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Abstract The Hilbert space formulation of interacting s =
1 vector-potentials stands is an interesting contrast with the
point-local Krein space setting of gauge theory. Already in
the absence of interactions the Wilson loop in a Hilbert space
setting has a topological property which is missing in the
gauge-theoretic description (Haag duality, Aharonov—Bohm
effect); the conceptual differences increase in the presence of
interactions. The Hilbert space positivity weakens the causal
localization properties of interacting fields, which results
in the replacement of the gauge-variant point-local matter
fields in Krein space by string-local physical fields in Hilbert
space. The gauge invariance of the perturbative S-matrix cor-
responds to its independence of the space-like string direc-
tion of its interpolating fields. In contrast to gauge theory,
whose direct physical range is limited to a gauge-invariant
perturbative S-matrix and local observables, its Hilbert space
string-local counterpart is a full-fledged quantum field the-
ory (QFT). The new setting reveals that the Lie structure of
self-coupled vector mesons results from perturbative imple-
mentation of the causal localization principles of QFT.

1 Introductory remarks on origin and scope of string
localization

It is well known that the use of point-local massless vec-
tor potentials is incompatible with the positivity of Hilbert
space. One usually resolves this problem by abandoning the
positivity requirement of quantum field theory (QFT) while
maintaining the point-local field formalism which leads to
gauge theory (GT). The price to pay is well known from quan-
tum electrodynamics (QED) in the standard indefinite metric
(Gupta—Bleuler) gauge setting: positivity can be recovered
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for local observables, whereas charge-carrying fields remain
outside its physical range. The separation between physical
and unphysical quantum fields is done in terms of gauge sym-
metry, which is not a physical symmetry but a formal device
to extract a physical subtheory.

Although the standard gauge formalism is restricted to the
presence of vector potentials, the clash between zero mass
point-local fields and positivity is a general phenomenon for
all s > 1 zero mass tensor potentials. It does not affect the
corresponding field strengths, but the short-distance dimen-
sion of the latter (d;gy = 2 for s = 1) prevents their direct
use in renormalizable interactions.

The alternative option is to accept the weaker localiza-
tion required by positivity. The tightest covariant localiza-
tion beyond point-local consistent with positivity turns out to
be causal localization on semi-infinite space-like “strings”!
x 4+ Rye, ¢* = —1. Itis easy to construct m > 0 covariant
string-localized fields W (x, ¢) in terms of semi-infinite line
integrals on point-local fields [1]. The immediate advantage
of such a construction is that one obtains two improvements
in one stroke, the lowering of the short-distance dimension
and the existence of a massless limit in terms of the two-point
function. The simplest illustration is provided by the dyqy = 2
point-local (pl) Proca vector potentials, which diverge as m !
form — 0, and its dygy = 1 string-local (sl) sibling whose
two-point function turns out to possess a nontrivial massless
limit.

The construction of free massive sl potentials in the same
Hilbert space as their point-local counterparts guaranties that
both belong to the same relative localization class (“Borchers
class” [2]). They represent two different “field coordinatiza-
tions” of the same theory which, in the presence of inter-
actions, implies that their particle content and S-matrix are
identical.

' Beware that strings in String Theory are not string-local in the sense
of local quantum physics.
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The perturbative use of string-local elementary matter
fields W (x, e) in Hilbert space QFT corresponds to formally
gauge-invariant string-local composites in terms of pl fields
in the Krein space setting of GT,

wK (x)eig Jo© AR (x+ae)eda )

where the superscript K refers to the pl indefinite met-
ric Krein space setting of GT. Proposals to recover gauge-
invariant charge-carrying matter fields in terms of such for-
mal expressions appeared already a long time before renor-
malization theory [3]. They played no role in the discovery of
renormalized perturbation theory, but they reappeared later
in Mandelstam’s proposal to replace the perturbative gauge-
theoretic setting of QED by one which uses solely Hilbert
space compatible field strengths [4].

The construction of renormalized composites as (1) in GT
is much harder than the perturbative construction of elemen-
tary sl fields in the setting in which these fields are elementary
fields of renormalized perturbation theory. Steinmann con-
fronted the difficult task of constituting (1) in every order of
perturbative renormalized GT [5]. Morchio and Strocchi’s
(still ongoing) project is motivated by the problem to extract
long-distance (infrared) information from GT by studying
global limits within a positivity-restoring topology [6].

As already indicated, the present paper presents a new per-
turbation theory based on massive string-local vector poten-
tials which are defined as semi-infinite space-like line inte-
grals over field strengths. These covariant sl potentials are
then directly used in the definition of the interaction den-
sity; they maintain the Hilbert space positivity and permit a
smooth m — 0 limit of their vacuum expectation values.

These fields are accompanied by new objects referred to
as “escort” fields; they are sl s = 1 scalar fields (not possi-
ble with pl field). They first appeared in the construction of
sl intertwiners [1] as unexpected objects of curiosity; years
later they reappeared as “escorts” of sl vector potentials in
unpublished notes of Jens Mund (private communications)
and it became clear that they play an important role in a linear
relation between pl Proca fields and their sl siblings.

It turned out that these scalar escorts are indispensable
objects in a perturbative Hilbert space setting of sl fields
(SLFT) which only uses physical degrees of freedom. Far
from being restricted to kinematical aspects of sl fields, they
enter in a profound way into the dynamics; in some models
they even appear already in the first order interaction density.

The appearance of the escort fields is particularly interest-
ing in comparison with GT, where in order to uphold higher
order gauge symmetry one is forced to enlarge the degrees of
freedom by unphysical negative metric Stueckelberg fields
and ghosts. Since they must be removed in the end by the
imposition of gauge invariance, which cannot be achieved
for all physically interesting objects, their role is reminiscent
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of catalyzers.” In the SLFT setting one also has to intro-
duce new fields (the escorts) but different from GT they do
not introduce additional physical degrees of freedoms: they
only use the already existing physical degrees of freedom
and therefore do not have to be removed.

This is a new phenomenon in QFT, whereas in many body
quantum mechanics rearrangements of degrees of freedom
forming new fields are well known (e.g. the formation of
bosonic Cooper pairs in superconductivity). These escort
fields appear only in the presence of fields in a Hilbert space
setting. This explains why they have not been seenin s < 1;
and since renormalizable s > 1 pl interactions exist only in a
Krein space gauge setting there was no chance to encounter
them.

In the new sl theory (referred to as SLFT) the lowest
order perturbative interaction densities are defined in terms of
Wick products of string-local covariant free vector potentials
A, (x, e) (obtained by integrating point-local field strengths
along space-like semi-lines) with point-local s < 1 free mat-
ter fields. The higher order interactions then spread the string
localization of the potentials to the matter fields and in this
way force them to be sl without having to impose this as in
(1). Interestingly they become much stronger sl than the A,
which retain the linear relation with the pl field strengths.

These “sl-infected” elementary matter fields of the new
SLFT perturbation theory are the Hilbert space counterpart
of the composite Krein space fields (1). Whereas the sl vector
potentials and the matter fields maintain their dg4 (apart from
higher order logarithmic corrections), that of matter fields
coupled to a dgg = 2 pl Proca potential increases linearly
with the perturbative order. It is the loss of predictive power as
the result of the growth of undetermined parameters with the
perturbative order which renders the direct perturbative use
of the pl description (instead of viewing pl as a singular “field
coordinatization” within the renormalizable sl formulation)
unserviceable.

The short-distance behavior of gauge theories is similar
to that of SLFT, but instead of being achieved in a natural
way (maintaining positivity in the presence of interacting
s > 1 fields through the weakening of localization) GT uses
the brute force of cancellations between negative and posi-
tive metric Krein space contributions in intermediate states.
This similarity of short distance limits supports the expecta-
tion that e.g. the asymptotic freedom short-distance property
based on the behavior of the beta function which appears
in the Callan—Symanzik equation is shared between GT and
SLFT.

In the sl setting the fields W (x, e) remain of the Wight-
man type (bounded d;4) except that the test function smearing
must be extended to the 2 4+ 1 dimensional de Sitter space

2 Perhaps the analogy to the magician’s apprentice who is hardly able
to control the ghosts is more realistic.
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of space-like directions e. The correlation functions of these
sl matter fields are besides the sl vector potentials the only
survivors in the m — 0 QED limit in which, different from
the massive case, pl fields do not even exist in the form of sin-
gular objects (Jaffe fields [7]). In view of this the absence of
massless pl charge-carrying fields in QED is hardly surpris-
ing; in fact it is preempted on the basis of general arguments
based on the quantum Gauss law [8].

The main problem of SLFT is not so much the transcrip-
tion of the pl Wightman axiomatic [2], the hard problem is
rather the extension of renormalization theory from pl to sl
fields. The feasibility of such a project relies on the observa-
tion that sl fields have a better short-distance behavior than
their pl counterparts. Whereas ds4 of pl free tensor potentials
increases with spin as d;, = s + 1, one can always construct
an sl sibling with d; , = 1 independent of s [20].

This implies that there is no problem to construct interac-
tion densities L for any spin within the power-counting bound
(PCB) a’;‘g‘lt < 4 of renormalizability. But as in gauge theory
where one has also to impose gauge invariance, the first order
interaction density of SLFT must fulfill a physical condition
which prevents total delocalization in the next and higher
orders. Whereas gauge symmetry and gauge invariance have
no natural relation with the principles of QFT, causal localiza-
tion is directly tied to its foundations. The additional require-
ment s the so-called L, V), (or L, Q) pair condition, whose
explanation needs the preparation of the next section.

A heuristic picture of its purpose is that of splitting a PCB
violating first order pl interaction density L* involving only
massive fields as L” = L — 9V into a sum of a PCB obeying
sl density L and a sl divergence contribution 9*V,, which
carries the PCB violating contribution. Being a divergence in
a model with a mass gap this term is expected to disappear in
the adiabatic limit which expresses the perturbative S-matrix
in terms of spacetime integrals over Minkowski space.

In this limit the S-matrix inherits the best of two worlds:
the independence of the string direction e from L¥ and the
PCB-respecting dsq(L) < 4 of the string-local interaction
density. Since the construction of the S-matrix is the first step
in Bogoliubov’s approach to the time-ordered vacuum expec-
tation values of fields, one expects to be able to extend the
S-matrix construction to correlation functions of sl fields. In
terms of Feynman diagrams the adiabatic limit corresponds
to the integration over the x’s of inner propagator lines.

Similar to gauge invariance of the S-matrix, which is not a
property of a single graph but rather the result of compensa-
tions between different contributions in the same perturbative
order, one expects that the independence from the fluctuat-
ing “inner” ¢’s cancels between different contributions, so
that (in the case of correlation functions of fields) only the
dependence of the correlated fields on their fluctuating e's
remains. These are the physical counterparts of the unphys-
ical gauge-dependent fields.

