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Abstract This paper explores the dynamics of particles
in higher dimensions. For this purpose, we discuss some
interesting features related to the motion of particles near
a Myers—Perry black hole with arbitrary extra dimensions as
well as a single non-zero spin parameter. Assuming it as a
supermassive black hole at the center of the galaxy, we cal-
culate red—blue shifts in the equatorial plane for the far away
observer as well as the corresponding black hole parameters
of the photons. Next, we study the Penrose process and find
that the energy gain of the particle depends on the variation
of the black hole dimensions. Finally, we discuss the center
of mass energy for 11 dimensions, which indicates a sim-
ilar behavior to that of four dimensions but it is higher in
four dimensions than five or more dimensions. We conclude
that higher dimensions have a great impact on the particle
dynamics.

1 Introduction

Gravity in more than four dimensions has been the subject
of interest in recent years for a variety of reasons. This leads
to significant features of black holes (BHs) like uniqueness,
dynamical stability, spherical topology, and the laws of BH
mechanics. It has been found that the laws of BH mechanics
are universal, while the properties of the BH are dimension
dependent. The concept of higher dimensions became promi-
nent in the 20th century with the Kaluza—Klein theory which
unified gravitation and electromagnetism in five dimensions
[1,2]. Later on, development of string and M-theories led to
further progress in higher dimensional gravity. String theory
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is the most promising candidate of quantum gravity—the
fascinating theory of high energy physics. M-theory is the
generalization of superstring theory that gave the concept of
11 dimensions. Charged BHs in string theory play an impor-
tant role in understanding the BH entropy near the extremal
limits [3]. Callan and Maldacena [4] calculated the Hawk-
ing temperature, the radiation rate, and the entropy for the
extremal Reissner—Nordstrom BH in the context of string
theory and proposed that quantum evolution of BH does not
lead to information loss. Itzhaki et al. [5] studied D-brane
solutions in string theory for the region where curvature is
very small.

The study of BHs in higher dimensions has attracted
many researchers. Tangherlini [6] was the first who gener-
alized the Schwarzschild BH to arbitrary extra dimensions
(D > 4), while Myers and Perry generalized the Kerr BH
[7]. There also exist black rings [8,9] and multi BH solutions
like black Saturns and multi black rings [10-13]. Carter and
Neupane [ 14] studied stability and thermodynamics of higher
dimensional Kerr—anti de Sitter BH and found stability for
equal rotation parameters. Dias et al. [15] investigated per-
turbations of the Myers—Perry (MP) BH and found stability
in five and seven dimensions. Murata [16] found instabili-
ties of D-dimensional MP BH and concluded that there is
no evidence of instability in five dimensions, however, for
D =17,9, 11, 13, the spacetime became unstable due to large
angular momenta.

Galactic rotation curves are based on the measurement
of red-blue shifts of emitted light from distant stars. Due to
rotation of the galaxy, one side of the galaxy will appear to be
blue shifted as it rotates toward the observer and the other will
be red-shifted as it rotates away from the observer [17,18].
Nucamendi et al. [19] studied the rotation curves of galax-
ies by measuring the frequency shifts of spherically sym-
metric spacetime. Lake [20] showed that the galactic poten-
tial can be linked to red-blue shifts of the galactic rotation
curves. Bharadwaj and Kar [21] proposed that the flat rotation
curves of the spiral galaxies can be explained by dark matter
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halos having anisotropic pressure. Moreover, the deflection
of light ray is sensitive to the pressure of the dark matter.
Faber and Visser [22] argued that observations of galactic
rotation curves together with gravitational lensing describe
the deduction of galactic mass and this provides information
as regards the pressure of the galactic fluid. Herrera-Aguilar
et al. [23] presented a useful technique to study red-blue
shifts for a spiral galaxy by generalizing the galactic rotation
curves for spherically symmetric spacetime to an axisymmet-
ric metric. This approach has been used to express the Kerr
BH parameters in terms of red—blue shift functions [24].

