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Abstract The superradiant stability is investigated for
non-extremal Reissner–Nordström black holes. We use an
algebraic method to demonstrate that all non-extremal
Reissner–Nordström black holes are superradiantly stable
against a charged massive scalar perturbation. This improves
the results obtained before for non-extremal Reissner–
Nordström black holes.

The stability problem of black hole is an important topic
in black hole physics. Regge and Wheeler [1] proved that
the spherically symmetric Schwarzschild black hole is sta-
ble under perturbations. The stability problems of rotating
or charged black holes are complicated due to the signif-
icant effect of superradiance. The superradiance effect can
occur in both classical and quantum scattering processes [2–
5]. When a charged bosonic wave is impinging on a charged
rotating black hole, the wave reflected by the event horizon
will be amplified if the wave frequency ω lies in the following
superradiant regime:

0 < ω < m� + e�, (1)

wherem and e are the azimuthal harmonic number and charge
of the incoming charged wave, � is the angular velocity of
black hole horizon, and � = Q/rH is the electric potential
of the black hole [6–12]. This means that when the incoming
wave is scattered, the wave extracts rotational energy from
the rotating black hole and electric energy from charged black
hole. According to the black hole bomb mechanism proposed
by Press and Teukolsky [13], if there is a mirror between the
black hole horizon and spatial infinity, the amplified wave can
be reflected back and forth between the mirror and the black

After this paper was completed, Ref. [31] appeared which addresses
the same issue with a different method and gets the same conclusion.
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hole and grows exponentially. This leads to the superradiant
instability of the black hole.

The superradiant mechanism has been studied by many
authors for the (in)stability problem of black holes [14–
26]. Recently, for a Kerr black hole under massive scalar
perturbation, Hod has proposed a stronger stability regime
than before [27]. The extremal and non-extremal charged
Reissner–Nordström (RN) black holes have been proved to
be stable against a charged massive perturbation [28,29].
Similarly, the analog of the charged RN black hole in string
theory has also been proved to be stable under a charged
massive scalar perturbation [30].

In fact, up to now, the non-extremal charged RN black hole
is proved to be superradiantly stable when the mass M and
charge Q of the black hole satisfy (Q/M)2 ≤ 8/9 [28,29]. In
this paper, we demonstrate that the all non-extremal charged
RN black hole is stable against a massive charged scalar
perturbation. We find that there is no trapping well outside
the black hole, which is separated from the horizon by a
potential barrier. As a result, there is no bound state in the
superradiant regime, that can lead to the instability of the
charged RN black hole.

The metric of the RN black hole (in natural unit G = c =
h̄ = 1) is

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 + 1(

1 − 2M
r + Q2

r2

)dr2

+r2(dθ2 + sin2θdφ2), (2)

where M and Q are the mass and electric charge of the black
hole. The dynamics of a charged massive scalar field pertur-
bation � is governed by the Klein–Gordon equation,

[
(∇ν − iq Aν)(∇ν − iq Aν) − μ2

]
� = 0, (3)
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where q and μ are the charge and the mass of the scalar
field. Aν = −δ0

νQ/r is the vector potential that describes
the spherically symmetric electric field. The solution of the
above equation with definite spherical harmonic eigenvalues
can be written as

�lm(t, r, θ, φ) = Rlm(r)Ylm(θ, φ)e−iωt , (4)

where Ylm is the spherical harmonic function, l is the spheri-
cal harmonic index, m is the azimuthal harmonic index with
−l � m � l, and ω is the energy of the mode. The radial
Klein–Gordon equation obeyed by Rlm (we denote Rlm by
R in the following) is given by



d

dr

(



dR

dr

)
+UR = 0, (5)

where 
 = r2 − 2Mr + Q2 and

U = (ωr2 − qQr)2 − 
[μ2r2 + l(l + 1)]. (6)

The inner and outer horizons of the black hole are

r± = M ±
√
M2 − Q2, (7)

and it is obvious that

r+ + r− = 2M, r+r− = Q2.

In order to study the superradiance stability of the black
hole against the massive charged perturbation, the asymp-
totic solutions of the radial wave equation near the horizon
and at infinity will be considered with proper boundary con-
ditions. We proceed by defining the tortoise coordinate y by
the equation dy

dr = r2



and a new radial function R̃ = r R.

