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Abstract We compute the next-to-leading order virtual
QCD corrections to Higgs-pair production via gluon fusion.
We present analytic results for the two-loop contributions
to the spin-0 and spin-2 form factors in the amplitude. The
reducible contributions, given by the double-triangle dia-
grams, are evaluated exactly while the two-loop irreducible
diagrams are evaluated by an asymptotic expansion in heavy
top-quark mass up to and including terms of O(1/m8

t ).
Assuming that the finite top-quark mass effects are of similar
size in the entire range of partonic energies, we estimate that
mass effects can reduce the hadronic cross section by at most
10 %.

1 Introduction

After the discovery of the Higgs boson in Run 1 of the Large
Hadron Collider (LHC) [1,2], one of the major targets of Run
2 is the experimental exploration of its properties. In Run 1,
the measured Higgs boson production rate and the extracted
values of the Higgs couplings to fermions and to gauge
bosons have been found to be compatible with the predictions
of the Standard Model (SM) within an experimental accuracy
of (10–20) % [3]. On the other hand, the self-couplings of
the Higgs boson, which in the SM are determined in terms
of the mass of the Higgs boson and the vacuum expectation
value of the Higgs field and are thus fully predicted, have
not been probed yet. They are accessible in multi-Higgs pro-
duction processes [4,5] though a measurement of the quartic
Higgs self-coupling lies beyond the reach of the LHC [6,7].
Instead, for the trilinear Higgs self-coupling various studies
showed that it might be accessible at the LHC in Higgs-pair
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production in bb̄γ γ [8–13], bb̄τ τ̄ [9,14], bb̄W +W − [15]
and bb̄bb̄ [16–18] final states and in Higgs-pair production
in association with two jets [19,20] and a t t̄ pair [21].

Higgs-pair production is not only interesting as a probe
of the trilinear Higgs self-coupling, but its rate can be sig-
nificantly modified by new physics effects. For the domi-
nant Higgs-pair production mode, gluon fusion, this can, for
instance, occur due to new loop contributions [22], in models
with novel hht̄ t coupling [23–25] or if the Higgs boson pair
is produced through the decay of a heavy new resonance.
The latter two possibilities can lead to a strong increase of
the cross section. First limits on such scenarios have been
given in Refs. [26–30].

A precise prediction of the gluon fusion Higgs-pair pro-
duction channel is essential to constrain new physics or to
determine the Higgs self-coupling. The gluon fusion pro-
cess is mediated by heavy fermions via diagrams with box
and triangle topologies and is hence loop-induced already
at the leading order (LO). In the “triangle” contribution a
single Higgs boson splits via an s-channel exchange into
two Higgs bosons, thus it contains the trilinear Higgs self-
coupling. The “box” contribution plays the role of an irre-
ducible background, as it does not incorporate the trilinear
Higgs self-coupling.

In the SM, the LO cross section is fully known since the
late 1980s [31]. However, similarly to what happens in sin-
gle Higgs production, one expects the LO contribution to
be subject to large radiative corrections. A computation of
a 2 → 2 process at higher orders is extremely challenging.
The next-to-leading order (NLO) “triangle” contribution can
be borrowed from the production of a single Higgs boson
[32–35], whereas a full computation of the NLO “box” form
factors is at the moment not available and technically much
more difficult. Higher order corrections to Higgs-pair pro-
duction are, however, available in the effective theory with
infinite top mass, mt , or, equivalently, in the limit of vanishing
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external momentum, at NLO [36] and more recently also at
next-to-next-to-leading order (NNLO) [37,38].1 Soft gluon
resummation at next-to-next-to-leading-logarithmic (NNLL)
accuracy has been performed in Refs. [44,45]. Whereas the
approximation of small external momenta was shown to
work quite well for single Higgs production [32], it can be
expected to be less effective for pair production, due to the
larger energy scale that characterizes the latter process. The
approximation can, however, be improved by factoring out
the full LO cross section. The error due to the infinite top-
mass limit for the part related to the real corrections has been
estimated in Refs. [46,47] to be roughly −10 % by compar-
ing the mt → ∞ limit result with the numerical calcula-
tion of the real corrections with full top-mass dependence.
Instead, the uncertainty of the effective-theory result for the
virtual corrections has been estimated in Refs. [48] by the
inclusion of higher orders in an expansion in small external
momenta finding a positive shift with respect to the mt → ∞
result. This leads to an estimate of the uncertainties due to
mass corrections at NLO, including also the real contribu-
tions expanded in small external momenta, of ±10 %, with
a reduction to ±5 % when the NNLO effective-theory result
is included [49].

In this paper we reexamine the evaluation of the virtual
NLO QCD corrections in Higgs-pair production. We present
an exact result for the reducible contribution given by the
double-triangle diagrams, while the irreducible diagrams are
evaluated via an asymptotic expansion in the top mass. Our
work differs from similar previous analyses in Refs. [48,49]
by the fact that we perform the asymptotic expansion up to
and including terms O(1/m8

t ) at the level of the amplitudes
and not of the cross section, allowing us to derive simple
analytic expressions for the spin-0 and spin-2 form factors
in the amplitudes. The latter could be used in the future as
a check of the result, in the relevant center-of-mass partonic
energy region, when a complete calculation of the virtual cor-
rections will be available. Furthermore, our expressions can
easily be implemented in Monte-Carlo codes that compute
the hadronic cross section in order to achieve a better descrip-
tion of the partonic center-of-mass energy region below the
2 mt threshold.

In order to quantify the finite top-mass effects in the NLO
corrections to the hadronic cross section we make two dif-
ferent comparisons: (i) We compare the NLO cross sections
computed using different orders in the top-mass expansion.
(ii) We compare the cross section including the O(1/m8

t )

terms with the one computed factorizing the exact LO cross

1 For beyond the SM extensions, NLO QCD corrections in the limit for
vanishing external momenta are available for the SM with additional
dimension six operators [39], for an additional scalar singlet [40], for
the two-Higgs doublet model [41], for composite Higgs models [42],
for the MSSM [36,43] and NMSSM [43].

section while evaluating the NLO correction factor in the
mt → ∞ limit.

