 0. (4.10)

This vector-spinor field �d
α can be expressed by three spinor

fields ζ1, ζ2, and ζ3 as follows [14]:

�d
α = Z�

α ζ1 + ∇�
α ζ2 + γ �

α ζ3. (4.11)

By replacing (4.11) in the field equation (4.10), one obtains

(
Q0 + /x /∂

� − 3
)

ζ1 = 0, (4.12)

/xx .Zζ1 − /x
(

4 − /x /∂
�)

ζ2 +
(
Q0 + /x /∂

� − 4
)

ζ3 = 0,

(4.13)

−2(1 − 2c)x .Zζ1 + cZ · ∂�ζ1 + (1 − c)
(
Q0 + /x /∂

�)
ζ2

+c/x
(

4 − /x /∂
�)

ζ3 = 0. (4.14)

Equation (4.12) can be rewritten as

(
/x /∂

� − 3
) (

−/x /∂
� + 1

)
ζ1 = 0, (4.15)

so, there are two possibilities for the first-order field equa-
tions: (1) the conformally coupled spinor field

(
/x /∂

� − 1
)

ζ1c = 0, (Q0 − 2) ζ1c = 0, (4.16)

and (2) the minimally coupled spinor field

(
/x /∂

� − 3
)

ζ1m = 0, Q0ζ1m = 0. (4.17)

Their corresponding solutions are

ζ1c =
(

2 − /x /∂
�)Uφc,

ζ1m = /x /∂
�Uφm = /x /∂

�U
[
Z · ∂� + 2Z · x

]
φc.

If ζ1 is a minimally coupled spinor field and c = 2
3 , Eqs.

(4.13) and (4.14) have a solution and the spinor fields ζ2 and
ζ3 can be written in terms of ζ1m as [Appendix D]:
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ζ3 = −1

2

[
3

2
/xx · Z + 1

6
/x Z · ∂� + /Z

]
ζ1m (4.18)

and

ζ2 =
[(

1

2
+ 3w

)
x · Z + wZ · ∂� − 1

6
/x /Z

]
ζ1m, (4.19)

where w is a constant arbitrary parameter.

4.4 The general solution

In this subsection, we want to find a general solution without
any conditions. This solution can be written as

�α = Z�
α ψ1 + ∇�

α ψ2 + γ �
α ψ3. (4.20)

Similar to the previous subsection, by replacing (4.20) in the
field equation (2.12), one obtains

(
Q0 + /x /∂

� − 3
)

ψ1 = 0, (4.21)

/xx · Zψ1 − /x
(

4 − /x /∂
�)

ψ2 +
(
Q0 + /x /∂

� − 4
)

ψ3 = 0,

(4.22)

−2(1 − 2c)x · Zψ1 + cZ · ∂�ψ1 + (1 − c)

×
(
Q0 + /x /∂

�)
ψ2 + c/x

(
4 − /x /∂

�)
ψ3 = 0. (4.23)

The field equation (4.21) is similar to the field equation of the
spinor field ζ1 and there are two first-order field equations
for ψ1 as Eq. (4.15). By using the identities (D.4), (D.5),
and (D.6) [Appendix D], the spinor fields ψ2 and ψ3 can be
written in terms of the spinor field ψ1 as

ψ2 =
(
n1x · Z + n2Z · ∂� + n3/x /Z

)
ψ1, (4.24)

ψ3 =
(
m1/xx · Z + m2/x Z · ∂� + m3 /Z

)
ψ1, (4.25)

where n1, . . . ,m3 are the constant arbitrary parameters.
Replacing these solutions in Eqs. (4.22) and (4.23) and

using the spinor field equation (4.17) for ψ1, we obtain a
solution only for the value c = 2

3 :

n1 = 3

4
+ 3t, n2 = 1

12
+ t, n3 = −1

2
− 4t,

m1 = −5

4
− 6t, m2 = t, m3 = −3

4
− 3t,

where t is a constant arbitrary parameter. In this case, the
general solution becomes

�α =
[
Z�

α + ∇�
α

((
3

4
+ 3t

)
x · Z +

(
1

12
+ t

)
Z · ∂�

−
(

1

2
+ 4t

)
/x /Z

)
+ γ �

α

(
−
(

5

4
+ 6t

)
/xx · Z

+ t/x Z · ∂� −
(

3

4
+ 3t

)
/Z

)]

×ψ1m(x) ≡ Dα(x, Z , t)ψ1m, (4.26)

where the spinor field ψ1m is

ψ1m = /x /∂
�Uφm = /x /∂

�U
[
Z ′ · ∂� + 2Z ′ · x

]
φc.