The Penrose process is related to the energy extraction
from a rotating BH which depends upon the conservation
of angular momentum. Chandrasekhar [25] studied the Pen-
rose process for the Kerr BH and discussed the nature of
this process and examined the limits on the extracted energy.
He found that in the equatorial plane, only retrograde parti-
cles possess negative energy and the particles should remain
inside the static limit (ergosphere). Bhat et al. [26] inves-
tigated the Penrose process for the Kerr—Newman BH and
concluded that the energy becomes highly negative in the
presence of electromagnetic field, while for neutral parti-
cles, the gain energy decreases in the presence of charge of
the BH. Recently, Lasota et al. [27] presented the generalized
Penrose process and stated that “for any matter or field, tap-
ping the BH rotation energy is possible if and only if negative
energy and angular momentum are absorbed by BH and no
torque at the BH horizon is necessary (or possible)”. There
are some other important results [28-30] in the context of
Penrose process.

The collision energy of particles in the frame of the cen-
ter of mass results in the formation of new particles and the
energy produced in this process is known as the center of
mass energy. The center of mass energy of two colliding
particles is infinitely high near the event horizon of a max-
imally spinning Kerr BH [31]. This approach is very useful
as it describes the rotating BH as a particle accelerator at the
Planck energy scale. Lake [32] examined particle collisions
for a non-extremal Kerr BH at the inner horizon and found
center of mass energy to be finite. The center of mass energy
is also analyzed for the Kerr—Newman BH, which shows
the dependence on the spin and charge of the BH [33]. The
same mechanism was employed on the Kerr—Newman Tuab
[34] and rotating Hayward BH [35]. Other important aspects
related to the center of mass energy have been explored in
[36—44].

In this paper, we study the dynamics of particles for a
D-dimensional MP BH in the equatorial plane. The paper is
organized as follows. In the next section, we review timelike
geodesics in higher dimensions. In Sect. 3, we study red—
blue shifts of MP BH and formulate BH parameters in terms
of red-blue shift functions. Section 4 explores the Penrose
process and Sect. 5 is devoted to the study of the center of
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mass energy for this BH. We conclude our results in the last
section.

2 Review of geodesics in higher dimensions

The generalization of a Kerr BH in higher dimensions, i.e.,
D > 4, is known as MP BH [7] and shares many properties
with the Kerr BH. This plays a significant role in the explo-
ration of gravity in higher dimensions as it provides a new
vision about important features of event horizons. There are
several choices of rotation axis as well as angular momen-
tum regarding particular rotation plane. We consider a simple
case by considering a single spinning parameter a. The D-
dimensional MP BH in Boyer-Lindquist coordinates is given
as [45,46]

A — 2o 29 2
dsZ=—<a—Sm) 2 + 2 ar? 4 p2de?

p? A
24 .2y2 2 in2
—A 0
+(r +a”) . a“sin sin? 0d?
I
2, 2
—A
—2%61 sin2 0drdg + r2 cos? 0dQ .
(1)
where
p2 =r’4+d’cosh?, A=r’4d> - urS_D,
16w GM 2T
M=, D-2 = P
(D =2)Rp-) (%)
and

Q2 , = d6? + sin” 6;d637 + sin® 6; sin” 6,67
D-3
+--F 1_[ sin® 6;,d03 _,
r=1

describes the (D —4) unit sphere. This metric is for an asymp-
totically flat, vacuum spacetime with ADM mass © and D
may be even or odd. For D = 4 it reduces to the Kerr BH,
while a = 0 leads to the Schwarzschild BH. The event hori-
zon of (1) is the largest root of A = 0,

ri4a®— urg_D =0.
The extremal limitexists for D = 4, 5 (a < % and a < ﬂ)
For D > 6, there is only one positive root whena > 0, which
indicates that there is no extremal limit in higher dimensions
[46]. The behavior of horizons along the spin parameter can
be seen in Fig. 1.