The radial wave Eq. (5) can be written as

d2 R̃

dy2 + Ũ R̃ = 0, (8)

where

Ũ = U

r4 − 


r3

d

dr

(



r2

)
. (9)

It is easy to obtain the asymptotic behavior of the new poten-
tial Ũ as

lim
r→r+

Ũ = (ωr+ − qQ)2

r2+
, lim

r→∞ Ũ = ω2 − μ2. (10)

The chosen boundary conditions are ingoing waves at the
horizon (y → −∞) and bound states (exponentially decay-
ing modes) at spatial infinity (y → +∞). Then the radial

wave equation has the following asymptotic solutions:

R̃ ∼

{
e
−i(ω− qQ

r+ )y
, y → −∞ (r → r+)

e−
√

μ2−ω2 y, y → +∞ (r → +∞).
(11)

It is obvious that when

ω2 < μ2 (12)

there is a bound state of the scalar field.
In the following, we prove that there is no trapping well

outside the black hole horizon when the parameters of the
scalar field and the black hole satisfy the bound state con-
dition (12) and the superradiance condition of the RN black
hole,

0 < ω < q�H = qQ/r+. (13)

We define a new radial function φ by φ = 

1
2 R, then the

radial Eq. (5) can be rewritten as

d2φ

dr2 + (ω2 − V )φ = 0, (14)

where

V = ω2 − U + M2 − Q2


2 . (15)

In order to see if there exists a trapping potential outside
the horizon, we should analyze the shape of the effective
potential V . From the following asymptotic behavior of the
potential V :

V (r → +∞) → μ2 + 2Mμ2 + 2Qqω − 4Mω2

r

+ o

(
1

r2

)
, (16)

V (r → r+) → −∞, (17)

we know there is at least one maximum for V outside the
event horizon. It is easy to see that the asymptotic behavior
of the derivative of V is

V ′ = −2Mμ2 + 2Qqω − 4Mω2

r2 + o

(
1

r3

)
. (18)

We can prove the coefficient 2Mμ2 + 2Qqω − 4Mω2 >

0 when ω satisfies the superradiance and the bound state
conditions. Define a quadratic function f for ω

f (ω) = −4Mω2 + 2Qqω + 2Mμ2. (19)
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It is obvious that there are two zero points for f with opposite
sign, and the positive one is

ω+ = Qq + √
Q2q2 + 8M2μ2

4M
. (20)

To verify f (ω) > 0 when ω satisfies the superradiance and
the bound state conditions, we just need to prove ω < ω+.

Case I: ω < μ ≤ qQ/r+
With the obvious relation r+ > M , we can get

ω+ = qQ

4M
+

√
q2Q2

16M2 + μ2

2
>

μr+
4r+

+
√

μ2r2+
16r2+

+ μ2

2

= μ > ω. (21)

Case II: ω < qQ/r+ < μ

We can also easily get

ω+ = qQ

4M
+

√
q2Q2

16M2 + μ2

2
>

qQ

4r+
+

√
q2Q2

16r2+
+ q2Q2

2r2+
= qQ/r+ > ω. (22)

So when ω satisfies the superradiance and the bound state
conditions, f (ω) > 0. It implies that

V ′(r → ∞) → 0−. (23)

This means there is no potential well when r → +∞. In
the following, we will show that there is only one maximum
outside the event horizon for V , no trapping potential exists
which is separated from the horizon by a potential barrier and
all non-extremal RN black holes are superradiantly stable.

The explicit expression of the derivative of the effective
potential is

V
′ = − 1


3

[
(−4Mω2 + 2qQω + 2Mμ2)r4

+
[
4Q2ω2 + 4MQqω − 4M2μ2

−2Q2(q2 + μ2) + 2l(l + 1)
]
r3

+[−6Q3qω + 6MQ2μ2 − 6Ml(l + 1)]r2

+
[
2Q4q2 − 2Q4μ2 − 4M2 + 4Q2

+2(2M2 + Q2)l(l + 1)
]
r + 4M3

−4MQ2 − 2MQ2l(l + 1)
]
. (24)

Defining a new variable z = r − r− is convenient for us to
study the property of the effective potential. Then Eq. (24)
can be written as

