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Abstract We study the general formalism of polytropes
in the relativistic regime with generalized polytropic equa-
tions of state in the vicinity of cylindrical symmetry. We
take a charged anisotropic fluid distribution of matter with a
conformally flat condition for the development of a general
framework of the polytropes. We discuss the stability of the
model by the Whittaker formula and conclude that one of the
models developed is physically viable.

1 Introduction

In general relativity (GR), polytropes play a very vital role
in the modeling of relativistic compact objects (COs). Over
the past few decades, many researchers have been engaged
in the study of polytropes due to the simple form of the poly-
tropic equation of state (EoS) and the corresponding Lane–
Emden equation (LEE), which can be used for the descrip-
tion of various astrophysical phenomenons. Chandrasekhar
[1] was the pioneer, who established the theory of polytropes
originating with the laws of thermodynamics in the Newto-
nian regime. Tooper [2,3] formulated the initial framework
of the polytropes for a compressible and adiabatic fluid under
quasi-static equilibrium condition to develop the LEE. After
a few years, Kovetz [4] provided some corrections in the
Chandrasekhar formalism for polytropes. The general form
of the LEE in higher-dimensional space was developed by
Abramowicz [5] in spherical, cylindrical, and planar geom-
etry.

The study of anisotropy in the modeling of an astrophysi-
cal CO plays a very significant role and many physical prob-
lems cannot be modeled without taking anisotropic stress into
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account. In 1981, a very sophisticated process of modeling
an anisotropic CO was provided by Cosenza [6]. In this sce-
nario, Herrera and Santos [7] presented a detailed study of
the existence of anisotropy in a self-gravitating CO. Herrera
and Barreto [8] developed a general model for Newtonian
and relativistic anisotropic polytropes. Herrera et al. [9] gave
a complete set of equations with anisotropic stress for a self-
gravitating spherical CO. A new way to check the stability of
anisotropic polytropic models by the Tolman mass was pro-
vided by Herrera and Barreto [10,11]. Herrera et al. [12] used
a conformally flat condition in the analysis of anisotropic
polytropes to reduce the parameters involved in the LEE.
He et al. [13] also discussed the implementation of cracking
criteria for the stability of anisotropic polytropes.

In GR, the existence of charge considerably affects the
modeling of a relativistic CO. Bekenstein [14] investigated
gravitational collapse by means of a hydrostatic equilibrium
equation in a charged CO. Bonnor [15,16] showed that grav-
itational collapse can be delayed by electric repulsions in a
CO. A complete study of the contraction of a charged CO in
isotropic coordinates was presented by Bondi [17]. Koppar et
al. [18] developed a novel way to calculate a charge general-
ization of the static charged fluid solution of a CO. Ray et al.
[19] investigated charged CO with high density and found
that they can have large amount of charge approximately
1020 coulomb. Herrera et al. [20] used structure scalars to
study dissipative fluids in a charged spherical CO. Takisa
[21] provided models of polytropic COs in the presence of
charge. Sharif [22] developed a modified LEE for a charged
polytropic CO with the conformally flat condition. Azam et
al. [23–27] discussed the cracking of different charged CO
models with linear and quadratic EoS.

It is always a crucial issue to choose the proper EoS for
the modeling of astronomical objects. Chavanis [28,29] pro-
posed a modification in the conventional polytropic EoS

Pr = Kρ1+ 1
n , where Pr is radial pressure, n is the poly-
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tropic index, and K is a polytropic constant. He combined
a linear EoS Pr = α1ρo with a polytropic EoS as Pr =
α1ρo + Kρ1+ 1

n and used it to describe different cosmologi-
cal situations. He developed the models of the early and the
late universe for n > 0 and n < 0 through a generalized
polytropic equation of state (GPEoS). Freitas [30] applied
the modified polytropic EoS for the development of a model
of the universe with constant energy density and discussed
quantum fluctuations of the universe. Azam et al. [31] pro-
vided a comprehensive study for the development of a mod-
ified form of LEE with GPEoS for spherical symmetry.