For this solution, there are a constant parameter t , a constant
spinor U , and two constant five-vectors Zα and Z ′α . One of
the problems of this solution is that these constant parameters
cannot be fixed in the null curvature limit. Another problem
is that c is fixed with value 2

3 , then the solution is not a general
solution and should be ignored.

Similar to the above procedure and using the spinor field
equation (4.16) for ψ1, the general solution becomes

�α =
[
Z�

α + ∇�
α

{
n1x · Z + n2Z · ∂� + n3/x /Z

}

+ γ �
α

{
m1/xx · Z + m2/x Z · ∂� + m3 /Z

}]

×ψ1c(x) ≡ Dα(x, Z , c)ψ1c, (4.27)

where

n1 = c(4c − 1) − 1

2(1 − c)
, n2 = 3c − 2

4(1 − c)
, n3 = −c(4c − 3)

4(1 − c)
,

m1 = −c2(2c + 3) + 2(1 − 3c)

c(1 − c)
,

m2 = −c(16c − 23) + 8

4(1 − c)
,

m3 = 4c(1 − c) − 1

4(1 − c)
.

The spinor field ψ1c is

ψ1c =
(

2 − /x /∂
�)Uφc.

In this case, there are a constant spinor U and a constant five-
vector Zα , which can be fixed in the null curvature limit and
specify the indecomposable representation of the de Sitter
group. There exists a five-dimensional trivial representation
with respect to Z (λ)

α [35]. For a thorough investigation regard-
ing the five existing polarization states λ = 0, 1, 2, 3, 4, the
reader may refer to [35]. The solution (4.27) is also a general
solution since c is arbitrary. In the next section, the quantum
field operator and its corresponding two-point function are
constructed by this solution.
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5 Quantum field operator and two-point function

In the previous section, it is proved that the ambient space
formalism permits us to write the vector-spinor field in terms
of a vector-spinor polarization state and a massless confor-
mally coupled scalar field (4.27):

�α ≡ Dα(x, ∂, Z)Uφc, (5.28)

where

Dα(x, ∂, Z) = Dα(x, Z , c)(2 − /x /∂
�
).

First, we recall the construction of the quantum field opera-
tor and the two-point function for the massless conformally
coupled scalar field φc, then it is simply generalized to the
massless vector-spinor field.

5.1 Massless conformally coupled scalar field

In the ambient space formalism the massless conformally
coupled scalar field solution can be written in terms of the de
Sitter plane wave (x · ξ)σ with σ = −1,−2 [9]. This plane-
wave solution cannot be defined globally in de Sitter space,
but it can be defined globally in complex de Sitter space-time
[9–11]:

M (c)
H =

{
z = x + iy ∈ C5;

ηαβ z
αzβ = (z0)2 − �z · �z − (z4)2 = −H−2

}

=
{
(x, y) ∈ R5 × R5; x2 − y2 = −H−2, x · y = 0

}
.

(5.29)

Let T± = R5 + iV± to be the forward and backward tubes
in C5. The domain V+(resp. V−) stems from the causal
structure on MH :

V± =
{
x ∈ R5; x0 >

<
√

‖ �x ‖2 +(x4)2
}

. (5.30)

Then we introduce their respective intersections with M (c)
H

T ± = T± ∩ M (c)
H , (5.31)

which are called the forward and backward tubes of the com-
plex de Sitter space M (c)

H . Finally, the “tuboid” on M (c)
H ×M (c)

H
is defined by

T12 = {(z, z′); z ∈ T +, z′ ∈ T −} . (5.32)

If z varies in T + (or T −) and ξ lies in the positive cone C+
(4.6):

ξ ∈ C+ =
{
ξ ∈ C; ξ0 > 0

}
,

the plane-wave solutions are globally defined since the imag-
inary part of (z.ξ ) has a fixed sign (for more details, see [10]).
In terms of the de Sitter complex plane wave, the field oper-
ator can be written in the following form [7,34]:

φc(z) = √
c0

∫

S3
dμ(ξ)

{
a(ξ̃ )(z · ξ)−2 + a†(ξ)(z · ξ)−1

}
,

(5.33)

where ξα = (1, �ξ, ξ4), ξ̃ α = (1,−�ξ, ξ4), and the vacuum
state is defined as [7]:

a(ξ)|� >= 0, a†(ξ)|� >= |ξ >, < ξ ′|ξ >= δS3(ξ−ξ ′),∫

S3
dμ(ξ)δS3(ξ − ξ ′) = 1.