V ′(z) = −1


3 (az4 + bz3 + cz2 + dz + e), (25)

where

a = −4Mω2 + 2qQω + 2Mμ2, (26)

c = 12r−
{
−4r2−ω2 + 6r−ωqQ

−[2q2Q2 + (3r+r− + r2−)μ2]
}

− 3(r+ − r−)l(l + 1),

(27)

e = 2r2−(r+ − r−)(ωr− − qQ)2 + 1

2
(r+ − r−)3. (28)

From the asymptotic behaviors of the effective potential at
the inner and outer horizons and infinity, we know that there
are at least two roots for V ′(z) = 0 when z > 0. If a trapping
potential existed, there would be at least four positive roots
for V ′(z) = 0. Next, we will demonstrate that it is impos-
sible for the equation V ′(z) = 0 to have four positive roots
when the superradiance condition (13) and the bound state
condition (12) are satisfied.

Because we are just concerned with the roots of V ′(z) =
0, the numerator of Eq. (25) will be considered only. We
denote the roots of V ′(z) = 0 by {z1, z2, z3, z4} and z1, z2

are the two known positive roots (r− < z1 < r+, r+ < z2 <

+∞). According to the Vieta theorem, we have the following
relations for the roots:

z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 = c

a
, (29)

z1z2z3z4 = e

a
. (30)

The coefficient a(= f (ω)) has been proved to be positive
before. Because r+ > r−, it is also easy to see that

e > 0. (31)

So from Eq. (30), we find that if z3, z4 are two real roots,
they must be both positive or both negative.

Taking the superradiance and bound state conditions into
account, we will use an algebraic method to prove c < 0 for
the full parameter space of the charged massive scalar pertur-
bation and non-extremal RN black holes. So z3, z4 cannot be
both positive, there is no trapping well outside the horizon
and the RN black hole is superradiantly stable. This is the
main result of this paper.

The final term of c is non-positive, so in order to prove
c < 0, we just need to prove

12r−{−4r2−ω2 + 6r−ωqQ − [2q2Q2 + (3r+r− + r2−)μ2]}
< 0, (32)

i.e.

g(ω) = −4r2−ω2 + 6qQr−ω − [2q2Q2 + (3r+r−+r2−)μ2]
< 0. (33)
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Regarding g(ω) as a quadratic function of ω, when the dis-
criminant of g(ω) (denoting it by 
′)


′ = 4r2−[q2Q2 − 4(3r+r− + r2−)μ2] < 0, (34)

we have g(ω) < 0 because the coefficient of ω2 is negative.
Below we discuss the case 
′ ≥ 0. According to the

properties of a quadratic function, when 
′ ≥ 0 is satisfied,
there are two positive roots of g(ω), which are denoted by ω1

and ω2, respectively, and ω1 ≤ ω2. To demonstrate g(ω) <

0, we only need to demonstrate 0 < ω < ω1 when the
superradiance and bound state conditions are satisfied. We
do this for two possible cases. It is easy to get

ω1 =
3qQ −

√
q2Q2 − 4(3r+r− + r2−)μ2

4r−
. (35)

According to 
′ ≥ 0 and r+ > r−, we can obtain

qQ > 4μr−. (36)

Case I: ω < μ ≤ qQ/r+,

ω1 =
3qQ −

√
q2Q2 − 4(3r+r− + r2−)μ2

4r−

>
qQ

2r−
> 2μ > μ > ω. (37)

Case II: ω < qQ/r+ < μ,
It is also easy to get

μ2r2+ > q2Q2 > 16μ2r2−, (38)

so that

r+ > 4r−. (39)

Then we have

ω1 =
3qQ −

√
q2Q2 − 4(3r+r− + r2−)μ2

4r−

>
qQ

2r−
>

qQ

4r−
>

qQ

r+
> ω. (40)

The proof is thus completed.
In summary, we study the superradiant stability of non-

extremal charged RN black holes against a charged massive
scalar perturbation. Using an algebraic method, we demon-
strate analytically that when the superradiance condition (13)
and the bound state condition (12) are satisfied by the scalar
perturbation and black holes, there is no trapping well out-

side the event horizon, that is separated from the horizon
by a potential barrier. So we conclude that all the non-
extremal charged RN black holes are superradiantly stable
against charged massive scalar perturbations.
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