Cylindrically symmetric spacetimes have been used
widely in GR to describe various physically interesting
aspects. For the first time, Kompaneets [32] provided the
general form of a four-dimensional cylindrically symmetric
metric. Some specific examples of a cylindrically symmet-
ric metric which provide exact solutions to the system of
Einstein’s field equations and cylindrical gravitational waves
were studied in [33,34]. Thorne [34] defined the C-energy
of cylindrical systems as the “gravitational energy per unit
specific length”. The most interesting fact about these space-
times is the so-called C-energy and as a result gravitational
waves are thought to be carriers of energy in a gravitational
field. Whittaker [35] introduced the concept of a “mass poten-
tial” in GR. Herrera et al. [36] used a conformally flat con-
dition with cylindrical symmetry to give a solution of the
field equations which is completely matched to the Levi-
Civita vacuum spacetime. Herrera and Santos [37] studied
the matching condition for perfect fluid cylindrical grav-
itational collapse. Debbasch et al. [38] discussed regular-
ity and the matching condition for a stationary cylindrical
anisotropic fluid. Di Prisco et al. [39] studied cylindrical
gravitational collapse with a shear-free condition. Sharif and
Fatima [40] presented cylindrical collapse with a charged
anisotropic fluid. Sharif and Azam [41] studied dynamical
instability of cylindrical collapse in the Newtonian and the
post Newtonian regime. Ghua and Banerji [42] described
dissipative cylindrical collapse with a charged anisotropic
fluid. Sharif and Sadiq [43] presented conformally flat poly-
tropes with an anisotropic fluid for the cylindrical geometry.
Mahmood et al. [44] considered a charged anisotropic fluid
for the discussion of cylindrical collapse and found that the
presence of charge enhances the anisotropy of the collapsing
system.

In this paper, we will explore charged anisotropic poly-
tropes by using GPEoS for a cylindrical symmetric configu-
ration with a conformally flat condition. In Sect. 2, we present
the Einstein–Maxwell field equations and a modified hydro-
static equilibrium equation. In Sect. 3, the LEE is developed
for relativistic polytropes. The energy conditions, the confor-
mally flat condition, and the stability of the model is given
in Sect. 4. In the last section we conclude our results.

2 Matter distribution and Einstein–Maxwell field
equations

In this section, we will describe the inner matter distribution
and Einstein–Maxwell’s field equations. We assume a static
cylindrically symmetric spacetime,

ds2 = −A2dt2 + B2dr2 + C2dθ2 + dz2, (1)

where t ∈ (−∞,∞), r ∈ [0,∞), θ ∈ [0, 2π ] and z ∈
(−∞,∞) are the conditions on the cylindrical coordinates.
The energy-momentum tensor for a charged anisotropic fluid
distribution is

Ti j = (Pr + ρ)ViVj − (Pr − Pz)Si S j − (Pr − Pθ )Ki K j

+Pr gi j + 1

4π
(Fγ

i Fjγ − 1

4
FγβFγβgi j ), (2)

where Pr , Pθ , Pz , and ρ represent pressures in r, θ, z direc-
tions and energy density of fluid inside cylindrical symmet-
ric distribution. The four-velocity Vi and four vectors Si , Ki

satisfying the following relations:

V iVi =−1, Si Si =Ki Ki = 1, Si ki = V iki = V i Si = 0.

(3)

These quantities in co-moving coordinates can be written as

Vi = Aδ0
i , Ki = Cδ2

i , Si = Aδ3
i . (4)

The Maxwell field equations are

F[i j;k] = 0, Fi j
; j = 4π J i , (5)

where Fi j = ψ j,i − ψi, j is field tensor and ψi is the four-
potential and J i is four-current. The four-potential and four-
velocity are related to each other in co-moving coordinates
by

ψi = ψ(r)δ0
i , J i = σV i , i = 0, 1, 2, 3, (6)

with ψ and σ represents scalar potential and charge density,
respectively.

The Einstein–Maxwell field equations for the line element
of Eq. (1) are given by

B ′C ′

B3C
− C ′′

B2C
= 8πρ − 4π2E2, (7)

A′C ′

AB2C
= 8π Pr + 4π2E2, (8)

A′′

AB2 − A′B ′

AB3 = 8π Pθ − 4π2E2, (9)

A′′

AB2 − A′B ′

AB3 − B ′C ′

B3C
− A′C ′

AB2C

+ C ′′

B2C
= 8π Pz − 4π2E2, (10)

where ′ denotes the differentiation with respect to r and E =
q

2πC with q(r) = 4π
∫ r

0 σ BCdr represents total amount of
charge per unit length of cylinder. We consider the exterior
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metric for the cylindrical symmetric geometry with retarded
time coordinate ν defined as

ds2 = −
(

−2M

R
+ Q2

R2

)

dν2 − 2dνdR

+R2(dθ2 + β2dz2), (11)

where M is the total mass and β is an arbitrary constant.
The junction condition has a very important role to play

in the theory of relativistic objects. This condition shows the
feasibility of physically acceptable solutions. For the conti-
nuity and matching of two spacetimes, junction conditions
on the boundary � yield [45–47]

m(r) − M
�= l

8
, ⇔ Q2 �= ql2

8
, l

�= 4C, Pr
�= 0. (12)