This is similar to the operator formulation of BRST gauge
invariance in [9], which in a more recent publication [10] has
been referred to as causal gauge invariance (CGI). The sig-
nificant conceptual difference is that the BRST gauge invari-
ance of the S-matrix S = 0 is in terms of an abstract
global cohomological s operation which has no relation
to spacetime causal localization properties, whereas the e-
independence is implemented as d,S = 0 within a differ-
ential form calculus in the 2+1 dimensional de Sitter space
of space-like directions e, e> = —1. In this way higher spin
interactions become re-integrated into the causal localization
based QFT where positivity and localization are interdepen-
dent. SLFT is not a miracle but rather results from a clever
use of existing ideas.

In the short-distance limit GT and SLFT behave in a sim-
ilar way; in fact the beta functions of asymptotic freedom
are expected to coalesce. It would be interesting to derive
the Callan—Symanzik equation within SLFT and show there
is no dependence on e. In contrast the correct description of
long-distance properties (spacetime origin of infrared prop-
erties and in particular confinement) is expected to require
the physical localization and positivity properties of SLFT,
which is the extension of the principles of QFT to s > 1.

The new rules of SLFT only apply to interactions involving
s > 1. It is not necessary and not even possible to use them
for s < 1; the attempt of using low spin Is fields leads to total
delocalization which is incompatible with QFT and the use
of pl for s > 1 leads to nonrenormalizability. There is only
one QFT and the decision of whether to use pl or sl is not up
to the working physicist but is fixed by the spin content of
the interaction-defining fields.

Different from low spin pl interactions for which the first
order PCB already implies the renormalizability in all orders,
this is not necessarily the case in SLFT. An interesting illus-
tration comes from self-interacting massive vector mesons. In
that case the pair condition can be fulfilled but itinduces a sec-
ond order PCB violating dgq = 5 term which, if left uncom-
pensated, would eliminate the self-coupled model from rep-
resenting a QFT. First calculations indicate that the extension
of the first order L by an A—H interaction leads to such acom-
pensation and in this way saves the extended model. This, and
not an alleged spontaneous symmetry breaking (SSB) “Higgs
mechanism”, would then be the raison d’étre for the H just
as in the calculation based on the BRST invariance of the
S-matrix [9].

The use of s > 1 sl fields in interaction densities which
fulfill the first order pair property will certainly lead to PCB
violating second order terms with even higher dg4 unless
one finds a compensating possibly extended field content
involving lower spin fields. The realization of this picture for
s > 2 interactions would amount to an enormous step into
still dark corners of QFT of higher spin interactions. Higher
spin fields for which this is not possible are not reactive within

@ Springer
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the setting of QFT. Being free fields associated to positive
representation the lack of reactivity within QFT does not
exclude the possibility that they couple to gravity through
their conserved energy-momentum (E-M) tensor and cause
backreactions to the gravitational field.

Calculations which could show whether a particular field
is reactive or inert are laborious and SLFT is still very much
in its beginnings. The only fields for which one can estab-
lish inertness are the sl fields associated to Wigner’s massless
infinite spin class; they already fail on the L, V,, pair con-
dition. If there is any physical role to play for such fields
then it is as candidates for dark matter [11]. Unlike cold dark
matter whose reduced reactivity and the possibility of its non-
relativistic description results from “coldness”, this “Wigner
stuff” is intrinsically inert.

Whereas the breakdown of pl renormalizability certainly
does not mark the borderline between existing and nonexist-
ing models of QFT, there are good reasons to believe that
the SLFT renormalization requirements do precisely this.
The fact that the perturbative series diverges and may only
exist in the sense of a small coupling asymptotic expansion
is not an argument against this idea. There are shortcom-
ings which could explain this, for example the intrinsically
singular nature of quantum fields used in the perturbative
expansion.

In those few cases in which the existence has been estab-
lished (integrable models in d = 14-1) the construction starts
from the other end, namely from the (in those models known)
S-matrix and its connection with wedge-localized algebras
of algebraic QFT. These existence proofs are based on the
algebraic setting of QFT. In contrast to perturbation theory
based on fields, these “top-down” constructions do not (yet?)
arrive at generating fields for these algebras [12].

Returning again to more mundane problems, one may ask
whether sl fields can play a role in the construction of energy-
momentum (E-M) tensors. In the existing literature most con-
structions of E-M tensors for free fields are presented in the
setting of Lagrangian quantization, but it is well known that
for s > 1 this leads to pl indefinite metric fields (and hence
requires gauge theory). There is no problem in constructing
E-M tensors in terms of positivity-obeying massive pl fields,
but for s > 1 these pl E-M tensors have no massless limit, in
agreement with a theorem by Weinberg and Witten [13].

Different from the statement in the No-Go theorem, which
negates the existence of massless higher spin E-M tensors
altogether, such tensors perfectly exist namely in the form of
conserved sl tensors. The reason behind this is quite simple; it
is a consequence of the nonexistence of positivity-preserving
s > 1 massless tensor potentials and the fact that fors > 2 the
E-M tensor cannot be expressed of the pl field strength (more
in the next section). As sl tensor potentials, sl E-M tensors
have the property that their dy; coalesce with their classical
dimension in terms of mass units (‘“engineering dimension”).

@ Springer

The strongest support for sl being the generic case of field
localization in models of local observables (and pl the low
spin exceptions) comes from a theorem of algebraic QFT.
It states that in QFT with local observables and a mass gap
particle can always be described in terms of operators which
are localized in arbitrarily narrow space-like cones whose
cores are linear semi-infinite space-like strings [14]. In a the-
ory formulated in terms of (test-function-smeared) generat-
ing fields, these are sl fields with pl being a special case.

Being a structural theorem, it does not reveal in which
models one needs sl instead of pl generating fields, but it
excludes at least the need of having to use weaker than sl
localized fields (e.g. space-like surfaces). The perturbative
setting of SLFT answers this question by stating that all
s > 1 interactions are SLFT, assuming that they fulfill the
pair restriction and permit the preservation of higher order
PCB through compensating field enlargement as previously
explained.

Another point of foundational importance is to note that
the only perturbative way to obtain a description of theories
involving zero mass s > 1 tensor potentials is in the form
of massless limits of correlation functions. The construction
of the Hilbert space and the operators acting in it (if needed)
follows from Wightman’s reconstruction theorem [2].

The conceptual simplicity of a theory in a Wigner—Fock
Hilbert space is lost in the massless limit (with the mass as
a natural infrared cutoff). This already happens in the case
of the massless limit of free massive two-point functions of
s > 1 slpotentials, where the reconstruction leads to the more
involved m = 0 helicity representation. The massless limit
of the gauge-dependent pl matter fields in the same Krein
space as their massless counterpart is simpler but contains
less physical information.

The new interest in sl fields can be traced back to the
solution of the localization properties of Wigner’s zero
mass infinite spin representation class [1,15] in terms of
the modular localization theory of algebraic QFT (a his-
toric/philosophical view can be found in [16]). But the con-
struction of finite spin sl fields and their use in a new per-
turbative setting does not require knowledge about modular
localization. A first account of their potential use has been
given in [17]. A shorter publication which addresses similar
problems to those in the present paper appeared [18].

Looking at axiomatic QFT in the sense of Wightman, it
seems that the postulates of a point-local QFT can be rewrit-
ten in terms of sl Wightman fields W (x, e) for which the
smearing functions are Schwartz functionsinthed = 1+2de
Sitter space extended Minkowski space. The analytic proper-
ties of vacuum expectation values should be related to those
of the intertwiners in [1] and the basic structural theorems
(TCP, Spin&Statistics, etc.) are expected to follow.

As previously mentioned, the perturbative string-local
field theory (SLFT) shares many formal similarities with
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gauge theory (GT). This is particularly evident if one for-
mulates GT not in terms of a functional setting pictured
by Feynman diagrams, but instead uses the so-called causal
gauge-invariant operator setting (CGI) [9]. The reason is that
gauge invariance holds only on-shell which makes it difficult
to describe properties as positivity (unitarity) graphically.

In particular it is impossible to distinguish between off-
shell Mexican hat SSB setting and the on-shell induction of
Mexican hat like H self-interacting from the second order
BRST gauge invariance sS = 0 of the S-operator. In the
CGI operator formulation of the BRST gauge formalism
[9,10,19] there is a clear-cut distinction, whereas in the SLFT
setting the idea of an SSB would not even arise since the
matter fields which couple to sl vector mesons become them-
selves sl and hence do not comply with a physical picture of a
global symmetry breaking in which the local current remains
conserved but the global charge diverges.

The content of the five sections is as follows.

The next section presents the kinematics of SLFT i.e. rela-
tions between the pl potentials and their sl counterpart in
which the escorts appear for the first time. It also explains
the physics behind the first order L, V,, pair requirement.

In the third section it is shown that even in the absence
of interactions the causal localization which GT formally
attributes to a Wilson loop is not identical with that in the
Hilbert space setting (breaking of Haag duality but preserva-
tion of Einstein causality).

Some second order perturbative results and their interpre-
tation are presented in Sect. 4.

Section 5 presents formal analogies with the CGI operator
formulation of the BRST formalism.

The outlook contains comments about ongoing calcula-
tions and conjectures about what one hopes to accomplish in
the future.

Many of the ideas arose in extensive discussions over sev-
eral years with Jens Mund, but the responsibility for possible
errors and less than perfect presentations rest on my shoul-
ders.

It should be mentioned that within this shared project of
SLFT there are two forthcoming articles by Mund. Whereas
the present paper accounts for conceptual changes and the
resulting different way in which seemingly well-established
past results appear in the new light, Mund’s contributions
address the deeper mathematical problems and also contain
the first attempts to go beyond the S-matrix and face the prob-
lem of correlation functions of interacting sl fields [20,21].

2 A Hilbert space alternative to local gauge theory,
kinematical aspects

Massive free spin s > 1 fields are commonly described in
terms of degree s tensor potentials. For s = 1 this reduces to

the well-known Proca potential

1

1 .
AL = 557 / PN upp.ssat(p.sy)

s3=—1

d3p
. d3p
AP AP / — f —lpé;'M —_—,
( M(x) v (x") (27_[)3 e /w(p) 2p0
PuPv

M,, =—
v guv T+ 2

To this point-local field one may associate two string-
local fields, a vector potential A, (x,e) and a scalar field
¢ (x, e) [20], as well as two “field-valued differential forms”
in e-space namely a one-form u(x, ¢) and a two-form i (x, ¢)

o0
Aulx,e) = / Fu(x 4+ Ae)e’dr, with Fy, (x)
0
= 0 A (x) — DA (x),
oo
d(x,e) = / AP (x + de)eldn, e* =—1
0

U =dep = doupde!, i =d,(Agde®) 3)

which are all members of the equivalence class of relatively
string-local fields which are associated to the point-local
A 5 Proca field (the sl “Borchers class™). It is well known [2]
that, in the presence of a mass gap, interacting point-local
fields within the same localization class lead to the same
physics (particles, S-matrix); this continues to be valid for
string-local fields [14,22].