The particle motion can be described by the Lagrangian

1
L= Egvaxvxgv (2
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Fig. 1 Horizons with respect to a
where ¥ = 1" = dxV/dt and u” is the particle’s D-velocity

and t is the affine parameter. In the equatorial plane (6 =
7. 0 =0), Eq. (2) takes the form

2
— (12 V2 oa (P Nig 2
2 = (1 rD_3)t 2a (rD_3)r¢+ N
2
ua .
+ <r2 +a* + rD—3) P 3)
The generalized momenta for (1) are calculated as
— (1 * (N =
k== (1-=5)i- (55)é=E. “
2
. ap \ . 5 ,  Ha -
}’2 .
ky = ~x (6)

where a dot represents the derivative with respect to 7. We
find that the Lagrangian is independent of ¢ and ¢, therefore
k; and k¢ are conserved and hence this describes stationary
and axisymmetric characteristics of MP BH.

The Hamiltonian can be written as

H = ki + kg + ki — L. (7

For the metric (1), it takes the following form:

©woN . ap \ -7 -
2 == [(1-2) i+ (755) 8]
D=3 + D=3 ¢
apj \ . 2, o kN P,
+ —(rD_3>t+ r“+a +rD_3 ] ¢>+Xr
. .72
=—Et+L¢p+ Zr'z = § = constant, )

where § = 0, —1, 1 describe null (lightlike), timelike, and
spacelike geodesics. From Egs. (4) and (5), we obtain

i:%[r‘;‘fBE+(1—r?)’f3)L], ©

. 1 2 2 Maz ap
¢:Z|:(r +a +rD_3 E_,,D—3L . (10)

Inserting Egs. (9) and (10) into (8), we find the radial equation
of motion

n

s (@E — L)* + (@®E* — L*) + AS.
p

(1)

Equations (9)—(11) are very important as they can be used
to study various features related to particle motion around
(1). Following some algebraic manipulation, the energy and
angular momentum can be written as

P27 — p2E2 4

1
E=——[1-uy?? D —3)(n/2 D—l],
@[ w73 F (D = 3) (/2
_ D—4
L= YD =Wy

yix

2)yD—1
X 1—l—azyz:I:‘/—(M/D)_y3 , (12)

where y = 1/r and ¢+ = 1 — (D — D)(u/2)yP3 +
2a+/(D — 3)(11/2)yP~1. These are the same as obtained in
[45] for M = 11/2 (M is a parameter related to the BH mass).
Here, we do not consider this substitution, as we are inter-
ested in finding our results with the ADM mass.

3 Red-blue shifts of Myers—Perry BH

This section is devoted to the study of red-blue shifts in
higher dimensions for MP BH. Herrera-Aguilar et al. [23]
discussed red—blue shifts for an axially symmetric space-
time and presented a convenient approach to study the galac-
tic rotational curves of spiral galaxies. Since spiral galaxies
possess axial symmetry, this method provides information as
regards the interior of the gravitational field of such galaxies.
Herrera-Aguilar [24] extended this technique for the Kerr BH
and found parameters in terms of red—blue shifts in the equa-
torial plane. Following [23,24], we generalize these results
for the MP BH. We consider two observers O, and O,, corre-
sponding to detector and light emitter (star) placed at points
P, and P,, respectively. The detector and emitter possess D-
velocities u}, and u. We assume that the stars are moving in
the galactic plane such that the polar angle is fixed (0 = 7).
In this case, we have u) = W', u",0,...,0, u¢)e, where
u’ = dx"/dt and t is the proper time of the particle. The
D-velocity of the detector, ug = (u’, u”,0,...,0, u®)q,
is located far away from the source. The component u? is
related to the observer’s dragging at point P; due to galactic
rotation and its effect is present when measuring red—blue
shifts in our galaxy (Milky Way) or nearby galaxies [23].

The general frequency expression of photon measured by
an observer is

we = —kyu!|p,, (13)

@ Springer
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where k¥ = (k',k",0,...,0,k?), is the D-momentum in
the equatorial plane and the index ¢ corresponds to emitter
(e) or detector (d) for the spacetime at point P.. The light
frequencies detected by an observer at P; and measured by
an observer moving with the emitted particle at point P, are
wg = —kyuly, we=—kyu,. (14)
The frequency shift corresponding to emission as well as
detection has the form

We (Eut — Lu? — grru'k")e

l4z=—== :
T wd  (Eul — Lu® — goukn)|g

15)

Since we have considered circular orbital motion (1" = 0),
the above equation becomes