The paper is organized as follows: in Sect. 2 we give gen-
eral formulas for the Higgs-pair production cross section. In
the next section we discuss different large-mass evaluations
of the LO cross section comparing them with exact result. In
Sect. 4 we outline our method of calculation of the NLO cor-
rections that are presented in the next section where we also
discuss their numerical impact and the estimate of the error
due to the mass effects in the virtual corrections. Finally, in
Sect. 6 we draw our conclusions. The paper is completed
with an appendix where we present the analytic result for
the expanded NLO form factors up to and including terms of
O(1/m8

t ).

2 Double Higgs production via gluon fusion

In this section we summarize some general results on the
Higgs boson pair production via the gluon fusion mechanism
in proton–proton collisions, pp → H H . The hadronic cross
section for the process p+ p → H+H+X at center-of-mass
energy

√
s can be written as:

M2
H H

d σ

d M2
H H

=
∑

a,b

∫ 1

0
dx1dx2 fa(x1, μ

2
F ) fb(x2, μ

2
F )

×
∫ 1

0
dz δ

(
z − τ

x1x2

)
M2

H H
d σ̂ab

d M2
H H

, (1)

where M2
H H is the invariant mass of the two Higgs system,

τ = M2
H H /s, μF is the factorization scale, fa(x, μ2

F ), the
parton density of the colliding proton for the parton of type
a, (a = g, q, q̄) and σ̂ab is the cross section for the partonic
subprocess ab → H + H + X at the center-of-mass energy
ŝ = x1x2s. The partonic cross section can be written in terms
of the LO cross section σ (0) as:

M2
H H

d σ̂ab

d M2
H H

= σ (0)(zŝ) z Gab(z), (2)

where, up to NLO terms,

Gab(z) = G(0)
ab (z) + αs(μR)

π
G(1)

ab (z) (3)

with μR denoting the renormalization scale. The LO contri-
bution is given by the gluon–gluon (gg) channel only, i.e.

G(0)
ab (z) = δ(1 − z) δag δbg . (4)

The amplitude for gμ
a (p1)gν

b (p2) → H(p3)H(p4) can be
written

Aμν = Gμ√
2

αs(μR)

2π
δab TF ŝ

[
Aμν

1 F1 + Aμν
2 F2

]
(5)
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where TF is the matrix normalization factor for the funda-
mental representation of SU (Nc) (TF = 1/2) and the form
factors F1, F2 are functions, besides of m2

t , of the partonic
Mandelstam variables

ŝ = (p1 + p2)
2, t̂ = (p1 − p3)

2, û = (p2 − p3)
2. (6)

In Eq. (5) the orthogonal projectors A1 and A2 onto the spin-
0 and spin-2 states, respectively, in nd = 4 − 2 ε dimension
and normalized to 2 read

Aμν
1 =

√
2

nd − 2

[
gμν − pν

1 pμ
2

(p1 · p2)

]
(7)

Aμν
2 =

√
nd − 2

2(nd − 3)

{
nd − 4

nd − 2

[
gμν − pν

1 pμ
2

(p1 · p2)

]
+ gμν p2

3 pν
1 pμ

2 − 2 (p3 · p2) pν
1 pμ

3 − 2 (p3 · p1) pν
3 pμ

2 + 2 (p1 · p2) pμ
3 pν

3

p2
T (p1 · p2)

}

(8)

with pT the transverse momentum of the Higgs particle that
can be expressed in terms of the Mandelstam variables as

p2
T = t̂ û − m4

H

ŝ
. (9)

The spin-2 state receives contributions only from box
topologies (see Fig. 1) while in the spin-0 case both box
and triangle diagrams contribute such that F1 takes the form

F1 = F


3m2
H

ŝ − m2
H

+ F� (10)

where F
(F�) is the contribution of the triangle (box) dia-
grams.

The Born cross section is written as

σ (0)(ŝ) = G2
μα2

s (μR)

512 (2 π)3

∫ t̂+

t̂−
dt̂

{∣∣∣TF F1�
1 (ŝ)

∣∣∣
2 +

∣∣∣TF F1�
2 (ŝ)

∣∣∣
2
}

(11)

with t̂± = −ŝ/2(1−2 m2
H/ŝ∓

√
1 − 4 m2

H/ŝ). The one-loop
form factors F1�

1 , F1�
2 are fully known analytically [31,50]

and their values in the limit of vanishing external momen-
tum can be obtained via a low energy theorem (LET) calcula-
tion [51–53] giving F1�,LET


 = −F1�,LET
� = 4/3, F1�,LET

2 =
0, which correspond to the effective theory mt → ∞
result.

H

H

H

g

g H

Hg

g

Fig. 1 Generic Feynman diagrams for box and triangle topologies for
Higgs-pair production

The NLO terms include, besides the gg channel, also the
one-loop induced processes gq → q H H and qq̄ → gH H .
The gg-channel contribution, involving two-loop virtual cor-
rections to gg → H H and one-loop real corrections from
gg → H Hg, can be written as

G(1)
gg (z) = δ(1 − z)

[
CA

π2

3
+ β0 ln

(
μ2

R

μ2
F

)
+ CNLO

]

+Pgg(z) ln

(
ŝ

μ2
F

)
+ CA

4

z
(1 − z + z2)2 D1(z) + CA Rgg, (12)

where

CNLO

=
∫ t̂+

t̂−
dt̂

[(
TF F1�

1

)∗
TF

(
F2�

1 +F2

1

) + (
TF F1�

2

)∗
TF

(
F2�

2 +F2

2

) ]

∫ t̂+
t̂−

dt̂
(∣∣TF F1�

1

∣∣2 + ∣∣TF F1�
2

∣∣2
)

+ h.c.. (13)

In Eq. (12), CA = Nc (Nc being the number of colors),
β0 = (11 CA − 2 N f )/6 (N f being the number of active
flavors) is the one-loop β-function of the strong coupling in
the SM, Rgg is the contribution of the real corrections, Pgg

is the LO Altarelli–Parisi splitting function

Pgg(z) = 2 CA

[
D0(z) + 1

z
− 2 + z(1 − z)