The Schwarzschild coordinate is selected as C = r [43] and
Einstein–Maxwell field equations reduced to the form [44]

B ′

r B3 = 8πρ − 4π2E2, (13)

A′

AB2r
= 8π Pr + 4π2E2, (14)

A′′

AB2 − A′B ′

AB3 = 8π Pθ − 4π2E2, (15)

A′′

AB2 − A′B ′

AB3 − B ′

B3r
− A′

AB2r
= 8π Pz − 4π2E2. (16)

Solving Eqs. (13)–(15) simultaneously leads to the hydro-
static equilibrium equation

dPr
dr

+ A′

A

(
ρ + Pr

) + 


r
+ πEE ′ + 8πE2

r
= 0, (17)

where we have used 
 = Pr − Pθ .
Thorne [34] defined the C-energy (gravitational energy

per unit specific length of cylindrical geometry), in the form
of a mass function,

Ẽ = 1

8
[1 − l−2∇ar̃∇ar̃ ],

with

μ2 = ξ(1)aξ
a
(1), l2 = ξ(2)aξ

a
(2), r̃ = μl,

here r̃ , μ, l represents the areal radius, the circumference
radius, and the specific length, respectively, and for the static
case the expression of the C-energy can be written as

m(r) = Ẽ ′ = 1

8

[

1 − 1

B2

]

+ 2πr2E, (18)

Differentiating Eq. (18) and using Eq. (14), we get

A′

A
= 8πr Pr + 4π2r E2

1 − 8m + 16π2r E2 . (19)

Using Eq. (19), the hydrostatic equilibrium equation (17)
becomes

dPr
dr

+ 8πr Pr + 4π2r E2

1 − 8m + 16π2r E2

(
ρ + Pr

)

+


r
+ πEE ′ + 8πE2

r
= 0. (20)

The basic theory of polytropes is established with the
hypotheses of a polytropic EoS and a hydrostatic equilib-
rium state of the relativistic object under consideration. In
the next section, we will discuss relativistic polytropes with
a generalized polytropic EoS in the presence of charge for
cylindrical symmetry.

3 The relativistic polytropes

In this section, we provide a comprehensive way for the
development of the LEE which is the main consequence
of the theory of polytropes with GPEoS in the cylindrical
regime. The EoS is the union of the linear EoS Pr = α1ρo and

the polytropic EoS Pr = Kρ
1+ 1

n
o . The linear EoS describes

pressureless (α1 = 0) or radiation (α1 = 1
3 ) matter. The

polytropic part is related to the cosmological aspects of the
early universe for n > 0 whereas it describes the late universe
with n < 0 [18,19]. The cosmic behavior of the universe is
demonstrated with ρo as the Planck density but in the rela-
tivistic regime we take it as a mass density for case 1 and
the total energy density in case 2. Here, we shall develop the
general formalism for relativistic polytropes with GPEoS in
the presence of charge.

3.1 Case 1

Here, the GPEoS is

Pr = α1ρo + Kρ
γ
o = α1ρo + Kρ

1+ 1
n

o . (21)

The original polytropic part remains conserved and the rela-
tionship of the mass density ρ0 with the total energy density
ρ is given by [7]

ρ = ρo + nPr . (22)

Now making the following assumptions:

α = Prc
ρgc

, r = ξ

X
, ρo = ρgcθ

n, m(r)

= 2πρgcv(ξ)

X2 , X2 = 16π Prc
α

, (23)

where Prc and ρgc represent the central pressure and mass
density. Also ξ , θ , and v are defined to be dimensionless
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variables. Using the assumptions (23) with the EoS (21), the
hydrostatic equilibrium equation (20) transforms as

( 1 − v(ξ) + 4π3/2
√

α
Prc

E2ξ

1 + (n + 1)(α1 + αθ)

)
dθ

dξ
+

(
2Prcα(α1 + αθ)θn + πE2

nα1θ−n + (n + 1)αθ

)
αξ

4Prc

+
(
 + πξE dE

dξ
+ 8πE2)(1 − v(ξ) + 4π3/2

√
α
Prc

E2ξ)

(1 + (n + 1)(α1 + αθ))(nα1θ−n + (n + 1)α)

θn

αξ Prc
= 0.