_ (Eu' — Lu®)|, Uy — bou?
(Eu' — Lu®)|q uly — bqu,

14z ; (16)

where b = % is the impact parameter for the observer located
at infinity. This parameter is zero when it is measured from
either side of the center of galaxy. In this case, Eq. (16) can
be written as

l+z=—F. 7)

&x“* | m:N

Subtracting (17) from (16), the kinematical red shift can be
obtained:

] t ¢
ubuybg — uljug be

G uﬁi(uzl - bduqdb)

It is important to mention here that the impact parameter
remains constant along the path of the photon, i.e. b, = by.
This is due to the fact that energy and angular momen-
tum are preserved from emission to detection along the null
geodesics. We are interested in red-blue shifts from either
side of the galactic center, which requires two values of b to
calculate the red-blue shifts. The impact parameter can be
calculated from the radial null geodesic k"k, = 0 [23],

—81p £ /875 — 8180
by = , (18)
8t

where b_ and b lead to the red-blue shifts of the photons
emitted from an object moving away or approaching toward
a far away observer located at infinity [23],

¢ ¢
ubuybg — u'jueb,_

Zred = (19)

“21 (u;, — ugbdf)

t. ¢ t, @
U uybg, — ulugbe,

Zblue = (20)

uly(ul; — uﬁbd+)
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where zred 7 Zblue, in general. The angular velocity can be
defined as

wh g _

= = Q. 21

AT d 2D
When the observer is located far away from the source (emit-
ter) such that uﬁ << ué,, then Q27 << 1. Using Egs. (21),

(19), and (20) we have

' Qubg_ — ulb,_

ufj(l — Qubg ) (22)

Zred =

uided+ — ufbg+

23
uly(1 — Qqbg, ) 9

Zblue =

In order to calculate red—blue shifts for the MP BH, we
consider the D-velocity components corresponding to (9)
and (10) for the circular orbits in the equatorial plane

1 [(@w)E — (P — L
u' = X [ 53 , (24)
oL [(rD‘ +a’rP3 L a’WE — (a,u)L] 5)
A rD=3 ’
where

D1 5-D 1
7 - wr Fal( = 3)(u/2))

T (D= D(w/2r R £2al(D - 3 (/)10
(26)

£((D =3/ +a £ 2a(P2): 7

PR T = (D = D(/2)r T £2al(D - 3) (/2121
27

here + sign describe direct and retrograde objects which may
be emitter or detector with respect to angular velocity. Using
Egs. (26) and (27) in (24) and (25), we obtain

o +[(D = 3)(u/2)]?
P = (D = D(u/2r 7 £2al(D - 3)(u/D13]
(28)
D =)@2R T (D = 3)w/2)]
P T = (D = D(u/2r 7 £2al(D - 3)(u/D13]E
(29)

The angular velocity of the orbiting source (emitter or detec-
tor) around the MP BH can easily be calculated from Eqgs.
(28) and (29):

+[(D = 3)(12/2)]2
rPT £ (D = 3)(1/2)]2

QL = (30)

The impact parameter for the equatorial circular orbits in D
dimensions can be obtained from Eq. (18),

1
—ap £rP30? +a? — wriP2
by = g . 31)
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The red-blue shifts for (1) are found from Egs. (22) and
(23):

o + /(D=3 (/2
By (rd; +ay (D=2 3)(u/2)>

D-1 D-1
xa(rd2 —r )
X I:au+reD_3 rez+a2—/ueD_3:|,

. +/(D =3)(1/2)
ue — D—1
ta/(D—3)(un/2)

Bo(r,”
D—-1 D-1
X (rd2 —r, 2 )
x |:au — P32 a2 - ,U«reD3:| ,

where r; and r, are the orbit radii of detector and emitter,
and

(32)

(33)

1
D—1 5-D

ry? — (D= D/, iZG\/(D—3)(M/2)T,

S
|
~
Q“U
Ll
—

1
D—1 5-D

B=rc* [reT — (D= D(u/2re > iZa\/(D—3)(u/2)T,
—1

D-1
y=r,2 P73 —w £arP3/(D-3)(u/2)
/(D =3/ rP 7\ rd +a? = wrd 7,

D-1
o=r,7 627 —wxar? (D -3(w/2)