]
, (14)

and

Di (z) =
[

lni (1 − z)

1 − z

]

+
. (15)

The first line of Eq. (12) displays the two-loop virtual con-
tribution regularized by the infrared singular part of the real-
emission cross section. In Eq. (13) the terms F2�

1 and F2�
2 con-

tain the contribution of irreducible two-loop diagrams (see
Fig. 2a, c, d) and in the limit of vanishing external momenta
they read F2�


 = −F2�
� = −CF +5/3 CA, F2�

2 = 0 [36] with
CF = (N 2

c − 1)/(2 Nc). The term F2

1 (F2


2 ) represents the
contribution of the two-loop double-triangle diagrams with
a t/u-channel gluon exchange (Fig. 2b) to the spin-0 (spin-
2) part of the amplitude. In the limit of vanishing external
momenta the double-triangle diagrams can be expressed in
terms of F1�,LET


 as

F2

1 → 1

2
TF

(
F1�,LET




)2
and
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H

Hg

g H

Hg

g

H

Hg

g H

Hg

g

(a) (b)

(c) (d)

Fig. 2 Sample of Feynman diagrams for the virtual two-loop correc-
tions to Higgs-pair production via gluon fusion

F2

2 → −1

2
TF

p2
T

2t̂ û
(ŝ − 2 m2

H )
(

F1�,LET



)2
. (16)

The second line in Eq. (12) contains the non-singular
contribution from the real gluon emission in the gluon-
fusion process. The function Rgg is obtained from one-
loop diagrams where quarks circulate in the loop, and in
the limit of vanishing external momenta it becomes Rgg →
−11(1−z)3/(6z). The contributions of the gq → q H H and
qq̄ → gH H channels are given by

G(1)
qq̄ (z) = Rqq̄ ,

G(1)
qg (z) = Pgq(z)

[
ln(1 − z) + 1

2
ln

(
ŝ

μ2
F

)]
+ Rqg, (17)

where

Pgq(z) = CF
1 + (1 − z)2

z
. (18)

The functions Rqq̄ and Rqg in (17) are obtained from one-
loop quark diagrams, and in the limit of vanishing exter-
nal momenta become Rqq̄ → 32 (1 − z)3/(27z), Rqg →
2 z/3 − (1 − z)2/z.

3 Large-mass evaluation of the LO cross section

Even though the one-loop form factors F1�
1 , F1�

2 are fully
known analytically [31,50], we will give here approximate
results in order to inspect the validity range of the applied
approximations. This will later on allow us to apply the same
approximations to the NLO cross section, where the full form
factors are yet unknown.

We discuss the large top-mass-expansion evaluation of the
LO cross section. We start by reporting the expressions that
we obtained via a Taylor expansion for ŝ, t̂, û, m2

H � m2
t up

to and including O(1/m8
t ) terms

F1�

 (ŝ) = 4

3
+ 7

90

ŝ

m2
t

+ 1

126

ŝ2

m4
t

+ 13

12600

ŝ3

m6
t

+ 8

51975

ŝ4

m8
t
, (19)

F1�
� (ŝ) = − 4

3
− 7

15

m2
H

m2
t

− 45 m4
H − 14 m2

H ŝ + 6ŝ2

315 m4
t

+ 13

630

p2
T ŝ

m4
t

− 780 m6
H − 620 m4

H ŝ + 355 m2
H ŝ2 − 16 ŝ3

18900 m6
t

− p2
T (11 ŝ2 − 36 m2

H ŝ)

1890 m6
t

− 2400 m8
H − 3480 m6

H ŝ + 2955 m4
H ŝ2 − 704 m2

H ŝ3 + 120 ŝ4

207900 m8
t

+ p2
T ŝ(114 m4

H − 85 m2
H ŝ + 16 ŝ2 − 8 p2

T ŝ)

10395 m8
t

, (20)

F1�
2 (ŝ) = p2

T

m2
t

{
− 11

45
− 62 m2

H − 5 ŝ

630 m2
t

− 400 m4
H − 156 m2

H ŝ + 49 ŝ2

12600 m4
t

+ 103

18900

p2
T ŝ

m4
t

− 980 m6
H − 867 m4

H ŝ + 469 m2
H ŝ2 − 34 ŝ3

103950 m6
t

+ p2
T ŝ(24 m2

H − 7 ŝ)

4950 m6
t

}
. (21)

The evaluation of the LO cross section using for F1 and
F2 the values obtained via the LET calculation, i.e. the lead-
ing term in the large top-mass expansion in Eqs. (19)–(21),
gives a poor approximation of the exact result. Furthermore,
the validity of this approximation is quite sensitive to the
hadronic center-of-mass energy and to the choice of the
renormalization and factorization scales [54]. This is at vari-
ant with the case of single Higgs production where the LET
result gives a quite accurate estimate of the cross section.
Indeed, the LET result is expected to be reliable in the region
of partonic energies below the

√
ŝ < 2 mt threshold. In

Higgs pair production, also the region above the 2 mt thresh-
old contributes significantly to the hadronic cross section up
to

√
ŝ ∼ 600–700 GeV. In the latter region the vanishing

external momenta condition is obviously not satisfied and
therefore the result obtained in this approximation is unreli-
able.