(24)

Now taking the derivative of Eq. (18) with respect to r and
applying the relations of Eq. (23), we obtain

dv(ξ)

dξ
= ξθn(1 + nα1 + nαθ) + (4 − π)αξE

2Prc
+ αξ2

Prc

dE

dξ
.

(25)

The combination of Eqs. (24) and (25) results in the modified
LEE (Eq. (39) in the appendix), which describe the relativistic
charged polytropes with GPEoS.

3.2 Case 2

In this case the GPEoS as Pr = α1ρ + Kρ1+ 1
n , here mass

density ρo is replaced by total energy density ρ in Eq. (21)
and we have the following relation [7]:

ρ = ρo
(
1 − Kρ

1
n
o

)n
. (26)

We make the following assumptions:

α = Prc
ρc

, r = ξ

X
, ρ = ρcθ

n,

m(r) = 2πρcv(ξ)

X2 , X2 = 16π Prc
α

, (27)

where c means that each quantity is calculated at the center
of a CO. Using GPEoS and the assumptions of Eq. (27), the
hydrostatic equilibrium Eq. (20) turns out to be

(1 − v(ξ) + 4π3/2
√

α
Prc

E2ξ

1 + α1 + αθ

)
dθ

dξ

+
(

2Prcα(α1 + αθ)θn + πE2

nα1θ−n + (n + 1)αθ

)
αξ

4Prc

+
(
 + πξE dE

dξ
+ 8πE2)(1 − v(ξ) + 4π3/2

√
α
Prc

E2ξ)

(1 + α1 + αθ)(nα1θ−n + (n + 1)αθ)

× θn

αξ Prc
= 0. (28)

Taking the derivative of Eq. (18) with respect to r and apply-
ing Eq. (27), we get

dv(ξ)

dξ
= ξθn + (4 − π)αξE

2Prc
+ αξ2

Prc

dE

dξ
. (29)

We get a modified LEE by using Eqs. (29) and (28) given in
the appendix, see (40)), representing the relativistic charged
polytropes with GPEoS.

4 Energy conditions, conformally flat condition, and
stability analysis

In the mathematical modeling of a CO, the energy condi-
tions play a very peculiar role in the analysis of the devel-
oped model. The energy condition provides us with the max-
imum information without depending upon the EoS used in
the modeling. These conditions have been developed with the
understanding that the energy density is always positive; oth-
erwise the empty space created due to positive and negative
regions definitely become unstable. The energy conditions
that should be satisfied by all the models are [48]

ρ + π

2
E2 > 0, Pr ≤ ρ − πE2,

Pθ

ρ
≤,

Pz
ρ

≤ 1. (30)

If we take case 1 of the developed model, the energy condi-
tions (30) transform as

1 + πE2

1 + n(α1 + αθ)θn
> 0, 1 ≤ πE2

(n − 1)(α1 + αθ)
,

αPθ

Prc(1 + n(α1 + αθ))θn
≤ 1,

× αPz
Prc(1 + n(α1 + αθ))θn

≤ 1, (31)

and for case 2 the energy conditions (30) emerge as

1 + παθ−n E2

2Prc
> 0, 1 ≤ παE2θn + αPrcθ

Prc(1 − α1)
,

Pθαθ−n

Prc
≤ 1,

Pzαθ−n

Prc
≤ 1. (32)

We observe that the coupled Eqs. (24) and (25) and Eqs.
(28) and (29) result in a system of differential equations with
three variables. Thus, we need more information to study the
charged polytropic CO with GPEoS in cylindrical symmetry.
So, we use a conformally flat condition to reduce the systems
of differential equations to two variables.

For this purpose, the Weyl scalar defined in terms of the
Kretchman scalar, the Ricci tensor, and the Ricci scalar is
given by [43]

C2 = R + R2

3
− 2RμνRμν. (33)

For our line element, the above equation becomes

C2 = 4

3r2A2B6 [(A2 − r AA′ + r2A′2)B ′2

+B2(A′2 − r A′A′′ + r2A′′2)
+BB ′(r A′(A′ − 2r A′′) + A(A′ + r A′′))]. (34)
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Now applying conformal flatness i.e., C2 = 0, and using the
field equations (13)–(16) and (19) in Eq. (34), we obtain the
anisotropy as