FVD =3 (u/rP73rZ2 +a? — P

The relation b, = b, yields the equation relating the radius
of emitter and detector,

2(D-2 — 2(D-3
rd( ) MrdD 1 _rd( )(bz _ 612)

+2bep(be — ayry 7 — (W7 —a*)? = 0. (34)

When the detector is far away from the source and r; >>
W > a, the red-blue shifts reduce to

VD =3/ |ap +rP3Jr2 +a% — P
Zred = = =,
“” BrP™ —
(35)
/D =3 w/D |ap —rd \rd +a? = prl ™
Zbl = = =
* BrP™ —
(36)

From Egs. (35) and (36), the parameters of the MP BH can be
expressed in terms of red—blue shift of the photons emitted
from the source. The spin parameter in terms of red—blue

shifts is given as

3(D-3 _
re( )(rgs b 1) (Zred + Zblue)2

2(D-3) '
,U«Z (Zred — Zblue)2 —Te (Zred + Zblue)2

a? =

(37

The mass parameter corresponding to red—blue shifts can be
obtained from the following expression:

2(D = 3P (zred + zoe) 2P — P —
X [142 (Zred — Zblue)” — rf(D_3)(Zred + Zblue)*]
=22 ND = 3) (7P — 1) — (U (zred — Zblue)?
2P (Zreq + 2b1ue)?) X (P73 — (D = D(1/2))
x(rP7 — w2 (38)

Equations (37) and (38) reduce to the results of Kerr BH when
D = 4. These equations may provide a useful model for
the researchers interested in higher dimensions using experi-
mental data. One can easily observe how the photons emitted
from the source (e.g. stars) can be red- or blue-shifted near the
higher dimensional BH. The mass as well as the rotation of
MP BH affects the emitted photons. Another interesting phe-
nomenon caused by the BH rotation is the Penrose process
that takes place within the ergosphere. In the next section,
we examine the particle motion and its consequences as it
enters the ergosphere.

3.1 The Penrose process

The rotation of a spinning BH corresponds to a reservoir
of usable energy and is related to the properties of particles
(e.g. photons) inside the ergosphere (the stationary limit sur-
face) where the particles can orbit with total negative energy
with respect to a distant observer. The orbits with negative
energies have negative angular momenta with respect to the
BH. Non-rotating BHs do not have such stationary limit sur-
faces; however, rotating BHs (e.g. Kerr BH) do have such
surfaces, called ergospheres. The particles orbiting with neg-
ative energy can exchange energy with other particles. It was
first pointed out by Penrose that this process can be used
to extract energy from the spinning BH. Following [25], we
study the Penrose process in higher dimensions for the MP
BH. Equation (11) gives

E*rP3 0% + a®) + pa®l = 2apEL — L*(rP73 — )
D-3
+r SA =0.

Solving this equation for £ and L, we obtain

_apL =+ \/rz(D—3)L2 —rD3§[rD3(2 + a2) + a2ulvA
- VD_3(7‘2 + 612) + 612//« ’

(39)

—ap & PP IE 4 (D73 — wsrP VA

L= D3 _

(40)
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where we have used the following identity:
PPA —a*p? = P30T+ dd) + AP — ). @

Equation (39) can describe conditions for which E can be
negative (seen by an observer at infinity).

First we assign £ = 1 to the particle at rest at infinity
with unit mass [25]. We consider + sign of Eq. (39) which
requires L < O for E < 0 and

a*L*u? > A[LYP73 — (P32 462 + a*urP )18,
Using Eq. (41), this can be written as

[}”Z(D_3)(r2 +a2) +a2,urD—3]

x[Lz(l—rD%)—SA] <0.

It follows from the above equation that £ < 0 if and only if
L <0and
D=3

D-3
P = < —

8.

We conclude that in higher dimensions only particles with
retrograde motion can have negative energy on the equatorial
plane. Also, it is necessary that the particle remains inside
the ergosphere.