The inclusion of more terms in a large top-mass expansion
of the form factors does not improve the evaluation of the LO
cross section [54,55]. The reason is easily understood look-
ing at the plots in Fig. 3. They are obtained evaluating the
F1 form factor with pT randomly generated but distributed
as for the integration of the full LO cross section. The spread
in the points for equal

√
ŝ is induced by the difference in the

value of pT for fixed
√

ŝ. The LET result2 (Fig. 3a) approx-
imates relatively well the exact result for F1�

1 in the region

2 In Fig. 3a the exact cancelation in the LET result between the box and
the triangle contributions at the 2 m H threshold is manifest, whereas in
the full result the cancelation between these two contributions is not
perfect.
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(a) (b)

Fig. 3 a LET result for F1�
1 normalized to the real part of the exact F1�

1 form factor. b The sum of first five terms of the large top-mass expansion
of F1�

1 (Eqs. (19) and (20)) normalized to the real part of exact F1�
1 form factor

√
ŝ � 2 mt but it fails in describing the region

√
ŝ > 2 mt

when
√

ŝ � 450 GeV. The sum of the first five terms in the
large top-mass expansion of F1�

1 (Fig. 3b) reproduces quite
well the exact results when

√
ŝ � 400 GeV while the region√

ŝ > 400 GeV is described very badly, worse than in the
LET case. Similar considerations apply to F1�

2 .
We remark that the evaluation of F1 and F2 via a large

mass expansion has a range of validity up to the 2 mt thresh-
old. Describing the region above this threshold via the LET
results means to replace the exact form factors by constant
values. Instead using the sum of few terms in the large-mass
expansion means to replace F1 and F2 by a powerlike combi-
nation of ŝ/m2

t that has a wrong behavior when ŝ grows. As a
consequence, the partonic cross section in Eq. (11) grows, for
large values of the partonic center-of-mass energy, as ŝ in the
former case, while as ŝn+1/m2n

t in the latter case with n the
order of the expansion. Although in both cases the behavior
of the partonic cross section in the region

√
ŝ > 2 mt is not

described correctly, it is evident that in this region the cross
section is much better (or less worse) approximated by its
LET value than by including additional terms in the large-
mass expansion. As a further remark, we recall that the full
form factors develop an imaginary part above

√
ŝ > 2 mt ,

which cannot be described by an expansion in small external
momenta. This imaginary part is, however, smaller than the
real part up to

√
ŝ ≈ 450 GeV.

In Fig. 4 we present the partonic cross section as a func-
tion of

√
ŝ. The exact cross section (solid black line), σ (0)

ex , is
compared with the approximated ones (dashed colored lines),
σ

(0)
app,n , obtained using for the form factors the expansions in

Eqs. (19)–(21) to the order n. The figure tells us that the valid-
ity of an estimate of the hadronic cross section from Eq. (1)
based on the use of σ

(0)
app,n depends on the relative weights

in the hadronic integral of the regions where σ
(0)
app,n < σ

(0)
ex

vs. σ (0)
app,n > σ

(0)
ex and how these two regions can compensate

each other. With the increase in the hadronic energy, regions
with larger

√
ŝ are going to contribute more to the hadronic

Fig. 4 Leading order partonic cross section as a function of the partonic
center-of-mass energy. The solid line corresponds to the exact result,
the dashed ones to the results obtained using different terms in the large
top-mass expansion

cross section, so that the LET approximation is going to grow
in size and therefore become either closer to the full cross
section or overestimating it. For instance for

√
s = 100 TeV

the LET result overestimates the full cross section by a factor
∼ 2.2.

Figure 4 indicates that an estimate of the LO hadronic
cross section obtained employing the large-mass expanded
results for F1 and F2 in the entire range of partonic energies
is not going to be realistic. An alternative estimate, based on
the use of the maximal approximate information available
and on simplicity, can be obtained by evaluating F1 and F2

via a large-mass expansion only up to a cut
√

ŝc in the par-
tonic center-of-mass energy while above

√
ŝc, where we do

not trust any more the expansion, setting them to their LET
values.3 This can be considered an improvement with respect

3 These F1 and F2 functions are not continuous at
√

ŝc.
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Table 1 Values in fb of the LO cross section computed using the large-mass expansion results of F1 and F2 of Eqs. (19)–(21) for partonic energies
up to

√
ŝc (in GeV) while for partonic energies greater than

√
ŝc approximating F1 and F2 with their LET values

√
ŝc = ∞ √

ŝc = 450
√

ŝc = 400
√

ŝc = 350
√

ŝc = 300
√

ŝc = 0

1/m2
t 23.18 20.12 19.80 19.49 19.25 19.17

1/m4
t 1703 22.63 20.96 19.90 19.32 19.17

1/m6
t 4678 23.80 21.52 20.09 19.36 19.17

1/m8
t 7.766 × 106 25.84 22.18 20.25 19.38 19.17

to an evaluation based only on the LET result because we are
describing better the region

√
ŝ < 2 mt .

In Table 1 we report the values of the LO hadronic cross
section computed employing different orders in the expan-
sion of F1 and F2 from Eqs. (19)–(21) in the region below√

ŝc while above it the LET values are used. The values for
the cross section are obtained using a modified version of
the code HPAIR [56], with

√
s = 14 TeV, mt = 173.2

GeV, m H = 125 GeV and employing the parton distribu-
tion functions (pdf) MSTW08 [57–59]. The αs value is taken
as the default in the pdf set, namely αL O

s (m Z) = 0.13939.
The renormalization and factorization scales have been set to
μR = μF = MH H /2 as suggested by the NNLL threshold
expansion performed in Ref. [45]. The numbers in the table
should be compared with the exact LO result4 that, including
also the bottom contribution, reads

σ full
LO = 23.38 fb. (22)

Note that the bottom quark loops contribute with less than
1 %. One can see from the first column in the table that the
use of the large mass expansion in the entire range of partonic
energies gives rise to a non-convergent result. The table also
shows that the if

√
ŝc is taken around 400 GeV the LO cross

section obtained in this way is closer to the exact result than
the one that is obtained using the LET results (last column
of the table).