Throughout this paper the differential form calculus on
the d = 1 4 2 de Sitter space of string-directions will play
an important role. As the x, the ¢'s are variables in which
the fields fluctuate; they bear no relation with the “mute”
gauge-fixing parameters of GT.

String-local vector potentials fulfill e A, (x, e) = 0, and
in the massless limit also 3" A, (x, e) = 0. These relations
are not imposed gauge conditions but rather intrinsic prop-
erties of string-local potentials which result from the above
definitions. Note that only A, possesses a zero mass limit.
Whereas Aﬁ has a m~! mass divergence, u and the differ-
ence of two ¢ with different e are logarithmically divergent
just as the free field in d = 1 + 1 whose exponentials lead
to new superselection sectors (Sect. 3 (25)). Although all sl
fields are free fields, their common origin from the pl Proca
potential leads to mixed two-point functions (see below).

One may change the string “density” dA — g(X)dA, g(oc0)
= 1 within the linear field class. There is no conceptual prob-
lem with this continuous enlargement since quantum fields,
in contrast to classical fields, have no observable “individual-
ity”. The latter property is an attribute of particles which share
their superselected charges with their associated field-classes

@ Springer
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with which they are (large-time) asymptotically related [22].
Renormalizability requires one to define PCB interaction
densities in terms of maximally fourth degree polynomials
of fields with the lowest short-distance dimension within a
field class.

In order to obtain linear relations between these fields as

Ay =AlL + 0,0 4)

one must use the same ¢ (A) and in order to maintain simplic-
ity of two-point function

(Au(x, A (x',€h)

1 . ) d3
/e"”(’“‘”MAl;f‘(p;e,e’) P

@)’ “ 2po
AA / pupw(e-e)
M ’/ ; €, - - =
K (p; e, ) B (p-e—ie)(p-e+ie)
Puew pueL,
(p-e—ie) (p-e+ie)
Moo — 1 e-¢
m2  (p-e—ie)(p-e +ie)
/
MAS — 1 eu _ pue- e
® i\p-e+iec (p-e—is)(p-e+ic)

&)

These expressions, which first appeared in unpublished notes
by Jens Mund, may be either directly derived from the
above line integral or be obtained from the A, AP and ¢-
intertwiners® (the e-dependent denominators including the
g-prescription result from the Fourier transformation of the
Heaviside function). Clearly the A-integration (3) has low-
ered the short-distance dimension of the vector potential from
d 51 = 2todsq = 1 and the heuristic reading of (4) is that the
derivative d¢ of the dgqy = 1 ¢-escort removes the most sin-
gular partof A” at the price of directional e-fluctuation. In the
massless limit A” as well as ¢ diverges, but the string-local
potential A, (x, e) remains well defined; its four-dimensional
curl is the point-local field strength.

The necessity to work with string-local potentials and the
appearance of mixed two-point functions of free fields is the
price for working in the Hilbert space of physical degrees
of freedom. In contrast the indefinite metric Krein space of
gauge theory contains in addition to the Gupta—Bleuler and
Stiickelberg indefinite metric degrees of freedom also those
of “ghost” fields. In this case there are no mixed contributions
since these unphysical free fields have independent degrees
of freedom. The BRST gauge formalism permits to obtain
some physical data, but falls short of extracting a full QFT.

3 A systematic and detailed account of the construction of string-local
fields and their use in a string-extended Epstein—Glaser construction of
time-ordered products can be found in [21].
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The sl A, (x, s) and its scalar “escort” ¢ (x, e) are differ-
ent fields, but they do not enlarge the degrees of freedom; in
fact they are linear in the same Wigner creation and annihi-
lation operators a” (p, s3) of the point-local Proca potential.
Scalar s = 1 fields exist only in the form of massive string-
local fields [1]. Although in the present context they do not
add the degrees of freedom, their additional appearance in
interaction densities plays an important role in upholding
string localization of higher order interacting fields. Text-
book QFT only uses pl Wightman field; these are the only
fields which are in the range of Lagrangian quantization but
their use in positivity-maintaining interactions is limited to
low spin s < 1 fields. QFT of s > 14 requires the use of sl
fields and each such field is accompanied by s lower spin sl
escorts (see below). The nonperturbative mathematical tools
which lead to the famous theorems of local quantum physics
(TCP, Spin&Statistics, etc.) require the presence of positivity
(unitarity).

The reader will encounter many new concepts but can be
assured that all of them result in a natural way from recon-
ciling higher spin interactions with the causal localization
principles in the Hilbert space setting of QT. In particular the
existence of massless vector- (more general s > 1 tensor-
) potentials in Hilbert space is tied to the existence of the
m — 0 limit of sl massive correlation functions. It is pre-
cisely on the level of correlation functions were operators
belonging to different Wigner representation classes (mas-
sive and massless s > 1 representations) coalesce. Even
more important is their role in a future spacetime under-
standing of an operator formalism and the replacement of
the Wigner—Fock Hilbert space in the infrared regime (infra-
particles, confinement).

Equation (4) resembles an operator gauge transformation.
But there is no gauge freedom in a positivity maintaining
description; it rather expresses the relation between free pl
and sl vector potentials. It should be maintained in the pres-
ence of interactions with a complex matter field. Whereas the
interaction density is defined in terms of a free pl matter field
Yo(x), the interaction with sl potentials will convert these
fields into an interacting sl field ¥ (x, e). One also expects
that this sl field has a very singular interacting pl sibling
¥ (the analog of the pl fields in the nonrenormalizable pl
Hilbert space setting) and that both are related (in the sense
of normal products between interacting fields) as’

Yl (x) = 780Dy (x, o) (©6)

This together with (4) is certainly reminiscent of a gauge
transformation of a matter field interacting with a vector

4 Unless otherwise stated, the terminology “QFT” refers to a Hilbert
space setting i.e. does not include GT.

3> I am indebted to Jens Mund for informing me that this relation has
meanwhile been checked in lowest nontrivial order of massive QED.
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potential. But in the present context it represents a relation
between two “field coordinatizations” of the same theory,
one being a string-local Wightman field (bounded d;,) and
the other a field with unbounded short-distance dimension as
known from nonrenormalizable couplings [23]. Thisis aclass
of fields which are too singular (unbounded ds;) in order to
be compactly localizable in the sense of Wightman [2]; such
fields have been studied by Jaffe [7] who illustrated his more
singular fields in terms of Wick-ordered exponentials of free
fields exp ¢.

After this brief excursion into uncharted territory, this sec-
tion returns to the kinematic aspects of sl free fields.

The formal similarity of the directional variable e of string-
local fields with a (noncovariant) “axial” gauge parameter
should not hide the fact that its gauge-theoretic interpreta-
tion® caused unsolvable short- and long-distance problems,
which finally led to its abandonment. The reason behind this
failure is that fluctuations in the d = 1 4 2 the unit Sitter
space of space-like directions in individual string-local fields
cannot be reconciled with a gauge interpretation; fortunately
what was a curse in the use as an axial gauge turns out to be
a blessing in the Hilbert space setting of s = 1 interactions.

This construction permits a generalization to any integer
spin [20]. Massive free fields of spin s and short-distance
dimension d;, = s + 1 are conveniently described in terms
of symmetric point-local potentials A 5 -, Of tensor degree
s. A corresponding string-local tensor with d§;, = 1 can be
obtained in analogy to the vector potential with the help of
repeated semi-infinite line integrals

xAP

L2ty T A 1€ 2o As€)

(N

For the sake of simplicity of notation we specializetos = 2in
which case the corresponding relation to (4) is

i (X, €) = gl (X) + sym B,y (x. €)
+ 0y, 0,9 (x, €) (8)

where our notation pays tribute to the fact that the metric ten-
sor of general relativity is the principle physical candidate for
a symmetric second degree tensor. Note that in this case the
string-local field has 2 string-local escorts, a scalar ¢ (x, e)
and a vector ¢, (x, e). By construction the symmetric tensor
fulfills e*' g,i, 1, = 0 and for m = 0 the identity 0* g, =0
(as 3" A, (x, e) = 0 this is not a gauge condition).

The field strength associated to the symmetric g, tensor
field of g, s = 2 field of degree 4, which has the same
mixed symmetric—antisymmetric permutation symmetry as

6 The gauge-theoretic e is considered to be “mute” i.e. it is the same
for all gauge fields and remains unaffected by Lorentz transformations.

the Riemann tensor of relativity (the “linearized Riemann
tensor’) is

1
R;vak(x) = Eas ap.alcgvk 9)

where the antisymmetrization as takes place between the two
symmetric pairs. This R-tensor, which is the s = 2 analog
of the s = 1 field strength F,,, is the lowest d, point-local
massless s = 2 field (the antisymmetrization lowers the dgq
from 4 to 3).

The extension of (4) and (8) to spin s > 2 should be
clear: a massive point-local degree s tensor potential corre-
sponds to a string-local potential of the same tensor degree
and “¢ escorts” of lower tensor degree of which only the
string-local degree s potential has a massless limit. The low-
est degree point-local tensor field which permits a massless
limit is a field strength of degree 2s and short-distance dimen-
sion dgg = s + 1. In analogy to (9), it results from the appli-
cation of s derivatives to a tensor of degree s and subsequent
antisymmetrization between the two sets of indices.

The intertwiner u(p,s) for massive point-local tensor
fields of degree s and short-distance dimension dygy = s +
1 relates the 2s + 1 spin space with the space of symmet-
ric covariant tensor. They are divergence free (as Aﬁ ) and
traceless. It is simpler to calculate their momentum space
two-point functions which consists of linear combinations of
tensors of degree 2s formed from the Minkowski spacetime
g and products of p, made dimensionless by multiplica-
tion with appropriate inverse mass powers. The requirement
of vanishing trace and divergence determines the two-point
function up to a numerical factor.