3.2 The original Penrose process

The Penrose process describes that the particle with posi-
tive energy enters into the ergosphere and breaks up into
two parts such that one will have a negative energy, while
the other part will have positive energy. The particle with
negative energy will be absorbed by the BH and the parti-
cle with positive energy will escape to infinity. The parti-
cle leaving the ergosphere will have more energy than the
original particle. The whole process results in a decreasing
mass and angular momentum of the BH. Hence, the rota-
tional energy is extracted from the BH in this process [47].
Here, we suppose that the photon absorbed by the BH (by
crossing the event horizon) possesses negative energy, while
the photon that escapes to infinity has an energy exceed-
ing the original particle (which came from infinity). Let
ED =1, LW E@ @D E® [0 pethe energies and
angular momenta of the original particle arriving from infin-
ity and the two photons (one that enters the event horizon and
the other which escapes to infinity). The angular momentum
of the particle arriving from infinity by timelike geodesics
can be obtained from Eq. (40) by setting £ = l and § = —1,

o _ Tt JurPIVA g
L = =0 .

D3 _ 1

(42)

The relationship between energies and angular momenta of
the photon that crosses the event horizon and the photon

@ Springer

which escapes to infinity can be obtained by setting § = 0
and considering both negative and positive signs in Eq. (40),

[—ay, — \/ZrD_3] E®

L® — — DD (43)
703 _ 4 ‘
[—au - \/KrD_3] E®
L® = s =o®E®, (44)
rP=3—p

The conservation of energy and of angular momentum
yield
EQ L EO gD, @110 _c@p®
+o@DE® = [ — 5D

which implies that
c@ _ oM

3 _
0@ _g®

T L@ _ o0

Inserting 0, 0@, and o from Eqs. (42)-(44), we obtain

1 " 1 %
@ _ _Z _ () I—— _
EYY = 2|: D3 li|,E _2[ D3 1:|.

The photon that escapes to infinity has more energy than the
original particle E(" = 1. Thus the gained energy (A E) can
be written as

L/ m )

According to the Penrose process, the particle arriving from
infinity can attain a maximum gain in energy at the event
horizon. Thus

The maximum energy gain by the Kerr BH (in extreme limit)
can be achieved for D = 4, i.e., AE = 0.207. The energy
gain for a MP BH can be seen in Fig. 2. It is found that for
D = 4 we have AE for the Kerr BH. For D = 5, the energy

AE
05'* ® D=4
i D=5
I @ D=6
0'4f @® D=7
' @® D=8
[ D=9
D=11

02Ff

0.1}

0.2 0.4 0.6 0.8 1.0

Fig. 2 Energy gain versus a
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Fig. 3 Center of mass energy with respect to r for a = 0.25 (left) and a = 0.6 (right). Here, the curves show E.p/ m%, while vertical dashed

lines are event horizons

gain is higher than all dimensions, while for D = 6, it has an
almost similar behavior as the Kerr BH. We have shown the
energy gain for the particles with positive spin as the behavior
for the negative spin remains the same due to symmetry. In all
(11) dimensions, the energy gain has an increasing behavior
but its value varies with respect to dimensions.

4 Center of mass energy in higher dimensions

The rotating BHs have many interesting features, such as their
effects on the frequency shift on the photons that are travel-
ing near them as well as the extraction of rotational energy
as the photon with positive energy enters into the static limit
of the BH. One of the important features of rotating BHs is
that they can also act as particle accelerators. In this section,
we study the center of mass energy (E.n ) of the accelerating
particles near the MP BH in the equatorial plane. The center
of mass energy is defined as the sum of the rest masses and
their kinetic energies of the two colliding particles. It depends
upon the nature of interacting particles as well as astrophys-
ical objects (BH or naked singularity) and the gravitational
field surrounding such objects. It is interesting to study the
collision of particles, as it is a naturally occurring process
in the universe. We consider two neutral colliding particles
having rest masses m| and m»,. The conserved energies and
angular momenta of two particles are E1, E3, L1, and L.
The angular momentum of the ith particle is defined as

ki =miju;, i=12.