 = −πE2 + 1

8π
(8π Pr + 4π2E2 + (8π Pr + 4π2E2)2

+(8π Pr + 4π2E2)(−4π2E2 + 8πρ)

+(−4π2E2 + 8πρ)2

+(−1 − 8π Pr − 8π2E2 + 8πρ)

×
[

(8π Pr + 4π2r E2)2

(1 − 8m + 16π2r E2)2

−r(8π Pr + 4π2r E2)(−4π2E2 + 8πρ)

1 − 8m + 16π2r E2

+4π2E2 + 8π P ′
r + 8π2r EE ′

1 − 8m + 16π2r E2

− (8π Pr + 4π2r E2)(16π2E2 − 8m′ + 32π2r EE ′)
(1 − 8m + 16π2r E2)2

]

+
[

(8π Pr + 4π2r E2)2

(1 − 8m + 16π2r E2)2

−r(8π Pr + 4π2r E2)(−4π2E2 + 8πρ)

1 − 8m + 16π2r E2

+4π2E2 + 8π P ′
r + 8π2r EE ′

1 − 8m + 16π2r E2

− (8π Pr + 4π2r E2)(16π2E2 − 8m′ + 32π2r EE ′)
(1 − 8m + 16π2r E2)2 )2

]

.

(35)

Now using Eq. (23) in the above equation, we obtain
anisotropy factor for case 1 given in the appendix; see Eq.
(41). One can derive a modified LEE for conformally flat
polytropes by using Eq. (41) in (24) and coupling with Eq.
(25) for case 1. Similarly, the anisotropy parameter for case
2 turns out to be Eq. (42) (see the appendix) and the modified
LEE by using Eq. (42) in (28) and coupling it with Eq. (29)
for case 2, which can help in the study of conformally flat
polytropes.

We will use a modified Whittaker [35] formula for the
stability analysis of the model, which is the measure of
the “active gravitational mass per unit length” of a cylinder
defined by

mL = 8π

∫ r�

0
(ρ + Pr + Pθ + Pz − πE2)dr. (36)

For case 1, using the field equations (13)–(16), (19) and (23)
in (36), we get

mL =
∫ 1

0
−

π

√(
− 2M

R + Q2

R2

)
Prc
α

α

(

4π3/2αξE2
√

Prc
α

− Prc(−1 + v)

)

θ

×
(

− 16π5/2α2ξE3

√
Prc

α
θ + π2α2ξE4

×
(

3ξ + 32
√

π

√
Prc

α

)

θ + 4πEPrc

× θ(−α + 2ξ(−α + 32π Prcθ
n(α1 + αθ))

dE

dξ

+v

(

α + 2αξ
dE

dξ

))

+8Prc

(

− α
(−1 + v)θ + 2
√

παξ

×
(
Prc

α

)
3/2α1(1 + nα1)θ

1+2n

+2
√

πα2ξ

(
Prc

α

)
3/2(1 + 2nα1)θ

2+2n

+2n
√

πα3ξ

(
Prc

α

)
3/2θ3+2n

−αPrcθ
2+n dv

dξ
+ nPrcα1(−1 + v)θn

dθ

dξ

−Prcθ
1+n

(

α1
dv

dξ
− (1 + n)α(−1 + v)

dθ

dξ

))

+√
πE2

(

128π3/2P2
rcθ

1+n(α1 + αθ) + α2ξ

×
√

Prc

α
θ(1 + 32π
 − v − dv

dξ
)

−2
√

παPrc(2(−1 + v)θ + αξ(−nξ + 4
√

π

√
Prc

α
)θ2+n

+16n
√

πξ

√
Prc

α
α1θ

n dθ

dξ

−ξθ1+n
(

ξ +
(
nξ − 4

√
π

√
Prc

α

)

α1

−16(1 + n)
√

πα

√
Prc

α

dθ

dξ

))))

dξ. (37)

Similarly for case 2, the Whittaker formula yields

mL =
∫ 1

0
−

π

√(

− 2M
R + Q2

R2

)
Prc
α

α

(

1 + 4π3/2ξE2
√

Prc
α

− v

)

×
(

−16π5/2αξE3
√

Prc
α

+
π2α2ξE4

(

3ξ + 32
√

π

√
Prc
α

)

Prc

+ 4παE(−1 + v) + 1
/(√

Prc

α

)√
πE2

×
(

α

(

ξ + 32π
ξ + 4
√

π

√
Prc

α

)

− α

(

ξ + 4
√

π

√
Prc

α

)

v

+ 2
√

π

(

Prc

(

− 4
√

πξ + 64π

√
Prc

α

)