4 Outline of calculation

An exact analytic evaluation of the two-loop QCD correc-
tions to the F1 and F2 form factors is presently not available.
Exact expressions for F2


1 and F2

2 can be derived given the

structure of the double-triangle diagrams (Fig. 2b) that allows
one to express the result in terms of products of one-loop
Passarino–Veltman functions [60]. An exact analytic result
for F2l


 can be obtained by adapting the corresponding calcu-
lation in single-Higgs production [32–35]. Instead the exact
analytic evaluations of F2�

� and F2�
2 seem, at the moment,

4 Note that wherever we use the exact LO cross section we include
always the bottom quark loops.

beyond our computational ability. However, it seems feasi-
ble to obtain an approximate evaluation of latter form factors
using the method of asymptotic expansions [61,62]. Two dif-
ferent kind of expansions must be employed according to the
region of partonic energy one is considering: for

√
ŝ � 2 mt

a large-mass expansion in the top mass has to be performed
while in the complementary region (

√
ŝ � 2 mt ) a large

momentum expansion is required.5 Here we provide a first
step in the evaluation of the O(αs) corrections to F1 and F2

via asymptotic expansions addressing the large-mass case.
The large top-mass expansions of the two-loop diagrams

contributing to F2�
� and F2�

2 is performed using the strategy
described in Ref. [63] that we briefly recall here. The relevant
diagrams are generated with the help of FeynArts [64],
and contracted with the projector Aμν

1 (Aμν
2 ) to extract the

F1 (F2) contribution. Then they are separated in two classes:
(i) those that can be evaluated via an ordinary Taylor expan-
sion in powers of ŝ/m2

t , t̂/m2
t and û/m2

t ; (ii) the diagrams
that require an asymptotic expansion, i.e. those that when
Taylor-expanded in the external momenta exhibit an infrared
(IR) divergent behavior.

Class-(i) diagrams require the evaluation of the generic
integral

v( j1, . . . , j9, m1, m2, m3) =
∫

d4k1 d4k2

× (k1.p1)
j1(k1.p2)

j2(k1.p3)
j3(k2.p1)

j4(k2.p2)
j5(k2.p3)

j6

(k2
1 − m2

1)
j7(k2

2 − m2
2)

j8((k1 + k2)2 − m2
3)

j9

(23)

where any exponent j1 − j9 is either 0 or a positive inte-
ger and the propagator masses, m1−m3, are either mt or 0.
The integral (23) can be reduced to vacuum integrals, i.e.
v(0, . . . , 0, j7, j8, j9, m1, m2, m3), using the tensor reduc-
tion formula presented in Ref. [65]. The two-loop vacuum
integrals obtained from the reduction can be evaluated using
the results of Ref. [66].

The two-loop diagrams that belong to class (ii) are those
containing either two triple-gluon vertices (Fig. 2c) or one

5 Note that for
√

ŝ � 2 mt , different expansions in t̂/m2
t and û/m2

t
need to be performed, depending on whether t̂ and û are smaller or
larger than (2 mt )

2.

123



Eur. Phys. J. C (2016) 76 :411 Page 7 of 13 411

four-gluon vertex (Fig. 2d). These diagrams become more
and more IR-divergent when the gluon propagators are
Taylor-expanded with respect to the external momenta. The
evaluation of the class (ii) diagrams is obtained by supple-
menting the Taylor-expanded result by the exact computation
of their IR divergent contribution.6 The IR-divergent part of
any diagram is constructed by a repeated application of the
identity in Eq. (3.1) of Ref. [63] controlled by the power
counting in the IR-divergent terms. The outcome of the proce-
dure is that the IR-divergent part of any diagram is expressed
in terms of products of one-loop integrals with numerators
that contain terms of the form (ki · q j )

m (k1 · k2)
n (i =

1, 2 , j = 1, 2, 3) where m, n are generic powers. Finally,
the Passarino–Veltman reduction method is applied to elim-
inate the numerators and express the result in terms of the
known one-loop scalar integrals [60].

5 Virtual corrections to gg → HH

In this section we give the analytical results for the double-
triangle form factors F2


1 and F2

2 and the two-loop form

factors F2�
1 and F2�

2 and discuss their numerical impact.

5.1 Analytic results for the two-loop form factors

We present, for the first time, the exact computation of the
double-triangle diagrams, i.e. keeping the full dependence on
the quark masses. The top contribution to the form factors can
be expressed in terms of one-loop integrals so that, defining

F2
(x) = 8 m4
t

(m2
H − x)2

[
1 + x

(m2
H − x)

×
(

B0(m2
H , m2

t , m2
t ) − B0(x, m2

t , m2
t )

)

+1

2

(
4 m2

t − m2
H + x

)
C0(0, x, m2

H , m2
t , m2

t , m2
t )

]2
,

(24)

we find for F2

1 and F2


2 in Eq. (13)

F2

1 = F2
(t̂) + F2
(û) , (25)

F2

2 = p2

T

t̂
F2
(t̂) + p2

T

û
F2
(û) . (26)

The finite parts of the scalar one-loop integrals appearing in
Eq. (24) are given by

6 The second, disconnected, term in part A of Fig. 1 of Ref. [63] gives
rise to a vanishing contribution because it contains scaleless one-loop
integrals.

B0(x, m2, m2) = 2 + βx log
βx − 1

βx + 1
− log

m2

μ2
R

, (27)

C0(0, x, y, m2, m2, m2) = 1

2(x − y)

×
(

log2 βx + 1

βx − 1
− log2 βy + 1

βy − 1

)
, (28)

with βx = √
1 − 4 m2/x and βy defined in analogy. The bot-

tom contribution can be obtained thorough the substitution
mt → mb in Eq. (24).

The two-loop form factors F2�

 , F2�

� and F2�
2 can be writ-

ten as

F2�
i (ŝ) = CF F2�

i,CF
(ŝ) + CA F2�

i,CA
(ŝ) (i = 
,�, 2) (29)

where F2�
i,CF

is directly obtained from the two-loop vir-
tual diagrams and depends upon the renormalized top-mass
parameter employed that we choose to be the on-shell mass.
The term F2�

i,CA
represents the IR regularized results after

subtraction of the IR poles, i.e.