These constructions for general spin lead to s > 2 expres-
sions for the energy-momentum tensor. Besides the pl E-M
tensor there is an sl tensor. They are expected to describe
the same charges (generators of the Poincaré group) but their
m — 0 limit behavior is quite different. The pl tensors have
no massless limit for s > 1, whereas their sl counterparts
continue to exist for m = 0. As already mentioned in the
introduction this is quite interesting in view of the Weinberg—
Witten No-Go theorem for massless s > 2 E-M tensors [13].
These authors tacitly assumed pl localization. The theorem is
hardly a surprise since the massless pl free fields from which
they are formed cease to exist for s > 1 and the s = 1 case
only works because the corresponding E-M tensor can be
written in terms of the field strength. The construction of the
sl E-M tensor is presented in [11].

The d = 1 + 2 directional de Sitter space impart these
string-local fields (and related field-valued differential forms)
with a rich differential-geometric structure which plays an
important role in the new positivity-maintaining SLF per-
turbation theory. In this setting all fields are physical; the
gauge-invariant local observables correspond to point-local
(generally composite) fields, whereas the interacting vector
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potentials and the matter fields W(x, e) are string-local gen-
eralizations of Wightman fields (polynomially bounded in
momentum space or equivalently dyy < 00).

A surprising collateral kinematic result of this observation
is the statement (easy to verify) that the angular averaging
over e within a space-like plane leads to the Coulomb (or
radiation) vector potential. It is well known that it acts in a
Hilbert space and that its lack of covariance makes it unsuit-
able for renormalized perturbation theory. The fact that it
results from directional averaging of covariant string-local
potential (which plays the central role in the new covariant
SLFT Hilbert space setting) may come as a surprise to some.

This suggests to construct perturbative results in Coulomb
“gauge” by first working in the covariant SLFT formulation
and afterwards applying the rotational averaging instead of
trying to perform renormalized perturbation theory directly
in the CG setting (which seem to be an impossible task).

Before taking up the issue of interactions, it is inter-
esting to compare the SLFT setting with the BRST gauge
formalism. The latter is based on a the action of a nilpo-
tent s-operation on indefinite metric fields in a Krein space
(K = Krein) extended by “ghost operators”. In the notation
of [9] it reads

sAN =0,uf, sp% =uf, i = —(AK +mp")
(10
. 3. qv K 2, KNS K
sB:=i[Q, B], Q:/dx(a AKX +m?¢%) 9 ou

Q is the so-called ghost charge (associated to a conserved
ghost current) whose properties ensure the nilpotency (s> =
0) of the BRST s-operation. The A{f is a point-like massive
vector meson in the Feynman gauge and ¢X is a free scalar
field whose Krein space two-point function has the opposite
sign (a kind of negative metric scalar Stiickelberg field). The
“ghosts” u, i are free “scalar fermions” whose presence is
necessary in order to recover the perturbative positivity of
local observables and a unitary S-matrix.

The s-invariance of the scattering S-operator in gauge the-
ory and the d,-independence in the string-local setting are
both related to cohomology; but whereas the former has no
relation to spacetime, the d, acts on the space-like string
directions of the in e independently fluctuating fields.

Since there are string-local fields with d;; = 1 for all
spins, there also exist string-local interaction densities within
the power-counting limit d;r“lt = 4. But as already men-
tioned in the introduction, there is another physical restric-
tion, which has no counterpart in the point-local case: cou-
plings of string-local fields are only physical if their higher
order extensions preserve string localization and if there
remains a subalgebra of pointlike generated local observ-
ables.

@ Springer

This requirement, which plays no role within the point-
local renormalization formalism, severely restricts interac-
tions involving sl fields so that some of the advantage of
low short-distance dimensions is lost. In the following this
will be illustrated in three examples involving massive vec-
tor mesons (all fields are free fields). The first two models
describe a massive vector meson which couples either with
a complex scalar field ¢ (scalar “massive QED”) or with a
Hermitian scalar field H,

LP =gAl i, =" 0 up: (11)
L" = gmA; AP H (12)

where the mass factor m accounts for the mass dimension
(“engineering dimension”) of the interaction density. In both
cases A 5 is the point-local dy; = 2 Proca potential so that the
point-local interaction density L” violates the PCB restric-
tion of renormalizability.

Using the relation between the Proca potential and its
string-local counterpart A, including its escort field ¢ (4),
one may rewrite the nonrenormalizable point-local interac-
tions (11) into a d;i‘; < 4 string-local expression plus the
divergence of another operator V/,.

L =L-3"v,, (13)
L= gAust Vi = Jjud,

The second line presents the wanted pair L, V), for massive
scalar QED, for both operators dgy = 4. The renormalization-
preventing point-local interaction density dyy (L") = 5 has
been separated into two string-local contributions in such a
way that the renormalizability spoiling d;; = 5 contribu-
tion has been collected into the divergence of V),. In mas-
sive QFTs such divergence terms may be disposed of in the
adiabatic limit so that the first order S-matrix of the power-
counting violating L is the same as that of its better behaved
string-local counterpart L. Although far from obvious, this
idea of disposing renormalizability-violating terms at infin-
ity can be generalized to higher orders. It is not limited to the
S-matrix, but it also leads to the construction of a polynomial
bounded correlation function of string-local quantum fields
(private communication by Jens Mund). In other words the sl
perturbation theory complies with the localization properties
of string-local Wightman fields.

There is widespread belief that for perturbative renormal-
ization theory one needs (either canonical or functional inte-
gral) Lagrangian quantization. But this is not correct; even
for pl perturbation theory one only needs a scalar interac-
tion density L in terms of free fields. These free fields
need not be Euler-Lagrange fields; rather any free field
obtained from covariantization of Wigner’s pure quantum
unitary representation theory of the Poincaré can be used. In
fact, Lagrangians for most higher spin fields are not known
and sl fields are never Euler—Lagrange. The Stiickelberg—
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Bogoliubov—Epstein—Glaser perturbation theory is based on
the causal iteration of the first order scalar interaction den-
sity L made from local Wick-products of free fields. There
are no infinities, but the iteration leads to a growing number
of new parameters (counterterm parameters) whose number
only remains finite in the case of the PCB d; (L) < 4.

The L, V,, pair for the H coupling is less simple’ since
now also L depends on ¢

2
L:gm<A~APH+¢A-8H—mTH¢2H>,

1
VE = gm (¢A,§’H + §¢28“H> ) (14)

In this case the verification of the identity (13) requires the
use of the free field equation for H with mass m gy (m =mass
of vector meson).

As Mund has shown (unpublished) a similar L, 9V pair
exists for self-interacting massive vector mesons, e.g.

L? = eap FIM AL AL, =L -0V,
L= eare | FI" Ap Ao +mAL  ALGc) (15)
v, = ZSachj‘” {Ab’v + A,iv] be.

For the verification one again has to use the field equation,
which in this case reads 9" Fy,, = m*A".

For the extension to higher orders it is helpful to express
the point-local nature in terms of the differential form calcu-
lus on a de Sitter space,

de(L—0V)=0. (16)

The existence of such pairs with L within d;’t‘; < 1 turns out
to be the prerequisite for the existence of local observables
within a string-local setting. They also prevent the higher
order total delocalization over all of spacetime. It should,
however, be emphasized that the construction of L, V), pairs
is a problem which can be pursued independent of L”.
Whether a collection of free fields permits a (maximally
quadrilinear) coupling L, which can be completedtoa L, V,,
pair is a well-defined mathematical problem within the set-
ting of differential forms on d = 1 + 2 de Sitter space.
Whereas L must stay within PCB, the dq of V,, may have
contributions above dyq = 4; as long as these contributions
do not lead to higher order short-distance contributions to L
beyond ds; = 4 the model remains sl renormalizable.

The exactness of the zero form L — 9V in (16) is a rather
restrictive localization requirement. Such pairs within the
power-counting bound for L turn out to be unique (in case
they exist) modulo additive changes of V), terms with van-
ishing divergence. Since in massive models the divergence

7 The perturbative calculations are simpler if one replaces only as many
AP by A as needed to obtain dy4 (L) = 4.

dV disappears in the adiabatic on-shell limit, the first order
contribution to the S-matrix are equal

s =/LP :/L (17)

String-local L, V), pairs are the starting point for the per-
turbative construction of the e-independent S-matrix and cor-
relation functions of string-local fields. The problem how
to maintain string localization in higher order perturba-
tions is closely related to the problem of preserving the
e-independence of the S-matrix. This leads to a normal-
ization condition on higher order time-ordered products of
L — 0V, which will be commented on in Sect. 4.

Note that the L, V formalism is not directly applicable to
m = 0, since ¢ and V,, have no massless limit. Behind this
formal problem there is a radical conceptual change (break-
down of Wigner—Fock particle Hilbert space, infraparticles
in QED, QCD confinement) whose spacetime implications
have remained outside of our conceptual understanding of
QFT. In fact these problems are outside the physical range of
gauge theory; whereas short-distance properties of unphysi-
cal gauge-dependent fields are believed to share their asymp-
totic short-distance behavior with those of their sl physical
counterparts (in particular the QCD asymptotic freedom) one
does not expect that problems related to confinement can be
accounted for in gauge theory. Here the long-distance fluctua-
tions of string directions will be important. Following Wight-
man’s reconstruction theorem [2] the massless QFT should
be reconstructed from the massless limit of the massive cor-
relation functions thus avoiding direct questions concerning
the fate of the Wigner—Fock particle space.

3 Wilson loops, Haag duality and the Aharonov—Bohm
effect

The following section extends ideas which were already pre-
sented in [18].

Consider the space-like Wilson loop for a string-local vec-
tor potential. In the massive case one obtains from (4)

% Ay (x, e)dxH = %(Aﬂ(x) + 9,9 (x, e))dx#
= fAM(x)dx“, m > 0, (18)

whereas in the massless limit the separate contributions to
the integrand diverge and instead one finds

yg(AM(x, e) — Ap(x, €))dx”

= f Au(p(x,e) —p(x,e))dx" =0 form=0. (19)
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It is important to notice that, although neither ¢ nor 9,,¢
possess massless limits, the mass singularities cancel in the
difference between ¢’s with different e-directions. This can
be seen either in terms of the e-dependence of the intertwiners
or by using the fact that the m 2 in (5) cancel in the 2-point
function,

(W(xier, ey (x; e, €))),

V(x;se ) :=¢(x,e) —¢(x,e). (20)

The e-independence of the loop integral despite its e-
dependent integrand is reminiscent of its gauge invariance
in the Krein space setting of point-local vector potentials.
Later we will return to this analogy.

For the following it is convenient to work with opera-
tors instead of singular quantum fields. A regularization of
the vector potential in terms of a convolution with a smooth
function f, which is localized around a small ball B at the
origin, leads to the regularized loop operator

fAifg(x,e)dx“, A (x, e) :Z/f(x_x’)Au(x’,e)d4x/.
(2D

It commutes with all operators whose localization region O
is such that there exists a direction e for which the regularized
half-cylinder does not intersect O. This includes in particular
all convex regions which do not intersect the torus /€, which
results from regularizing the loop /.