The notations are defined explicitly in [7].
The analytic two-point function is defined in terms of the

complex de Sitter plane waves by [9,10]

Wc(z1, z2) = 〈�|φ(z1)φ(z2)|�〉
= c0

∫

S3
dμ(ξ)(z1 · ξ)−2(z2. · ξ)−1, (5.34)

and c0 is obtained by using the local Hadamard condition.
The vacuum state |� > in this case is exactly equivalent to
the Bunch–Davies vacuum state [7]. One can easily calculate
(5.34) in terms of the generalized Legendre function [10]:

Wc(z1, z2) = −i H2

24π2 P(5)
−1 (H2z1 · z2) = H2

8π2

−1

1 − Z(z1, z2)

= H2

4π2 (z1 − z2)
−2, (5.35)

where Z(z1, z2) = −H2z1 · z2. The Wightman two-point
function Wc(x1, x2) is the boundary value (in the sense of its
interpretation as a distribution function, according to Theo-
rem A.2 in [10]) of the function Wc(z1, z2) which is analytic
in the domain T12 of M (c)

H × M (c)
H [10]. The boundary value

is defined for z1 = x1 + iy1 ∈ T − and z2 = x2 + iy2 ∈ T +
as

Z(z1, z2) = Z(x1, x2) − iτε(x0
1 , x0

2 ),

where y1 = (−τ, 0, 0, 0, 0) ∈ V−, y2 = (τ, 0, 0, 0, 0) ∈
V+, and τ → 0. Then one obtains [10,12,33]

Wc(x1, x2) = −H2

8π2 lim
τ→0

1

1 − Z(x1, x2) + iτε(x0
1 , x0

2 )

= −H2

8π2

[
P

1

1 − Z(x1, x2)
− iπε(x0

1 , x0
2 )δ(1 − Z(x1, x2))

]
,

(5.36)

where the symbol P is the principal part and Z(x1, x2) is the
geodesic distance between the two points x1 and x2 on the
de Sitter hyperboloid:
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Z(x1, x2) = −H2x1 · x2 = 1 + H2

2
(x1 − x2)

2,

and

ε(x0
1 − x0

2 ) =

⎧⎪⎪⎨
⎪⎪⎩

1 x0
1 > x0

2

0 x0
1 = x0

2

−1 x0
1 < x0

2

. (5.37)

5.2 Massless Vector-spinor field

Using Eqs. (5.28) and (5.33), in the complex de Sitter space,
the vector-spinor field operator is then defined by [7]

�α(z) ≡ √
c0

∫

S3
dμ(ξ)

4∑
λ=0

∑
r=1,2

Dα(z, ∂, Zλ)Ur (ξ)

×
{
a(ξ̃ )(z · ξ)−2 + a†(ξ)(z · ξ)−1

}
, (5.38)

where the explicit form of Ur is defined in [12,32]. The
explicit form of the polarization five-vector Zλ depends on
the indecomposable representation of the de Sitter group
[35]. As a simple case, one can choose [7,34]:

4∑
λ=0

4∑
λ′=0

Z (λ)
α Z (λ′)

β = ηαβ, Z (λ) · Z (λ′) = ηλλ′
. (5.39)

The analytic function Sαβ(z, z′) is defined as [32]

Sαβ(z, z′) = 〈�|�α(z)�̄β(z′)|�〉,

where z, z′ ∈ Mc
H and |�〉 is the vacuum state. By using the

identity [12]

∑
r

Ur ⊗ Ūr = /ξγ 4,

the two-point function can be written in the following com-
pact form:

Sαβ(z, z′) =
∑
λ,λ′

Dα(z, ∂, Zλ)Sc(z, z
′)D̄β(z′,←−∂ ′, Zλ′

),

(5.40)

where D̄ = γ 0γ 4D†γ 0γ 4 and Sc is the two-point function
of massless conformally spinor field [12]:

Sc(z, z
′) =

(
−/z′ /∂ ′� + 1

)
γ 4Wc(z, z

′). (5.41)

The two-point functions of the massless conformally cou-
pled scalar field (Wc) and the massless spinor field (Sc)
are constructed on Bunch–Davis vacuum states and preserve

the Hadamard structure [9,10,32]. Then our two-point func-
tion (5.40), which is constructed from a massless confor-
mally coupled scalar field and a polarization tensor-spinor,
preserves the correct Hadamard structure. The polarization
tensor-spinor takes the derivative of the Wc and the derivative
cannot break the Hadamard structure. It is important to note
that in our construction the negative norm states do not appear
for the scalar field (5.33) and the Bunch–Davis vacuum state
is used.