F2�
i,CA

(ŝ) = Fvirt
i,CA

(ŝ) + δFi,CA (ŝ) (30)

where Fvirt
i,CA

is the contribution of the two-loop virtual dia-
grams and δFi,CA the counterterm required to make it finite
that reads

δFi,CA (ŝ) = 1

2ε2 F1�
i (ŝ, ε)(ŝ)−ε (31)

where F1�
i (ŝ, ε) is the one-loop result including the O(ε, ε2)

terms.
Employing the method described in Sect. 4 we obtained

the large top-mass expansion of the two-loop spin-0 and
spin-2 form factors up to and including terms O(1/m8

t ). The
results are presented in Appendix 1. As in the one-loop case
the form factors are expressed in terms of ŝ, p2

T , m2
H , and

m2
t . The computation was performed first using orthogonal

projectors in nd = 4 − 2 ε dimension (see Eqs. (7, 8)) and
then using orthogonal projectors in nd = 4 dimension. We
found that, after the addition of the counterterm pieces from
Eq. (31), the two results are identical. We checked that, once
the IR counterterm is chosen as in Eq. (31), F2�


,CA
repro-

duces the result for the triangle form factor, which can be
obtained directly adapting the known results on single Higgs
production (cf. Eq. (A2) with Ref. [35]).

Finally, we want to comment on the comparison of our
results with the ones of Refs. [48,49]. These references deal
with the large top-mass evaluation of the NLO cross section
while we concentrated only on the virtual corrections. We
use a different method for the asymptotic expansion com-
pared to Refs. [48,49]. Instead of adding subgraphs and co-
subgraphs we followed Ref. [63], where we only add the IR-
divergent parts, evaluated fully, to the diagrams that exhibit
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IR-divergencies. We work at the level of amplitudes while
in Ref. [48] the total cross section is computed by deriving
the imaginary part of the gg → gg amplitude and connect-
ing it via the optical theorem to the total cross section.7 In
Refs. [48,49] the phase space integrals are computed ana-
lytically which requires an expansion in δ = 1 − 4 m2

H/ŝ
including the s-channel Higgs propagator in the triangle con-
tributions. The result is then expressed as an expansion both
in ρ = m2

H/m2
t and δ. Our approach is instead to compute the

phase space integrals numerically via Monte Carlo methods.
Performing a Monte Carlo integration of the phase space inte-
grals will allow us in the future to include expansions in other
regimes or exact results, once available, in a straightforward
way. We remark that the integration over t̂ in Eq. (13) of the
expanded form factors can easily be done analytically as the
latter are given as power series in t̂ . A precise numerical com-
parison with Refs. [48,49] cannot be performed, since we did
not compute the real radiation part of the gg amplitude.

5.2 Numerical results

We discuss now the numerical impact of the corrections we
computed. The numerical results are obtained with a private
version of the code HPAIR [56] where we implemented our
results. The inputs in the code are the same as in Table 1, but
using the NLO value for the strong coupling, αNLO

s (m Z ) =
0.12018.

We start analyzing the NLO contribution due to the
double-triangle diagrams, i.e. σ (2
) = σ (0)CNLO with F2�

1 =
F2�

2 = 0 (see Eq. (13)). In order to quantify the impact of the
inclusion of the finite mass effects we plot, in Fig. 5, σ (2
)

computed in two ways: (i) exactly (solid line), i.e. with all
the form factors evaluated in full mass dependence, namely
we use for F2


1 (F2

2 ) Eq. (25) (Eq. (26)). (ii) Computing

F2

1 and F2


2 using their LET approximation as given in
Eq. (16), while employing the exact expressions for F1�

1 and
F1�

2 (dashed line). The figure shows that the inclusion of the
finite top-mass effects changes the double-triangle contribu-
tion to the partonic cross section by ∼20–30 %. We remark
that the double-triangle contribution to the hadronic cross
section is actually always very small. Indeed, it amounts to
∼ −0.18 fb while the NLO cross section is around 40 fb.

We turn now to discuss the contribution in CNLO due to F2�
1

and F2�
2 in Eq. (13). We expect our results for F2�

1 and F2�
2

to be quite accurate for
√

ŝ � 400 GeV, in analogy with the
LO case as shown in Fig. 3. This allows us to evaluate the
contribution induced by the mass effects in the virtual part of
the NLO corrections by computing σ (0) CNLO at various order
in the large-mass expansion.

7 In [49] the virtual corrections have been computed also directly from
the cut gg → H H amplitude.

Fig. 5 Double-triangle contribution to the partonic cross section as a
function of the partonic center-of-mass energy. The solid line represents
the exact result using Eqs. (25) and (26), while the dashed one the result
obtained in the LET approximation using Eq. (16)

In Table 2 we report the contribution of

σ (0) CNLO = G2
μα2

s (μR)

512 (2π)3

αs(μR)

π

×
∫ t+

t−
2Re

(
TF F1�,full

1 (TF F 2�,n
1 )∗

+TF F1�,full
2 (TF F2�,n

2 )∗
)

(32)

to the hadronic cross section for few values of an upper cut on
the invariant mass of the two Higgs system,8 Mc

H H , and var-

ious orders in the expansion. In Eq. (32) F1�,full
i , (i = 1, 2)

indicates the exact expression of the one-loop form factor
[31,50], while F2�,n

i is for the expression for the two-loop
form factor we derived (Eqs. (A1)–(A6)) to the relevant order
n. Comparing the LET row with the 1/m8

t one, we find that
the mass effects induce a relative variation with respect to
the mt → ∞ result up to ∼40 %.