(45)

The center of mass energy of the colliding particles is given
as

E% = —k'kiy. (46)

Using Eq. (45) in (46), we obtain

Ecn (m _m2)2
= + (1 = gyutul).
«/2m1m2 2m1m2 ( gvn 1 2)

Substituting the values of g,;, u‘l’, and ug, the center of mass
energy in D dimensions becomes

Ecm _ (m _m2)2 1
«/2m]m2 2m1m2 VD_3A

X [rD73A + E1E2(rD7] + a*rP3 + azp,)

1
—(Ele+151L2)((m)—L1L2(rD—3_M)_\/m]]2 ,
where
Ri =rP7 Bl b p(@B— L) =P 3L} — Pl 4 i,
i=1,2.

For the sake of simplicity, we take m mo and
E| = E; = E = 1 such that the above equation takes the
form

:m2:

E, 1
em PPN + (P 4 2P 4 )
2 rD=3A
)

—(L1 + Lo)(ap) — LiLarP 3 — ) = VRIR | |,

where
Ri = u(a — Li)2 — ;"D_SLi2 + /u"z, i=1,2.

For D = 4, the above equation reduces to [31]. Figure
3 shows the behavior of the center of mass energy for
M =1,L; =2,L, = 2.5up to 11 dimensions. We found

@ Springer



404 Page 8 of 9

Eur. Phys. J. C (2016) 76:404

that the center of mass energy has decreasing behavior in all
dimensions.

5 Final remarks

When a light wave (from an approaching galaxy which is
moving toward an observer) gets scrunched to the shorter
wavelength, this is known as the galactic blue shift. On the
other hand, if a light wave from a galaxy moving away from
the observer gets stretched to the longer wavelength then
this is called galactic red shift. Slipher discovered that the
Andromeda galaxy possesses a large blue shift which indi-
cates that this galaxy moves toward the Earth. He further
investigated other spiral galaxies and found that most of
them have a large red shift, indicating that they are moving
away from us. Hubble observations indicate that relative to
the Earth and all the observed galactic objects, galaxies are
receding in every direction. The velocities calculated from
their observed red shifts are directly proportional to their
distance from each other as well as from the Earth. Hubble
was the pioneer in explaining the expanding universe and red
shift phenomena [48,49].

It is well known that there is a supermassive BH (SgrA*)
in the center of Milky Way, as is the case in many other spiral
galaxies. In this paper, we assume a higher dimensional MP
BH as a supermassive BH at the galactic center. Motivated
by [23,24], we generalize the mass and angular momentum
parameter in arbitrary extra dimensions in terms of red—blue
shifts of the photons emitted from circular timelike geodesic
and traveling along the null geodesic. For this purpose, we
have first calculated red—blue shifts of the photons in higher
dimensions for an observer located far away. We have taken
circular as well as equatorial orbits to find these shifts. We
have expressed the corresponding mass, rotation parameter
and radius of the detector in terms of red-blue shifts. In
this way, we have generalized the results for the Kerr BH.
We have only discussed the analytical model, however, these
results may be useful if they can be calculated using the obser-
vational data. The generalized results can provide informa-
tion as regards the behavior of BH parameters in dimensions
D > 4.

It is believed that the supermassive BHs (powering the
active galaxies and quasars) are the rapidly rotating BHs.
Such BHs produce powerful jets of gas (whose direction is
sometimes stable over a million of years) whose source of
energy may be the rotation of BH. It may be possible that
this rotational energy is extracted due to the Penrose process
[47]. Following [25], we have studied the Penrose process for
the MP BH. We have found that a particle will have negative
energy for aretrograde motion (L < 0) in higher dimensions.
We have also seen that the energy gain of the particle is
dimension dependent. The energy gains for D =4 and D =

@ Springer

6 have the same values, while for D = 5, it has the highest
value.

We have also examined the influence of higher dimensions
on the center of mass energy of two colliding particles. We
have plotted E., by considering two different values of the
rotating parameters. The center of mass energy decreases
with increasing radius. For a = 0.25, the center of mass
energy for D = 6 and 8, it lies inside the event horizon,
while for other dimensions, it crosses the event horizon. For
a = 0.6, the center of mass energy crosses the event horizon
in all dimensions. In both cases, the center of mass energy
for D = 41is greater than that of D > 5. Finally, we conclude
that the motion of particles in higher dimensions experiences
a very different behavior than the four dimensions.
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