Operators whose localization region is such that there
exists no choice of e which permits one to avoid an intersec-
tion with the regularized semi-infinite cylinder [ + R e do
not commute with the regularized Wilson loop. This includes
in particular operators which are localized in a torus which
loops through /"¢ without intersecting it.

By allowing e to vary along the Wilson loop such that e(«)
moves through a loop in the directional de Sitter spaces as
x (o) sweeps through the Wilson loop, one enlarges the pos-
sibilities of avoiding intersections; but in the case of a torus
which intertwines /"¢ without touching, an intersection with
the e-extended Wilson loop is unavoidable. The dependence
on e is “topological”’; the Wilson loop “remembers” that its
integrand had a directional dependence but it forgets in which
direction it pointed.

This problem can be investigated directly in terms of the
localization property of the electromagnetic field strength
F,, without using vector potentials [24]. The result is that
the operator representing a regularized magnetic flux through
asurface D does not change under deformations of D as long
as its boundary d D stays the same. Any operator which is
localized in a contractible region outside the regularized torus
dD + B commutes with the flux operator but, as shown in
[24], there are operators associated with interlocking but not
intersecting toroidal regions which do not commute with the
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regularized magnetic flux operator. The authors refer to such
a situation as the “breakdown of Haag duality”.

Recall that Einstein causality states that two operators
commute if their localization regions are space-like sepa-
rated. In terms of operator algebras this means

A0) € A0,
A0) = AO'Y,

Einstein causality, (22)

Haag duality, (23)

where the dash on the region refers to the causal comple-
ment and that on the operator algebra to its commutant. Our
intuitive understanding of causal localization is however in
terms of Haag duality [22]; we expect that an operator which
commutes with all algebras which are localized in the causal
complement of a region O is really localized in O i.e. is a
member of A(O).

Haag duality holds for all algebras which are gener-
ated by massive free fields and is believed to remain valid
for observable subalgebras localized in multiply connected
regions. But the properties of magnetic fluxes in QED show
that Haag duality is violated for multiply connected sub-
algebras generated by point-local s > 1 massless field
strengths (Fy,, Ryvi, - - .). In other words, there are oper-
ators in A(Q")" which do not belong to A(O) and the Wil-
son loop operator with its topological e-dependence is an
example. Interestingly these violations of Haag duality hap-
pen in theories in which the potentials are necessarily string-
local.

The “quirky” feeling that there may be some problems
with causality in the A-B effect® has its origin in the naive
identification of the gauge-theoretic quantum causality in
Krein space with that of a QFT in Hilbert space. The
use of pl vector potentials in Krein space is not incor-
rect; but it carries the danger of identifying the Wilson
loop as an object localized on a circle. The Is setting is
safe in this respect since the fopological memory of the e-
dependence is precisely what one needs to be reminded that,
although the Wilson loop object commutes with all oper-
ators localized in the causal complement of the torus (the
thickened Wilson loop), it is not localized on it. This is
what the violation of Haag duality in Einstein-causal QFT
means. It occurs in all models involving massless s > 1
fields.

The violation of Haag duality is basically a classical phe-
nomenon. It is well known that commutation properties of
free quantum fields correspond to “symplectic orthogonal-
ity” of their corresponding wave functions in

iIm(f, g) = [A(f). A(g)],

Hence the quantum A-B effect passes to its classical counter-
part; the correct classic vector potential is simply the expec-

f, g real test functions.  (24)

8 In most articles on the A-B effect the reader is assured that they are
unfounded, but they certainly play a role in its popular appeal.
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tation value of its quantum counterpart in a suitable coherent
state. The Stokes theorem does not contain information as
regards the physical localization properties of vector poten-
tials.

The main reason for calling the reader’s attention to these
facts (well known among experts) is that the unphysical
aspects of the quantum gauge formalism are not limited to
problems of positivity (unitarity) but they also affect the foun-
dational causal localization principles. The correct localized
charge-carrying operators are obtained by smearing direc-
tional extended Wightman fields W(x, ¢) with compactly
supported test functions in x and e.

The Hilbert space description of massless vector poten-
tials is traditionally presented in the form of Coulomb (or
radiation) gauge. Being the unique Hilbert space potential
which is rotation invariant in the + = 0 hyperplane, it is not
surprising that it is obtained from integrating the string-local
potential over all string directions e in the # = 0 hyperplane.
The lack of covariance and locality prevents its application
in renormalized perturbation theory, but it does not impede
its use in quantum mechanics.

The phenomenon of breakdown of Haag duality is a gen-
eral property of all zero mass higher spin fields. For s = 2
there are two string-local candidates which can be viewed
as the analogs of the string-local A, namely the string-local
guv(x, e) (8) or the string-local 3-tensor A, (x, e) which
results from a line integration of the field strength R ;. (9).
The latter plays the analog role to that of the vector poten-
tial for s = 1 in the verification of the breakdown of Haag
duality.

It is an interesting question whether in the Platonic world
of Haag duality violation there exists a relation between the
multiple connectivity (the genus) of the spacetime localiza-
tion region and the spin of the string-local zero mass poten-
tial. It also would be interesting to understand in what sense
the construction of covariant string-local potentials can be
viewed as a special case of recent constructions in [25].

The important role of positivity for infrared aspects of
the QED Hilbert space can be seen by looking at simpler
infrared problems in two-dimensional models. The simplest
such model is the derivative coupling &y,upa“go ofad =
1 + 1 fermion to the derivative of a m > 0 scalar massive
field ¢ [26]. It has a solution in terms of a formal exponential
expression’

Y(x) = 89 (x), (89 e890)) — exp g?iat(x — y),
¢ = lim mgzeig‘p, (25)
m—0
exp g2i At () = F(E2m?) "3 €2m?) ¢,

(po*) #£0, (p0) =0. (26)

9 For reasons of brevity we omit the Wick-ordering in field products
at the same point.

Although ¢ itself has no positivity-preserving massless limit,
the two-point correlation functions of its exponential field ¢
remain finite (after rescaling with a g-dependent mass factor)
and are consistent with conservation of the “¢-charge”. In
fact the combinatorial structure of the n-point function of ¢
in terms of an exponential i A™ (x; — x;) contraction reveals
that ¢ is a “g-charge” conserving field in the Hilbert space
which the Wightman reconstruction theorem associates with
the limiting ¢ vacuum expectation values [2].

There are two aspects of this construction which are worth
mentioning. Whereas in the massive case the Hilbert space of
the full model is a tensor product of Wigner—Fock ¢-particle
space with a v particle space this structure gets lost in the
massless limit since the g-charge creating the ¢ field is not a
member of the p-Hilbert space rather ¢ creates charge sectors
in which the charge-neutral d¢ (the limiting ¢ does not exist)
acts. Since ¢ always appears together with 1, the Hilbert
space is actually a subspace of the tensor product of the
with the ¢-space, i.e. the g-charge of ¢ coalesces with the
global v charge. This in turn leads to a kind of kinematical
infraparticle structure, which manifests itself in the absence
of the mass-shell delta function; the representation of the
Poincaré group in the Hilbert space created by the application
of ¥'s to the vacuum contains no discrete one particle state,
but instead of a mass-shell delta function one finds a weaker
threshold cut-like singularity structure.

Suppose we ignore the m — 0 limiting structure of an
exponential and define a free ¢ logarithmic two-point func-
tion

(oo (y)) = log pu*(x — y)*.

In this case ¢ violates positivity i.e. the correlation functions
define a linear indefinite metric space. In this case there is
no charge superselection structure. The situation resembles
that of the use of the Krein space point-local vector potential
except that gauge theory restores perturbative positivity for
gauge-invariant operators. But a structural understanding of
problems behind infrared divergencies of pl charge-carrying
operators within GT is not possible. In the SLFT setting the
singular pl siblings ¥ (x) disappear in the massless limit
and the Maxwell charge-carrying fields exist only as sl fields
Y (x, e). At this point the pl gauge-dependent matter fields
¥ X looses its singular pl Hilbert space counterpart .
The understanding of long-range properties of electric
charges and the infraparticle aspect in QED pose additional
demanding dynamic challenges which go far beyond the
kinematical observations on two-dimensional models. There
remains, however, a formal analogy with properties one
expects in the sl Hilbert space formulations. In order to high-
light these analogies it is helpful to reformulate the previous
observation by viewing the massless ¢-fields as limits of
space-like line integrals. With j,, = 0,¢ we may define the
charge-carrying field ¢ directly in the massless model,
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—i . io [Ddni i
e~i8% — lim etgjo dAju (x+re)e ’
A—00

2 =—1. (27)
This suggests the following analogy (j* = e"" j,):

expigo(x,e) ~expigd(x,e, ) =V (28)

oo
with(p(x,e):/ Ju(x + re)edr and P(x,e,€)
0

o0
=/ Au(x + e, e)e™da.
0

In both cases the fields are logarithmically infrared diver-
gent in the massless limit, whereas the exponential operators
(defined as above by a Wightman reconstruction from the
massless limit of vacuum expectation values) remain finite.

In analogy to the ¢ charge we would like to view a state
created by W as carrying a Gauss charge i.e.

0|W) = /d%%ém = lim EdS |W)
—00
S
— lim [E \y] ds |0y # 0? (29)
S—o00
S

Clearly such a superselected state cannot be compactly local-
ized. Using exponential line integrals over point-local gauge
potentials fails, since indefinite metric is not compatible with
charges superselection rules, whereas the above ansatz has a
better chance. In analogy to the 2-dimensional model the full
one-electron state should be of the form vo(x) W (x.00) |0)
where ¥ is a global charge-carrying free matter field and &
an infrared photon dressing factor.

One of the few rigorous results in QED is a theorem that
the Lorentz symmetry is spontaneously broken in sectors of
nontrivial electric charge [27]. This certainly does not hap-
pen in interactions with massive vector mesons. The heuristic
picture is that the strings of charged particles are the centers
of regions of noncompact infrared photon clouds. This is
consistent with the established fact that such photon clouds
leads to continuously many directional superselection sec-
tors within a fixed charged sector [22]. Whether the above
W-states have this property can be checked by studying the
energy-momentum density in such states.

Returning to the question of the structure of the Hilbert
space one may summarize the present situation as follows.
Independent of the pl or sl field localization the Hilbert space
of asymptotically complete theories with a mass gap is a
Wigner—Fock particle space where the particles are related
to the interacting fields by LSZ scattering theory. This is a
very clear conceptual situation. In massless limits involving
sls > 1 potentials this picture breaks down; in such cases the
structure of the Hilbert space is expected to involve massless
limits of nonpolynomial (in the case of QED exponential)
string-local new sector creating composites involving mass-
less potentials. In problems with a mass gap, one expects the
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Wigner—Fock space provided by scattering theory to be com-
plete (“asymptotic completeness”). In a perturbative setting
this is part of the formalism.