Based on the experience gained in single Higgs pro-
duction one expects that the factorization of the exact LO
cross section can improve the mt → ∞ determination of
the hadronic cross section. Applying the same procedure to
a large-mass expansion determination amounts to evaluate
σ (0) CNLO employing for σ (0) the exact LO cross section while
evaluating CNLO at the same order of approximation both in
the numerator and in the denominator. The contribution to
the hadronic cross section of σ 0CNLO computed factorizing
the exact LO cross section is presented in Table 3. Look-
ing at Tables 2 and 3 we notice that the factorization of
the exact LO cross section in the mt → ∞ result has the
tendency to overestimate the NLO cross section as approx-
imated by the 1/m8

t rows in the tables. Both tables show in

8 For the virtual corrections MH H and
√

ŝ coincide.
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Table 2 Contribution (in fb) of
σ (0) CNLO as defined in Eq. (32)
to the hadronic cross section for
few values of an upper cut on
the invariant mass of the two
Higgs system (in GeV)

Mc
H H = 280 Mc

H H = 300 Mc
H H = 350 Mc

H H = 400

LET 0.01037 0.04103 0.2392 0.617

1/m2
t 0.00856 0.03454 0.1950 0.477

1/m4
t 0.01192 0.04638 0.2784 0.775

1/m6
t 0.01335 0.05110 0.3085 0.874

1/m8
t 0.01417 0.05445 0.3414 1.046

Table 3 As Table 2 but with
σ 0CNLO, computed factorizing
the LO cross section (see text)

Mc
H H = 280 Mc

H H = 300 Mc
H H = 350 Mc

H H = 400

LET 0.01785 0.06534 0.3908 1.225

1/m2
t 0.01249 0.04747 0.2880 0.870

1/m4
t 0.01296 0.05085 0.3302 1.090

1/m6
t 0.01339 0.05221 0.3374 1.101

1/m8
t 0.01399 0.05438 0.3587 1.222

the first two columns a good convergence with respect to the
order of the expansion, with the exception of the 1/m2

t term.
As expected, for Mc

H H > 2 mt the convergence starts to
downgrade.

Our analysis cannot say anything about the region of par-
tonic energies

√
ŝ � 400 GeV where our results cannot be

trusted. Concerning the hadronic cross section we can only
make a guess assuming that in both regions,

√
ŝ � 400 GeV

and
√

ŝ � 400 GeV, the variation induced by mass effects
in σ 0CNLO will be of a similar size and behavior so that com-
pensations between the two energy regions are not going to
happen. Comparing the first row in Table 3 with the last one
in Table 2 we find a relative variation ∼ 20 %. We notice
that the contribution of σ 0CNLO to the NLO cross section is
about 10 % of the total, that the contributions we did not
discuss, i.e. Rgg, Rqq̄ and Rqg , when evaluated in the limit
of vanishing external momenta contribute to the total NLO
cross section by ∼ 2 %, and that, according to the analysis
in Refs. [46,47], the finite mass effects reduce the size of the
real contributions with respect their LET estimate. Consid-
ering a maximal case we expect that mass effects are going
to reduce the mt → ∞ value of the NLO cross section by
less than 10 %. This size of variation is indeed found if one
compares the NLO cross section evaluated in the mt → ∞
limit with the LO term factorized, σNLO

LET = 40.00 fb, with the

NLO cross section computed as in Table 1 with
√

ŝc = 400
GeV, the cut in the partonic energy that at LO gives a result
close to the exact LO value. The latter cross section, which is
computed evaluating F2�

i in the region below
√

ŝc using the

1/m8
t order in the expansion, while above

√
ŝc employing

the LET values, amounts to σNLO
ŝc

= 37.86 fb.
Finally, we comment on larger hadronic center-of-mass

energies. At LO, the LET result, e.g. at
√

s = 100 TeV,

approximates the true one worse than at
√

s = 14 TeV. Even
though a large center-of-mass energy gives a stronger weight
to the region where the approximation of large top mass is not
valid, we can expect that our conclusion on the uncertainty on
the hadronic cross section due to mass effects is not going to
change significantly, since the parts of the NLO cross section
that are actually mass dependent are small.

6 Conclusions

In this paper we computed the virtual NLO QCD corrections
in Higgs pair production. The double-triangle contribution
was computed exactly while the spin-0 and spin-2 two-loop
form factors in the amplitude were computed via an asymp-
totic expansion in the top mass up to and including terms
O(1/m8

t ). Analytic results are presented for both contribu-
tions. Before this work F2�

1,2 and F2

1,2 were known only in the

mt → ∞ limit [36].
Our results allow for a more precise evaluation of the NLO

cross section for partonic energies up to
√

ŝ 
 400 GeV.
This energy region is not the one contributing most to the
hadronic cross section, however, its investigation enabled us
to quantify the difference between the NLO result obtained in
the mt → ∞ limit and the true one, where the top mass is kept
finite. Although we did not discuss the large-mass evaluation
of the real contributions Rgg, Rqq̄ , and Rqg , their size, as
estimated from their LET values, is quite small so that even
a 100 % error on these terms will not make a large difference
in the hadronic cross section. Under the assumption that in
both energy regions,

√
ŝ � 400 GeV and

√
ŝ � 400 GeV,

the finite top-mass effects are of similar size and behavior,
we estimated that the true NLO result is going to be smaller
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than the one obtained in the LET limit by less than 10 %. We
remark that while our results for

√
ŝ � 400 GeV are solid,

our estimate of the hadronic cross section, as any other based
on results obtained via a large top-mass expansion, should
be understood just as a guess.

Our analysis differs in several points from previous works
in the literature [48,49]. The main differences are: (i) We
performed the asymptotic expansion at the level of form fac-
tors and not of the cross section as in Refs. [48,49]. (ii) We
did not discuss the real contributions as instead was done
in those works. Point (i) allowed us to compute the virtual
NLO contribution as in Eq. (32) without making use of the
factorization of the exact LO cross section neither at the par-
tonic level for the total cross section as in Ref. [48] nor at
the level of differential factorization, i.e. before the integra-
tion over the Higgs pair invariant mass, as in Ref. [49]. The
factorization of the LO cross section is well known to work
fine in single Higgs production where the exact NLO result
is known [32–35], however, there is no proof that the same
happens also in double Higgs production. From the compar-
ison of Tables 2 and 3 in Sect. 5 it seems that the differential
factorization, which is expected to lead to a better result than
the other possibility since it gives rise to a better-behaved
integrand [49], when the LET result is employed tends to
overestimate the result. Although a detailed comparison of
our results with those of Refs. [48,49] is not possible, we
notice that our results in Tables 2 and 3 exhibit the same
behavior with respect to the order of the expansion of the
soft-virtual cross section of Ref. [49].