6 Conclusions

In this paper, the massless vector-spinor or super-gauge field
�α is studied in the de Sitter ambient space formalism.
The super-gauge-invariant Lagrangian density is presented
by using the super-gauge-covariant derivative. The Gupta–
Bleuler triplet is discussed. It is shown that the field solutions
are built up from a conformally coupled scalar field and a
vector-spinor polarization state. Finally, the quantum field
operator and its corresponding two-point function are calcu-
lated. The two-point function is analytic in this construction.
Since the quantum field theory in our formalism is unitary
and analytic, a unitary supergravity in the de Sitter ambient
space formalism seems quite plausible.

In this paper the free field quantization is considered, using
the interaction Lagrangian which is defined in ambient space
notation by the gauge principle [7] one can perform the one-
loop correction for various fields that (may) couple to the
gravitino. By coupling this vector-spinor gauge field with
the massless spin-2 gauge field in the de Sitter ambient space
formalism, a unitary supergravity may be obtained, which
will be studied in a forthcoming paper.
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Appendix A: The Euler–Lagrange equation

From the action (2.7), the Lagrangian density is

L =
(
∇̃�

α �̃β − ∇̃�
β �̃α

) (
∇�α�β − ∇�β�α

)
, (A.1)

where

(
∇̃�

α �̃β − ∇̃�
β �̃α

)
=
(
∂�
α �̃β − xβ�̃α − ∂�

β �̃α + xα�̃β

)
.
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Using the Euler–Lagrange equation

δL
δ�̃m

− ∂�
l

δL
δ(∂�

l �̃m)
= 0,

we obtain

δL
δ�̃m

= (xαδmβ − xβδmα )
(
∇�α�β − ∇�β�α

)

and

δL
δ(∂�

l �̃m)
= (δlαδmβ − δlβδmα )

(
∇�α�β − ∇�β�α

)
.

Then the Euler–Lagrange equation leads immediately to the
following field equation:

(xα − ∂�
α )
(
∇�α�β − ∇�β�α

)
= 0,

which is Eq. (2.8).

Appendix B: Gauge invariant

The Lagrangian density

L =
(
∇̃�

α �̃β − ∇̃�
β �̃α

) (
∇�α�β − ∇�β�α

)
,

is invariant under the following gauge transformations:

�α −→ �g
α = �α + ∇�

α ψ, (B.1)

�̃α −→ �̃g
α = �̃α + ∂�

α ψ̃. (B.2)

The Lagrangian density can be divided up into two parts

A =
(
∇�α�β − ∇�β�α

)

=
(
∂�α�β + γ α/x�β − ∂�β�α − γ β /x�α

)
, (B.3)

B =
(
∇̃�

α �̃β − ∇̃�
β �̃α

)

=
(
∂�
α �̃β − xβ�̃α − ∂�

β �̃α + xα�̃β

)
, (B.4)

where any parts have their own gauge transformation. Under
the gauge transformation (B.1), the first part (B.3) becomes

Ag = ∂�α(�β + ∇�βψ) + γ α/x(�β + ∇�βψ)

−∂�β(�α + ∇�αψ) − γ β /x(�α + ∇�αψ)

= ∂�α�β + γ α/x�β − ∂�β�α − γ β /x�α + ∂�α∇�βψ

+γ α/x∇�βψ − ∂�β∇�αψ − γ β /x∇�αψ.

Using the following relations:

∂�α∇�βψ = ∂�α∂�βψ + γ βγ αψ + γ βxα/xψ + γ β /x∂�αψ

−ηαβψ − xαxβψ − xβ∂�αψ,

∂�β∇�αψ = ∂�β∂�αψ + γ αγ βψ + γ αxβ /xψ

+γ α/x∂�βψ − ηβαψ − xβxαψ − xα∂�βψ,

γ α/x∇�βψ = γ α/x∂�βψ + γ α/xxβψ + γ αγ βψ,

γ β /x∇�αψ = γ β /x∂�αψ + γ β /xxαψ + γ βγ αψ,

one can obtain the identity

∂�α∇�βψ + γ α/x∇�βψ − ∂�β∇�αψ − γ β /x∇�αψ = 0.

(B.5)

Therefore, by using (B.5), we can see that (B.3) is invariant
under (B.1). Similarly for (B.4), under the transformation
(B.2), we have

Bg = ∂�
α (�̃β + ∂�

β ψ̃) − xβ(�̃α + ∂�
α ψ̃)

−∂�
β (�̃α + ∂�

α ψ̃) + xα(�̃β + ∂�
β ψ̃)

= ∂�
α �̃β − xβ�̃α − ∂�

β �̃α + xα�̃β + ∂�
α ∂�

β ψ̃

−xβ∂�
α ψ̃ − ∂�

β ∂�
α ψ̃ + xα∂�

β ψ̃.