The reconstruction of a Hilbert space from massless lim-
its of correlation functions in terms of suitable limits of free
fields is expected to require the use of exponential non-local
limits of free fields (28) which create inequivalent represen-
tation spaces. But even in the case the above proposal to
describe the Hilbert space of QED turns out to be correct,
there remains the problem how these inequivalent represen-
tations generating descriptions are spacetime-related to the
interacting fields. Such constructions are expected to lead to a
better understanding of the momentum space recipes [28,29]
in terms of spacetime concepts of collision theory.

Morchio and Strocchi addressed the infrared problem
within the gauge theoretic setting by constructing positivity-
obeying topology on the Krein space formalism [6]. We
believe that the understanding of such long-distance prob-
lem will be simpler and more natural in a description where
these string-local objects are already part of the perturbative
setting and the topology of the Hilbert space is already the
correct one.

A intriguing proposal can be found in a recent article by
Buchholz and Roberts [30]. These authors observe that a
restriction of the Minkowski space to a forward light cone
V4 would still permit a complete description of QFTs with a
mass gap, but its irreducibility would be lost in the presence
of photons. In the context of string-local fields this situa-
tion suggests to use fields localized on space-like hyperbolic
curves which stay inside V and only touch the surface of
the light cone at light-like infinity. Such a situation could
lead to a more natural way to implement infrared cut-offs.
What is missing is a perturbative realization of this idea; but
the increasing perturbative experience with fields localized
on space-like lines suggests that such an extension may be
possible.

4 Differential-geometric control of directional
fluctuations

Whereas setting up first order string-local interactions in
the form of L, V), pairs within the power-counting restric-
tion is basically a kinematic problem involving free fields,
the situation changes when it comes to the construction of
the higher order S-matrix. The reason is that the singular
nature of time ordering does not permit one to take the diver-
gence 0#T(..0,¢...) directly through the time-ordering to
the affected operator. The differential relation'?

10" Unpublished notes by Jens Mund (Vienna 2012).
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d(TLL' — 3" TV, L' — 9" TLV, + 9" 9" TV, V) =0,
d=de+dp, (30)
TLL|\" := TLL' — 3"TV, L' — 3"*TLV), + 3"0"*TV,, Vi,

which secures the e-independence of the second order S-
matrix in the adiabatic limit (formally the integral over
Minkowski spacetime),'! would be a trivial consequence of
(16) if it were not for singularities in 7'-products from coa-
lescent points and crossing of strings.

In terms of differential forms in the de Sitter space of
directions the individual contributions to the right hand side
are zero forms and their sum is an exact form. We remind the
reader thatin the presence of a mass gap there are no boundary
terms at infinity, so that in analogy to (17) the divergence
terms do not contribute to the second order S-matrix, hence

§@ ~//TLL/|P =f/TLL/ (31)

It turns out that such “normalization” problems as posed
by (30) can be solved by using the freedom in defining time-
ordered products. Starting from a “kinematic” time ordering
Ty, one computes the anomaly A as the singular part of the
terms containing derivatives

— A =s5.p(=0"TyV,L' — 3" TyLV,, + 8"3" TyV,, V).
(32)

Since in the following we will be interested in the S-matrix,
we only need the contribution from the 1-contraction (the
tree component) A||_conr.; fOr notational economy we will
omit the subscript, so in the following relations A stands for
the tree component of the anomaly.

The kinematic Ty is defined by taking all derivatives out-
side e.g.

(Todgd ™) == 30" (Tope™) (33)
3 (Todupe™) = —is(x —x') — mz(Tog()(p*/>.

If the anomaly is of the form
A= =N +9"N, +3#3" Ny, (34)

where the N's contain §(x — x’) functions, they can be
absorbed as renormalization terms in the time-ordered oper-
ator products (30). They describe the delta function terms
which violate Eq. (30) if one uses the kinematical 7j; hence
the anomaly terms reveal in what way the time-ordered prod-
ucts at coalescent points (or more general at string intersec-
tions) in (30) have to be defined.

For the calculation of the second order S-matrix one only
needs to compute the N. Note that N terms are similar to

' In massive theories boundary terms at infinity vanish. Without x,x’
integration the expression in the bracket can be used as a definition of
a second order point-local interaction density.

the counterterms well known from the renormalization for-
malism for point-local interactions. But there is a significant
conceptual difference. Whereas the renormalization coun-
terterms in point-local renormalization come with new cou-
pling parameters, the contact terms originating from anoma-
lies are uniquely determined in terms of the basic first order
couplings and the masses of the free fields in terms of which
the first order interaction density is defined. Such anomaly
terms will be referred to as induced interactions. They orig-
inate from the implementation of the e-independence of the
S-matrix and hence they have no analog in s < 1 point-local
interactions.

The calculation of the S-matrix requires only the calcula-
tion of N. In that case it is more convenient to use a weaker
formulation

dL—9"Q, =0, Q,:=d.V,
dTLL —3"TQ, L' — 3" TLQ), = 0. (35)

This “Q-formulation” is closely related to the implementa-
tion of the gauge-invariant S-matrix in §S = 0 in the CGI
BRST setting.

The V-formalism, which leads to the definition of point-
local interactions densities (30), turns out to be indispensable
for the construction of interacting string-local fields. It per-
mits to define higher order point-local interaction densities in
terms of the renormalizable string-local formalism. Together
with the formal relation between point- and string-local mat-
ter fields (6) it can be used for the perturbative construction of
renormalized correlation functions of string-local fields. The
point-local higher order interaction densities (30) play the
role of the e-independence of string-local field correlations
from the ¢’s of internal propagators. This construction of
interacting string-local fields has been initiated by Jens Mund
and will be the subject of a forthcoming publication [21].

Assuming that these string-local fields remain renormal-
izable (Wightman fields in x) in every order, the results of
Jaffe [7] on the singular nature of exponentials of scalar free
fields suggest that may exist as a singular (not Wightman-
localizable) field in a well-defined sl Wightman theory. As
previously mentioned the similarity of the relation between
the pl Proca potential and its sl counterpart with an oper-
ator gauge transformation suggests that the renormalizable
sl matter field is exponentially related to a singular pl field
wp(x) = Y(x, e)e~'8% in which the escort field plays the
role of a gauge parameter. Whether this definition of a sin-
gular pl field within a renormalizable sl model permits a
mathematical control as a singular field in the sense of Jaffe,
which depends only on the same finite number of physical
coupling parameters as the sl field, remains an interesting
open question.

This indicates that the nonrenormalizability of certain pl
models is the result of forcing the sl localization of s > 1
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fields into a pl setting at the price of unbounded ds; and
(even worse) a predictability destroying unbounded increase
of coupling parameters. If the pl fields defined within the sl
setting turn out to have a mathematical existence in the sense
of Jaffe then their unbounded off-shell high energy behavior
should permit an on-shell restriction which fulfills the pertur-
bative expected unitarity restriction. In this case one expects
that the sl formulation fixes the free counterterm parameters
of the nonrenormalizable pl description in such a way that
its on-shell restriction (through high energy cancellations)
agrees with that of the sl description.

Another important new concept which has no analog in
s < 1 pl interactions is the above-mentioned appearance
of induced terms. In the following this will be illustrated
in terms of sl second order calculations in three different
models.

The first such model is scalar massive QED (13). In the
case the anomaly contribution arises from the divergence
acting on the two-point function involving a d,,¢. The result
for the induced contact contribution is the expected second
order quadratic in A, contribution

g2 o ()AL (x, )8(x — xNp(x)AF (x, ) 1 + (e <> ),
(36)

which may be absorbed into a change of the 7y — T product
of the dpd’¢* contraction contributing

(Tod,e*dve) > (T3,.0%d,0)
= (T00u 9™ yp) + cguvd(x — x'). (37)

For more details we refer to [18].

This is similar to gauge theory where the induction of
the second order term quadratic in A results from BRST
gauge invariance of the S-matrix'> s§ = 0. In SLFT the
independence of the S-matrix from string directions is a natu-
ral physical consequence of large-time scattering theory [14]
for string-local fields in the presence of a mass gap. In a per-
turbative setting, which is based on the construction of the
S-matrix in terms of the adiabatic limit of Bogoliubov’s for-
mal time-ordered products of interaction densities, it has to
be imposed (30).

There is a fine point which turns out to be of significant
conceptual importance. The directional fluctuations only dis-
appear after adding up all contributions to a particular scat-
tering amplitude in the same perturbative order. For the case
at hand the singularity at ¢ = ¢’ in the time-ordered prop-
agator (which enters the second order tree contribution to

12 In the naive formulation the quadratic term arises from the replace-
ment of 9 — 9 — igA in order to preserve gauge invariance of the
classical Lagrangian.

@ Springer

scattering) corresponding to the two-point function (5),

1 P pupw(e-e)
p?—m? —ie B (p-e—ie)(p-e +ie)

AL ) ,

(p-e+ie)
is ill defined since the two fluctuating directions enter the
two-point distribution with a different e-prescription'? from
the Fourier transformation of the two Heaviside functions.
But in the use of this propagator for the second order on-shell
scattering amplitude (the scalar analog of Mgller and Bhabha
scattering) this problem disappears. This is similar to the ver-
ification of on-shell gauge invariance in the second order tree
approximation, except that e, ¢” are not global gauge parame-
ters in a Krein space gauge theory but rather space-like direc-
tions of independently fluctuating string-local vector poten-
tials acting in a Hilbert space.

Whereas in the Krein space gauge setting an individ-
ual gauge-dependent perturbative contribution to a scatter-
ing process exists, the independently fluctuating ¢’s become
only “mute” after adding up sufficiently many perturbative
on-shell contributions in a fixed order of S (akin to on-shell
gauge invariance). Any attempt to interpret the independently
fluctuating ¢’s as gauge parameters by equating them in con-
tributions from different fields causes the renormalization
resistant infinities of the abandoned axial gauge formalism
to return with full vengeance.

It is important to notice that the second order A- Ap™ ¢ con-
tribution is induced by the principles of QFT (causal localiza-
tion in Hilbert space), there is no reference to the substitution
rule 9 - D = 0 — igA of classical gauge connections. The
SLFT setting of QFT does not refer to substitution rules or
the theory of fiber bundles, but rather explains the appear-
ance of such terms as an inherent property of a QFT in the
presence of positivity-maintaining sl vector mesons.