Finally, we would like to point out that our work should
be seen as one of the first steps toward a complete calculation
of the two-loop virtual corrections in Higgs-pair production
that can be easily and efficiently implemented into a Monte
Carlo generator. A complete calculation of the NLO correc-
tions, requires one to address, besides the real contributions
that were studied in Refs. [46,47], the computation of the vir-
tual corrections in the energy region

√
ŝ � 400 GeV. These

corrections are very difficult to compute but can be attacked
either via a large momentum expansion calculation or by
numerical methods.
Note added After we submitted the preprint version of this
paper, Ref. [67] appeared on the web. In this paper the authors
compute the NLO QCD corrections with a full top-mass
dependence by numerical methods. According to the anal-
ysis of Ref. [67] the top-mass corrections, i.e. the difference
between the exact and the LET results, are slightly larger
than 10 %, although with the same sign that we predicted.
Concerning the total cross section evaluated including 1/m8

t
terms we find, using the same inputs of Ref. [67], that the
NLO cross section computed factorizing the LO term, i.e. as
in Table 3 with no cut on MH H , amounts to σNLO = 39.31
fb. Instead, if we evaluate the NLO cross section as in
Table 1 with

√
ŝc = 350 (400) GeV, i.e. evaluating F2�

i in

the region below
√

ŝc using the 1/m8
t order in the expan-

sion while above
√

ŝc employing the LET values, we find
σNLO = 36.03 (36.35) fb. The difference between this latter
result and the number quoted in Ref. [67], σNLO = 32.80
fb, is within 10 %, while in the former case, using the LO
factorization, is somewhat larger. We notice that given the
huge amount of computer time needed to produce the result
of Ref. [67], the approach pursued in this paper of looking
for approximate analytic expressions that can describe well
the exact result, qualifies to be probably the only one that can
be followed in order to construct a Monte Carlo generator at
the NLO level.
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Appendix 1: Two-loop form factors in the large top-mass
expansion

In this appendix we provide the two-loop form factors appear-
ing in Eq. (29) expanded in the small external momenta up
to O(1/m8

t ). The triangle form factors read

F2�

,CF

= −1 + 61

270

ŝ

m2
t

+ 554

14175

ŝ2

m4
t

+ 104593

15876000

ŝ3

m6
t

+ 87077

74844000

ŝ4

m8
t

, (A1)

F2�

,CA

= 5

3
+ 29

1080

ŝ

m2
t

+ 1

7560

ŝ2

m4
t

− 29

168000

ŝ3

m6
t

− 3329

74844000

ŝ4

m8
t

. (A2)

The spin-0 box form factors are given by

F2�
�,CF

= 1 − 59

90

m2
H

m2
t

− 7

60

ŝ

m2
t

− 59

140

m4
H

m4
t

+ 551

8100

m2
H ŝ

m4
t

− 12721

226800

ŝ2

m4
t

+ 251

5670

p2
T ŝ

m4
t

− 3821

22050

m6
H

m6
t

+ 45013

396900

m4
H ŝ

m6
t

− 229991

3175200

m2
H ŝ2

m6
t
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+ 109313

1587600

m2
H p2

T ŝ

m6
t

+ 15829

15876000

ŝ3

m6
t

− 3799

176400

p2
T ŝ2

m6
t

− 530729

8731800

m8
H

m8
t

+ 3948398

49116375

m6
H ŝ

m8
t

− 110261363

1571724000

m4
H ŝ2

m8
t

+ 1995199

37422000

m4
H p2

T ŝ

m8
t

+ 4487981

285768000

m2
H ŝ3

m8
t

− 126777587

3143448000

m2
H p2

T ŝ2

m8
t

− 6432773

2095632000

ŝ4

m8
t

+ 518797

69854400

p2
T ŝ3

m8
t

− 971203

261954000

p4
T ŝ2

m8
t

, (A3)

F2�
�,CA

= −5

3
− 139

270

m2
H

m2
t

− 11

540

p2
T

m2
t

+ 49

360

ŝ

m2
t

− 1649

12600

m4
H

m4
t

− 31

3780

m2
H p2

T

m4
t

+ 31229

529200

m2
H ŝ

m4
t

− 4499

105840

p2
T ŝ

m4
t

− 451

88200

ŝ2

m4
t

− 16273

529200

m6
H

m6
t

− 1

378

m4
H p2

T

m6
t

+ 516367

47628000

m4
H ŝ

m6
t

− 7739

212625

m2
H p2

T ŝ

m6
t

+ 52579

11907000

m2
H ŝ2

m6
t

+ 103

567000

p4
T ŝ

m6
t

+ 626821

47628000

p2
T ŝ2

m6
t

− 56969

95256000

ŝ3

m6
t

− 4871

712800

m8
H

m8
t

− 7

8910

m6
H p2

T

m8
t

− 21577777

11525976000

m6
H ŝ

m8
t

− 56431033

2881494000

m4
H p2

T ŝ

m8
t

+ 2457167

251475840

m4
H ŝ2

m8
t

+ 2

12375

m2
H p4

T ŝ

m8
t

+ 168318277

8644482000

m2
H p2

T ŝ2

m8
t

− 3696311

987940800

m2
H ŝ3

m8
t

+ 203699917

69155856000

p4
T ŝ2

m8
t

− 70223597

17288964000

p2
T ŝ3

m8
t

+ 6643339

12573792000

ŝ4

m8
t

+ log

(
ŝ

m2
t

)[
13

630

m2
H ŝ

m4
t

+ 13

420

p2
T ŝ

m4
t

− 13

2520

ŝ2

m4
t

+ 2

105

m4
H ŝ

m6
t

+ 1

35

m2
H p2

T ŝ

m6
t

− 2

189

m2
H ŝ2

m6
t

− 11

1260

p2
T ŝ2

m6
t

+ 11

7560

ŝ3

m6
t

+ 38

3465

m6
H ŝ

m8
t

+ 19

1155

m4
H p2

T ŝ

m8
t

− 59

5670

m4
H ŝ2

m8
t
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ŝ4

m8
t

]
, (A4)

and the spin-2 form factors by
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m6
t

+ 12986429

561330000

m2
H p2

T ŝ
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