α1
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ξ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
L

× 1029

0

0.5

1

1.5

2

2.5

3

3.5 Whittaker mass per unit length for n=1.0

a
b
c
d

Fig. 1 Case 1: mL as a function of ξ for n = 1, curve a: α = 8 ×
10−11, Q = 0.2 M	, curve b: α = 10−10, Q = 0.4 M	, curve c:
α = 2 × 10−10, Q = 0.6 M	, curve d: α = 4 × 10−10, Q = 0.64 M	

+αξ2

√
Prc

α
(1 + nα1)

)

θn

+ 2
√

πα

(

− 4
√

πξ Prc + nαξ2

√
Prc

α

+ 64πα

(
Prc

α

)
3/2

)

θ1+n
)

+ 8α

(


 − 
v + 2
√

πξ

(
Prc

α

)
3/2θ2n

×(α1 + αθ)(1 + nα1 + nαθ)

))

dξ. (38)

In order to test the physical viability of polytropes, we
formulate the energy condition and found that these con-
ditions are satisfied only for case 1 and fail in case 2 for
charged anisotropic polytropes with GPEoS. We also plot
the Whittaker formula (mL) given in Eq. (37) with respect
to the dimensionless radius ξ in the radial direction for a
cylinder of unit radius. The bounded behavior of (mL) in
the radial direction for various values of the charge shows
that our model is stable. So, only case 1 for polytropes is
physically viable.

5 Conclusion and discussion

In this article, we have formulated the general framework
to study charged relativistic polytropes with GPEoS in the

cylindrical regime. The GPEoS, Pr = α1ρ + Kρ1+ 1
n , is the

combination of a linear EoS with a polytropic EoS, and it
is used in cosmology for the description of eras of the uni-
verse. For the discussion of relativistic polytropes, we have

developed the generalized framework to get the expressions
of the modified LEE whose solutions are called polytropes.
The polytropes mainly depend on the density function and
the polytropic index decides the order of the solution. These
polytropes are very useful in the description of various astro-
physical aspects of a CO due to its simplicity. However, this
simplicity is obtained at the cost of an empirical power-law
relation between density and pressure, which should hold
throughout in a CO. The LEE have been obtained with the
anisotropic factor 
 in the expressions (see the appendix,
Eqs. (39) and (40)) depending upon three variables. In order
to reduce one variable (
), we have used a conformally
flat condition and calculated the value of anisotropic fac-
tor in the form of other two variables (see the appendix,
Eqs. (41) and (42)). One can easily obtain a modified LEE
in two variables by substituting these values of anisotropy
factor.

The stability analysis is very important in the development
of mathematical models to check the physical viability. The
energy conditions are very helpful in this regard, as they can
entail maximum information without considering the EoS
involved in the development of the model. The energy con-
ditions have been obtained for both cases of GPEoS in the
presence of an electromagnetic field. We have used a modi-
fied form of the Whittaker formula [35] for the stability anal-
ysis of charged anisotropic relativistic polytropes. We have
calculated mL , which is a measure of the “active gravita-
tional mass per unit length” in the z-direction, for both the
case of GPEoS for different values of parameters involved
in the model (see Fig. 1) for a cylinder of unit radius. We
have taken these values from our previous work on the poly-
tropes [31]. We have plotted mL against the dimensionless
radii ξ and found that its graph remains bounded in the radial
direction even for very high values of the charge Q = 0.2
M	, 0.4 M	, 0.6 M	, and 0.64 M	. Also it is clear that
more mass is concentrated near the center of cylinder and
its magnitude decreases as we move away from the center in
a radial direction. The highest magnitude is observed in the
middle of cylindrical symmetry in the radial direction. As the
gravitational mass cannot be negative, Fig. 1 shows the sta-
ble positive and bounded behavior of mL , which shows that
our model is stable. The energy conditions are valid only for
case 1 and fail to hold for case 2. Hence the model developed
in case 2 is not physically viable due to the negation of the
energy conditions.
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Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Appendix

LEE for case 1:

1

4

(
α(πE2 + 2αPrcθ

n(α1 + αθ))

Prc((1 + n)αθ + nα1θ−n)

−
4
(

1 + 4π3/2ξE2
√

α
Prc

− v)θ−n
(

8πE2 + 
 + πξ dE
dξ

)

αξ2Prc(1 + (1 + n)(α1 + αθ))2

+
(

2θ−n
(

8πE2 + 
 + πξ
dE

dξ

)