This is even more remarkable in models of self-interacting
vector mesons in which the Lie-algebra structure, unlike clas-
sical gauge theory, bears no relation to an imposed symme-
try, but rather results from only implementing the spacetime
causality principles. That the classical causality principles of
Faraday, Maxwell, and Einstein become that powerful in the
context of Hilbert space positivity of interacting higher spin
s > 1 quantum matter is truly surprising.

An evenricher second order induction, which has no coun-
terpart in classical field theory, is expected to, occurs in the
gA - AH coupling of massive vector mesons to a Hermi-
tian matter field H (14). One observes an analogy to the
requirement of BRST invariance of the S-matrix up to a third
order tree approximation [9]. This did not only generate the
expected second order A - AH 2 contributions which, as the

Prew
(p-e—ie)

13 This is the reason why the axial gauge interpretation failed.
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induced A-A Igpl2 contribution of scalar QED can be absorbed
in a redefinition of the time-ordered product in analogy to
(37), but also induces Mexican hat-like self-interactions of
H . Thus, one also expects the e-independence of the S-matrix
to induce such self-interactions.

This second order induction was first seen in the CGI set-
ting of the BRST gauge formalism where it results from the
implementation of the BRST invariance sS = 0 of the S-
matrix [9]. The reason why its was overlooked (and con-
founded with a SSB) is presumably that in the standard time-
ordered formalism it is difficult to separate off-shell prop-
erties from those which only hold on-shell and as a result
the on-shell induction is easily confused with an off-shell
SSB Higgs mechanism. The direct implementation of BRST
invariance in an operator setting, in which the S-matrix is
seen as a result of the spacetime adiabatic limit rather than
of a momentum space mass-shell restriction, helps to avoid
such confusions.

The BRST gauge setting introduced many new algebraic
objects into GT but it did not completely cut the umbilical
cord with classical gauge theory. This is the origin of its
problem with positivity (unitarity), a property which has no
natural place in classical field theory. It remains a patchwork
of important physical islands (the subalgebra of local observ-
ables and the S-matrix) which are formally interconnected by
unphysical gauge-dependent fields, in which negative met-
ric degrees of freedom and ghost fields remain present. In
the words of one of its main protagonists (Raymond Stora)
“GT is the amazingly successful placeholder of an unknown
QFT”. SLFT is an attempt to substitute this placeholder by a
full Wightman QFT.

The lack of positivity of GT affects also the causal local-
ization principles of QFT; the topological e-dependence of
free Wilson loops, as presented in the previous section, is
the simplest illustration. The causality violations of gauge-
dependent fields are more serious. Gauge symmetry and
gauge invariance are not concepts which can be directly
related to or derived from the principles of QFT. The physical
reason why gauge-dependent fields are unphysical is that in
addition to not accounting correctly for the quantum proba-
bility they also do not present the correct causal localization.
The noncompact localization of charges in QED [8] can only
be accounted for in terms of test-function-smeared sl charge-
carrying fields.

Perhaps the most important new message coming from
the positivity maintaining sl setting is the appearance of the
degrees of freedom maintaining escort fields. For s = 1 they
are new scalar covariant fields which do not carry any degrees
of freedom of their own and which in the absence of inter-
actions depend only on the Wigner momentum space s = 1
creation/annihilation operators. Their existence and purpose
is overlooked in standard quantization settings because there
are no pl escorts.

These escorts become indispensable dynamic objects in
the presence of interaction; they constitute the physical coun-
terpart of the unphysical additional negative metric and ghost
degree of freedoms. These escorts (and not the Hermitian H
fields) are the abelian Higgs model, are the objects which
comply with the analogy to the bosonic Cooper pair which
appears in the famous paper by Higgs [31]. They are the
objects which cannot be avoided in descriptions of how mas-
sive Proca fields are related to massless vector potentials in
a positivity-maintaining way.

At this point a surprised reader may ask why the presence
of these objects was not noticed during the almost seven
decades since the discovery of QED. The simple answer is:
there never has been a positivity-obeying QFT of s > 1
models; higher spin interactions were always described in a
Krein space gauge setting and s > 1 Lagrangian quantization
does not lead to anything else but pl indefinite metric fields
requiring a gauge-theoretic setting. Wigner’s unitary repre-
sentation theory has existed since 1939 [32] and years later
Weinberg developed the intertwiner formalism which con-
verts Wigner’s wave functions into pl covariant fields [33];
but when it came to models involving vector mesons (QED
and the nonabelian vector mesons of the Standard Model) he
used the gauge theory of Lagrangian quantization.

The Hilbert space setting required a resolution of the clash
between positivity and localization. This became possible
after the intertwiners for sl localization were constructed [1]
within the setting of modular localization in Wigner repre-
sentation spaces [15].

The interactions of abelian massive vector mesons with
H fields are subject to the same principles as couplings to
complex matter (massive spinor or scalar QED). The differ-
ence is that Hermitian matter is not subject to global charge
conservation; this accounts for the fact that the L, V), pair
condition requires the presence of the escort field already
in the first order interaction density L and leads to the richer
induction, which includes the H and ¢ self-interactions. Last
but not least, the Higgs interaction vanishes (together with
the disappearance of the escort) in the limit of massless vector
mesons, i.e. Higgs matter disappears in the massless Maxwell
limit.

These differences between interactions of complex and
real matter with massive vector mesons may explain why
the Higgs model escaped the systematic study of renormal-
izable interactions and why it was discovered in the round-
about way through the application of a SSB prescription to
the two-parametric gauge theory of scalar QED modified by
a tachyonic mass term (the Mexican hat potential). It may
also account for the strange fact that the discovery (differ-
ent from all other discoveries which led to Nobel prizes)
was made independently in at least three independent papers
using almost identical calculations including the well-known
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metaphor'# “fattening of massless vector mesons by incor-
porating massless Goldstone degrees of freedom”.

The important role of the escort fields in the relation
between massless and massive vector mesons permits one
to see in more clarity why the presence of H fields in mod-
els containing self-interacting massive vector mesons is of
fundamental importance. The relevant observation is that,
although there is a first order interaction density of self-
interacting vector mesons which passes the sl preserving
L, V,, pair condition, thereis a PCB violating induced second
order d;; = 5 contribution. Since the improvement of PCB
through weakening of localization was already used in the
construction of the first order L, V), pair, the only remaining
PCB improving resource is to extend the first order interac-
tion density by a coupling to an additional field and hope for
a compensation of a newly created dy; = 5 term with that
induced from the s = 1 self-interaction.

The guiding analogy behind such a construction is the pic-
ture of improved short-distance behavior in supersymmetric
multiplets as a consequence of compensations between dif-
ferent spin components within the same multiplet. Whereas
in the case of supersymmetry this is a consequence of the
extended symmetry, the existence of a compensatory field
for the case at hand is its raison d’étre. The looked-for com-
pensating field cannot have a spin s > 1 (higher spin would
worsen the second order ds;) and it should maintain the Her-
miticity of the vector mesons, hence it must be a H-field. The
SSB Higgs mechanism hides this compensatory preservation
of the second order PCB.

The absence of a SSB can also be seen by looking directly
at the resulting model since the charge of a conserved current
of an abelian massive vector meson (the identically conserved
Maxwell current) is always screened (Q = 0) and never
spontaneously broken (Q = o0) whereas in the presence
of self-interacting vector mesons there exists no conserved
current.

There remains the question why two such quite different
ideas as the Higgs mechanism and that used in the present
work lead to the same interaction density including the H
self-interactions. The answer is quite simple and is rooted
in the nature of QFT. In contrast to quantum mechanics, a
specific model of QFT is already nailed down by prescrib-
ing the first order field content (including the masses of the
free fields and internal symmetries). One cannot construct
different QFT with the same field content. For the case at
hand this implies that any renormalized interaction between
amassive vector potential and a Hermitian field must be equal
to the Higgs model. Its physical properties are intrinsic and
do not depend on the ideas in terms of which the calculating

14 Metaphors occasionally played an important role in discoveries
within highly speculative areas of research; they served as temporary
placeholders for a future foundational understanding.
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physicist obtained the model. Screened Maxwell charges of
abelian massive vector mesons are very different from diver-
gent SSB charges.

As is well known from renormalizable s < 1 pl inter-
actions, the counterterm formalism generates all possible
contributions to the renormalizable interactions between the
fields of the given field content even if one started with only
some of them. This picture is strengthened in the presence
of sl s > 1 fields for which the L, V, condition for the
preservation of sl localization leads to the phenomenon of
the parameter-preserving “induction”!> and the preservation
of higher order PCB through compensatory extensions of the
original field content.

Presently one does not know whether these new ideas per-
mit s > 1 interactions. The reason is that even after having
been able to satisfy the L, V), pair condition there may be
second order induced d;; > 4 contributions. As in the case
of self-interacting massive vector mesons the only remaining
remedy is the cancellation of such terms by enlargement of
the first order field content. As long as this can be achieved,
the model exists in the sense of perturbative QFT.

A family of fields which do not pass the L, V pair require-
ment is the class of infinite spin Wigner representations. In
this case the presence in L of an sl field from that class vio-
lates this requirement and therefore cannot interact within
the rules of QFT with any other field. Such fields are called
inert or nonreactive. They only exist as free fields but as
positive energy representations they may interact with the
classical gravitational field through their energy-momentum
tensor [11].

All higher spin fields with s < oo have conserved energy-
momentum tensors which in the massless case are necessarily
string-local. It is an interesting theoretical question whether
there is a “critical” finite spin sqq¢ > 1 above which fields
are inert. The study of the pair condition for higher spin is
expected to reveal the answer.

It is not unreasonable to believe that the sl extended per-
turbation theory marks the true borders within which models
of QFT exist. This does not necessarily contradict the lack of
converge (in certain models known and generally expected)
of perturbation theory. There are many possible explanations
why renormalized perturbation theory cannot be used for
establishing the mathematical existence of a model of QFT.

The localized fields may be too singular for their use in
existence proofs of models of QFT. The idea that the avoid-
ance of singular pl or sl fields may be important for existence
proofs of models of QFT is corroborated by the “top-down”
construction of certain two-dimensional integrable models in
which one starts with their known S-matrix which contains
information as regards the algebraic structure of the wedge-

15" The difference from the generation of counterterms is that induced
contributions do not enlarge the number of coupling parameters.
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localized algebras. By showing the existence of nontrivial
intersections corresponding to compact localized algebras
one arrives at the construction of a system of local algebras
which fulfills all the properties of an algebraic QFT [12].
The question of whether it contains generating pl or sl fields
remains open.