Using the identity

[∂�
α , ∂�

β ] = xβ∂�
α − xα∂�

β ,

or equivalently

∂�
α ∂�

β ψ̃ − xβ∂�
α ψ̃ − ∂�

β ∂�
α ψ̃ + xα∂�

β ψ̃ = 0,

one can see that (B.4) is also invariant under the gauge trans-
formation (B.2).

Appendix C: Divergence spinor state

By the divergence of the field equation (2.12) and using the
definition Q(1)

3
2

, we obtain

∂�α

[
Q0�

d
α + /x /∂

�
�d

α − 11

2
�d

α + 2xα∂� · �d + γα /�
d
]

+5

2
∂� · �d + c∂�α(∇�

α ∂� · �d) = 0. (C.1)

By the supplementary identities

∂�α(Q0�
d
α ) = (Q0 − 6) ∂� · �d ,

∂�α(/x /∂
�
�d

α ) =
(

1 + /x /∂
�)

∂� · �d − /∂
� /�

d
,

∂�α
(
γα/x∂� · �d

)
=
(

4 − /x /∂
�)

∂� · �d ,

123
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one can write (C.1) in the form

(1 − c)
(
Q0 + /x /∂

�)
∂� · �d = 0,

or equivalently as

(1 − c)

(
Q(1)

1
2

+ 5

2

)
∂� · �d = 0.

Appendix D: �d
α with c = 2

3

The condition /�
d = 0 on Eq. (4.11) permits us to obtain a

relation between the three spinor fields ζ1, ζ2, and ζ3:

(
4 − /x /∂

�)
ζ2 = /x /Zζ1 − x · Zζ1 + 4/xζ3, (D.1)

and by using Eqs. (D.1) and (4.13), ζ3 satisfies
(
Q0 + /x /∂

�)
ζ3 = /x /∂

� (4 − /x /∂
�)

ζ3

= − (/Z + 2/xx · Z) ζ1. (D.2)

Now we should invert (D.2) to determine ζ3 in terms of ζ1.
At the first stage, one can rewrite (D.2) as follows:

(
4 − /x /∂

�)
ζ3 = −

(
/x /∂

�)−1 (
/Z + 2/xx · Z) ζ1. (D.3)

If we define the field equation (4.15) as /x /∂
�
ζ1 = aζ1 with

a = 1, 3, we can prove the following identities:

/x /∂
�

/xx · Zζ1 = ((5 − a)/xx · Z + /Z
)
ζ1, (D.4)

/x /∂
�

/x Z · ∂�ζ1 =
(
−2a/xx · Z + (3 − a)/x Z · ∂� − a /Z

)
ζ1,

(D.5)

/x /∂
� /Zζ1 =

(
2a/xx · Z + 2/x Z · ∂� + a /Z

)
ζ1. (D.6)

By using the above identities, one can find that there exists
a solution only for a = 3 as (the minimally coupled spinor
field):

ζ3 = − (3n + 5)

4
/xx · Zζ1m − (n + 1)

4
/x Z · ∂�ζ1m − 1

2
/Zζ1m,

(D.7)

where n is an arbitrary constant parameter.
Now we determine ζ2 in terms of ζ1m . Putting (D.7) into

(4.14) leads to
(
Q0 + /x /∂

�)
ζ2 = 2 − c(3n + 5)

1 − c
x .Zζ1m

−c(1 + n)

1 − c
Z · ∂�ζ1m . (D.8)

The identities (D.4)–(D.6) for a = 3 can be written equiva-
lently as follows:

/x /∂
�x · Zζ1m = (

2x · Z + /x /Z
)
ζ1m,

/x /∂
�Z · ∂�ζ1m =

(
6x · Z + 4Z · ∂� − 3/x /Z

)
ζ1m,

/x /∂
�

/x /Zζ1m =
(

6x · Z + 2Z · ∂� + /x /Z
)

ζ1m .

The first-order field equation for the spinor field ζ2 is
obtained:
(

4 − /x /∂
�)

ζ2 = 10 − c(3n + 13)

4(1 − c)
x .Zζ1m

+2 − c(n + 3)

4(1 − c)
Z · ∂�ζ1m − /x /Zζ1m .

(D.9)

This equation has a solution only for the values c = 2
3 and

n = − 2
3 :

ζ2 =
((

1

2
+ 3w

)
x · Z + wZ · ∂� − 1

6
/x /Z

)
ζ1m, (D.10)

where w is another arbitrary constant parameter.
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