(
8π3/2αE2

√
α
Prc

− 2ξ
(
Prcθ

n(1 + nα1 + nαθ) + αξ
dE

dξ

)

+αξE

(

−4 + π + 16π3/2 dE
dξ√

α
Prc

)))/

(αξ P2
rc(1 + (1 + n)α1 + (1 + n)αθ)2)

−αξθ−1+n(−n2α1 + (1 + n)αθ1+n)(πE2 + 2αPrcθ
n(α1 + αθ)) dθ

dξ

Prc(nα1 + (1 + n)αθ1+n)2

−
8(1 + n)

(
1 + 4π3/2ξE2

√
α
Prc

− v
)
θ−n

(
8πE2 + 
 + πξ dE

dξ

)
dθ
dξ

ξ Prc(1 + (1 + n)(α1 + αθ))3

−
4n

(
1 + 4π3/2ξE2

√
α
Prc

− v
)
θ−1−n

(
8πE2 + 
 + πξ dE

dξ

)
dθ
dξ

αξ Prc(1 + (1 + n)(α1 + αθ))2

+
(

2

(
8π3/2αE2

√
α
Prc

− 2ξ(Prcθ
n(1 + nα1 + nαθ) + αξ

dE

dξ

)

+αξE

(

−4 + π + 16π3/2 dE
dξ√

α
Prc

))
dθ

dξ

)/

(Prc(1 + (1 + n)α1 + (1 + n)αθ))

−
4(1 + n)α

(
1 + 4π3/2ξE2

√
α
Prc

− v
) (

dθ
dξ

)2

(1 + (1 + n)(α1 + αθ))2

+
2αξθ−1+n

(
πEθ dE

dξ
+ αPrcθ

n
(
nα1 + (1 + n)αθ

)
dθ
dξ

)

Prc(nα1 + (1 + n)αθ1+n)

+
4
(

1 + 4π3/2ξE2
√

α
Prc

− v
)
θ−n

(
(π + 16πE) dE

dξ
+ d


dξ
+ πξ d2E

dξ2

)

αξ Prc(1 + (1 + n)α1 + (1 + n)αθ)2

+
4
(

1 + 4π3/2ξE2
√

α
Prc

− v
)

d2θ
dξ2

1 + (1 + n)(α1 + αθ)

)

= 0. (39)

LEE for case 2:

1

4

(
α(πE2 + 2αPrcθ

n(α1 + αθ))

Prc((1 + n)αθ + nα1θ−n)

−
4
(

1 + 4π3/2ξE2
√

α
Prc

− v
)
θ−n

(
8πE2 + 
 + πξ dE

dξ

)

αξ2Prc(1 + α1 + αθ)(1 + (1 + n)(α1 + αθ))

+
(

2θ−n
(

8πE2 + 
 + πξ
dE

dξ

)

×
(

8π3/2αE2
√

α
Prc

− 2ξ

(

Prcθ
n + αξ

dE

dξ

)

+αξE

(

−4 + π + 16π3/2 dE
dξ√

α
Prc

)))/

(αξ P2
rc(1 + α1 + αθ)(1 + (1 + n)α1 + (1 + n)αθ))

−
αξθ−1+n

(
− n2α1 + (1 + n)αθ1+n

)(
πE2 + 2αPrcθ

n
(
α1 + αθ

))
dθ
dξ

Prc(nα1 + (1 + n)αθ1+n)2

−
4(1 + n)

(
1 + 4π3/2ξE2

√
α
Prc

− v
)
θ−n

(
8πE2 + 
 + πξ dE

dξ

)
dθ
dξ

ξ Prc(1 + α1 + αθ)(1 + (1 + n)(α1 + αθ))2

−
4
(

1 + 4π3/2ξE2
√

α
Prc

− v
)
θ−n

(
8πE2 + 
 + πξ dE

dξ

)
dθ
dξ

ξ Prc(1 + α1 + αθ)2(1 + (1 + n)(α1 + αθ))

−
4n

(
1 + 4π3/2ξE2

√
α
Prc

− v
)
θ−1−n

(
8πE2 + 
 + πξ dE

dξ

)
dθ
dξ

αξ Prc(1 + α1 + αθ)(1 + (1 + n)(α1 + αθ))

+
2
(

8π3/2αE2
√

α
Prc

− 2ξ(Prcθ
n + αξ dE

dξ

)
+ αξE

(
− 4 + π + 16π3/2 dE

dξ√
α
Prc

))
dθ
dξ

Prc(1 + α1 + αθ)