5 Gauge theory and local quantum physics

Despite significant conceptual differences between GT and
SLFT there are also formal analogies. A comparison between
these two ways of describing QFT of s = 1 fields leads to a
better understanding of their mutual relation. In the absence
of interactions the differences only affect a subtle point in the
interpretation of causality in gauge-invariant Wilson loops
(Sect. 3), but they increase in the presence of interactions.
The construction of the globally gauge-invariant S-matrix is
a good illustration of the conceptual differences between the
two settings.

The CGI BRST operator formalism handles this problem
in the following way. Instead of (4) one writes

AR () — 0,0% = ALK () (38)

where K refers to Krein space, Allf is the massive vector
potential in the Feynman gauge, ¢X is a massive free scalar
field with the opposite sign in its two-point function (the
auxiliary “Stiickelberg field”), and Aﬁ’K is a substitute for
the Proca potential which does not explicitly appear in the
Krein Fock space but plays the role of emulating Wigner
particle states in expectation values or matrix-elements of
gauge invariant operators between such states to space.

As noticed by Mund (private communication), the Krein
space candidate of a Proca field has indeed the same two-
point function as its Hilbert space analog; but being an object
in a larger Krein space (the tensor product of two Krein space
it is at only a cohomolgical emulation of a physical Wigner
operator. Such emulations of Wigner states searched for but
overlooked in [34].

Whereas ¢X adds unphysical degrees of freedom and
remains in the massless limit, the SLFT sl escort ¢ results
from a rearrangement of existing physical degrees of free-
dom'® and plays no role in the properties of the massless
limit.

Using the ghost rules (10) one defines a LX, QlIf pair
which fulfills [9]

16 Remember the analogy to Cooper pairs from rearrangements of
condensed matter degrees of freedom which causes the short range
nature of vector potentials in the superconducting phase.

sLX — 9" =0, hence sS™V =0, (39)
sTLELY —arT R L% — o TLX 0/f =0,

hence sS@ = 0.

In analogy to the e-independence (35), but with the signifi-
cant conceptual difference that, whereas d acts on the indi-
vidual spacetime string directions, the globally acting BRST
nilpotent s has no physical interpretation of its own, but it
only serves to extract a physical S-matrix from an unphysi-
cal point-local Krein space description.

The formal analogy of the SLFT Q formalism (35) with
(39) stands in contrast to the quite different behavior of the
two Q’s in the massless limit which only exists for QX . The
indefinite metric has its strongest unphysical manifestation
in the GT of quantum electrodynamics since a physical pl
electron field coupled to massless vector mesons does not
exist, not even as a singular field in the sense of (6), since the
escort field ¢ (in contrast ¢X) diverges as m ! for m — 0.

Whereas the gauge formalism provides no warning con-
cerning fundamental conceptual changes, the positivity
respecting SLFT signals these changes in the relation
between fields and particles (the breakdown of scattering
theory and the Wigner—Fock particle structure of the Hilbert
space) through the breakdown of its perturbative formalism
(the m~! divergencies in the V,,, Q).

The important message from the SLFT perturbation the-
ory is to avoid the direct construction of the operators and the
Hilbert space in the presence of massless vector mesons and
instead obtain the massless theory through the massless limit
of the massive vacuum expectation values (SLFT Wightman
functions). This extends the almost trivial free field obser-
vation that (despite the significant difference of the Wigner
operators of massive spin and massless helicity representa-
tions) the s/ two point correlation functions of former pass to
those of the latter. The differences on the level of operators
and Hilbert space would reappear if one uses the correlation
functions in a Wightman operator reconstruction.

Since the S-matrix is gauge invariant it is plausible that
its perturbative logarithmically infrared divergent QED limit
can be used to extract prescriptions for gauge-invariant
photon-inclusive cross sections (Bloch—Nordsiek [28] and its
relativistic YFS refinement [29]). The same problem exists
in SLFT, but being a full QFT with a physical localization in
Hilbert space, it is a better starting point for a future space-
time understanding of “infraparticles” and their collision the-
ory. One conjecture is that the long-ranged string localization
of charge-carrying fields “dissolves” the mass shell and con-
verts it into a weaker cut-like singularity at the electron mass;
this would lead to a vanishing large-time (LSZ) limit for a
collision of charges particles with a finite number of outgo-
ing photons and explain the formal necessity to sum over
infinitely many infrared photons.
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Another problem for which the SLFT setting is expected
to play a pivotal role is the issue of confinement. Here the
important observation is that all massless model of GT in all
covariant gauges are free of off-shell infrared problems; for
nonabelian GT this has been shown in the work of Hollands
[35].

This is expected to change in SLFT since the independent
directional fluctuations in the presence of sl fields lead to
stronger long-distance fluctuation. If this leads to off-shell
logarithmic divergencies in correlations containing in addi-
tion to pl hadronic composite fields also sl gluon and quark
fields, this would be a very strong indication that the resum-
mation of logarithmic mass divergencies and the subsequent
m — 0 limit in fact leads to a vanishing of those correlations
functions, so that only pure hadronic and gluonium corre-
lations remain. The quarks and gluons disappear, but their
traces are imprinted on the observed particles.

A good insight into the differences between GT and
SLFT requires to understand the conceptual position of the
Coulomb/radiation gauge. As a vector potential which lives
in Hilbert space it historically precedes sl fields; but due to
its lack of covariance it was not suited for the use in renor-
malized perturbation theory. Since it is the only positivity-
maintaining rotational invariant vector potential, it must be
identical to the rotational averaged sl potential in which the
space-like e is integrated over a unit sphere in a space-like
hyperplane (this is not a gauge transformation). Hence both
potentials live in the same Hilbert space.

As a positivity-obeying vector potential it is not a mem-
ber of GT in the sense that this terminology was used in the
present paper, where it is reserved for cases in which indefi-
nite metric degrees account for the freedom of gauge trans-
formations. Radiation-like potentials exist for all sl tensor
potentials.

There are some puzzling observations about symmetries,
which originally came from the CGI perturbative implemen-
tation of on-shell gauge invariance sS = 0. Starting with the
most general PCB obeying ansatz of an interaction density
of self-interacting massive vector mesons,

L= fabeF“"™ASPASC+ - (40)

with arbitrary real coupling coefficient f,;. and additional
contributions containing ¢X and ghosts, one finds that the on-
shell gauge invariance of S (39) leads to strong restrictions of
the parameters [9, 10]. In particular, the f,;. have to satisfy
the Lie-algebra relation of the adjoint representation. This
holds even if the masses are different.!’

Although the more involved second order calculations in
the SLFT setting have not been finished at the time of writ-
ing, the formal similarities between the implementation of

17" The restrictions from gauge invariance lead to restrictions on the
masses but do not require them to be equal.
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operator gauge invariance (39) and the delocalization pre-
venting L, Q,, restriction strongly suggest that this prop-
erty also holds in SLFT. This would realize an old dream
of Raymond Stora proving that the Lie-algebra structure of
self-interacting vector mesons is a consequence of the foun-
dational causal localization principles of QFT and did not
enter through the quantization parallelism to classical gauge
theory.

This symmetry is very different from the concept of inner
symmetries according to which every symmetric theory can
be converted into a less symmetric model (more coupling
parameters) by maintaining its field content but allowing the
masses of the multiplet to be different.

Inner symmetries are well understood within the
Doplicher-Haag—Roberts superselection theory according to
which the superselection sectors of an observable algebra
have the composition structure of the dual of a compact group
[22].

The Lie structure of self-coupled vector mesons on the
other hand is different since it continues to exist in the pres-
ence of unequal masses and does not permit a weakening
toward a less symmetric self-interaction, Hence attempts to
explain it as a SSB of an internal symmetry are digressive.
This applies in particular to the proposal to the formal inter-
pretation of gauge symmetry as an inner symmetry in a Krein
space setting.

This phenomenon does not occur for s < 1; there all
symmetries are conventional inner symmetries. It would be
interesting to see whether there exist consistent higher spin
models containing s > 1 self-interacting sl potentials in with
the self-couplings come with an intrinsic Lie group structure.

This could explain why theoreticians using methods of
algebraic QFT always had problems with gauge symmetries
[22] and why a foundational understanding requires new
ideas [30]. It would be very interesting to see whether the
perturbative results within SLFT can shed new light on these
age old problems of local quantum physics.

6 An outlook

As stated in the introduction, the principal motivation for
writing this paper is to direct attention to the beginnings
of a new development in QFT whose aim is to preserve
renormalizability within a Hilbert space setting. The present
attempt focuses on those conceptual properties which distin-
guish the new setting from that of gauge theory, but left out
important mathematical details, partly because they do not
yet exist and also because those which are meanwhile avail-
able will be contained in forthcoming work by Jens Mund
[20,21].

The main aim of this paper is the presentation of some
ideas about an extension of renormalization theory to inter-
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acting string-local vector mesons. Since d;q = 1 for all sl
s > 1, the mere fulfillment of the a’si‘g‘lt < 4 power count-
ing restriction for controlling short distances in terms of sl
fields is easy, but there arises a new large-distance problem
which has no analog for s < 1 interactions. The new danger
is now that the sl interaction leads to completely delocalized
fields in higher orders. To avoid this, the first order sl inter-
action density L must be part of a so-called L, V,, pair which
turns out to be a rather strong restriction whose implementa-
tion and consequences have only been studied for sl vector
mesons.

Even after its fulfillment there may be a higher order vio-
lation of PCB which requires to extend the model by com-
pensating contributions from couplings with additional lower
spin fields. The presently only known illustration of this com-
pensatory mechanism is provided by self-interacting vector
mesons in which case the compensating lower spin fields are
Hermitian scalar H fields.

The new setting does not invalidate gauge theory, it
rather highlights its restricted physical range. GT permits
a correct description of the S-matrix of interaction mas-
sive vector mesons and local observables, but the physics
behind gauge-variant fields remains outside its physical
range. This includes the problem of quark confinement
and also the spacetime understanding of scattering prob-
lems in QED. Within the limitations of gauge invariance,
gauge theory is a very successful placeholder of a QFT of
s = 1 particles.

Disregarding structural theorems (TCP, Spin&Statistics,
derivation of large-time scattering, etc.) whose proof requires
Hilbert space positivity [2], the BRST perturbative formu-
lation accounts for the perturbative gauge-invariant local
observables (field strength, currents) and—which guaranteed
the success of GT in the Standard Model—of the perturbative
unitary S-matrix. What is missing are the matter fields which
relate the world of the causal localization principles of QFT
with the measurable world of Wigner particles. The close
connection between positivity and causality prevents GT to
account correctly for the physical localization properties at
large distances (infrared problems).

In order to go beyond gauge theory, the SLFT Hilbert
space setting for the S-matrix must be extended to the cal-
culation of string-local correlation functions, a task which
goes significantly beyond the construction of the string-
independent S-matrix.
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