−
4α

(
1 + 4π3/2ξE2

√
α
Prc

− v
)(

dθ
dξ

)2

(1 + α1 + αθ)2

+
2αξθ−1+n

(
πEθ dE

dξ
+ αPrcθ

n(nα1 + (1 + n)αθ) dθ
dξ

)

Prc(nα1 + (1 + n)αθ1+n)

+
4
(

1 + 4π3/2ξE2
√

α
Prc

− v
)
θ−n

(
(π + 16πE) dE

dξ
+ d


dξ
+ πξ d2E

dξ

)

αξ Prc(1 + α1 + αθ)(1 + (1 + n)α1 + (1 + n)αθ)

+
4
(

1 + 4π3/2ξE2
√

α
Prc

− v
)

d2θ
dξ2

1 + α1 + αθ

)

= 0. (40)


 for case 1:


 = −πE2 + 1

8π

(

4π2E2 + 8π Prcθ
n(α1 + αθ)

α

+
(

4π2E2 + 8π Prcθ
n(α1 + αθ)

α

)
2

+
(

4π2E2 + 8π Prcθ
n(α1 + αθ)

α

)

×
(

−4π2E2 + 8π Prcθ
n(1 + nα1 + nαθ)

α

)

+
(

−4π2E2 + 8π Prcθ
n(1 + nα1 + nαθ)

α

)
2

+
(

−1 − 8π2E2 − 8π Prcθ
n(α1 + αθ)

α

+ 8π Prcθ
n(1 + nα1 + nαθ)

α

)

⎛

⎜
⎜
⎜
⎝

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)
2

(

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

−
ξ

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)(

−4π2E2 + 8π Prcθ
n (1+nα1+nαθ)

α

)

4
√

π

√
Prc
α

(

1 + 4π3/2ξE2
√

Prc
α

− v

)

−

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)(
16π2E2 + 32π2ξE dE

dξ
− dv

dξ

)

(
1 + 4π3/2ξE2

√
Prc
α

− v
)

2

+ 4π2E2 + 8π2ξE dE
dξ

+ 8π Prcθ
−1+n (nα1+(1+n)αθ) dθ

dξ

α

1 + 4π3/2ξE2
√

Prc
α

− v

⎞

⎟
⎟
⎠
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+

⎛

⎜
⎜
⎜
⎝

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)
2

(

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

−
ξ

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)(

−4π2E2 + 8π Prcθ
n (1+nα1+nαθ)

α

)

4
√

π

√
Prc
α

(

1 + 4π3/2ξE2
√

Prc
α

− v

)

−

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)(
16π2E2 + 32π2ξE dE

dξ
− dv

dξ

)

(
1 + 4π3/2ξE2

√
Prc
α

− v
)

2

+ 4π2E2 + 8π2ξE dE
dξ

+ 8π Prcθ
−1+n (nα1+(1+n)αθ) dθ

dξ

α

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

⎞

⎟
⎟
⎠ . (41)


 for case 2:


 = −πE2 + 1

8π

(

4π2E2 + 8π Prcθ
n(α1 + αθ)

α

+
(

− 4π2E2 + 8π Prcθ
n

α

)
2

+
(

− 4π2E2 + 8π Prcθ
n

α

)(

4π2E2 + 8π Prcθ
n(α1 + αθ)

α

)

+
(

4π2E2 + 8π Prcθ
n(α1 + αθ)

α

)
2

+
(

− 1 − 8π2E2 + 8π Prcθ
n

α
− 8π Prcθ

n(α1 + αθ)

α

)

×

⎛

⎜
⎜
⎜
⎝

−
ξ

(

− 4π2E2 + 8π Prcθ
n

α

)(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)

4
√

π

√
Prc
α

(

1 + 4π3/2ξE2
√

Prc
α

− v

)

+

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)
2

(

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

−

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)(
16π2E2 + 32π2ξE dE

dξ
− dv

dξ

)

(
1 + 4π3/2ξE2

√
Prc
α

− v
)

2

+ 4π2E2 + 8π2ξE dE
dξ

+ 8π Prcθ
−1+n (nα1+(1+n)αθ) dθ

dξ

α

1 + 4π3/2ξE2
√

Prc
α

− v

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

−
ξ
(

− 4π2E2 + 8π Prcθ
n

α

)(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)

4
√

π

√
Prc
α

(

1 + 4π3/2ξE2
√

Prc
α

− v

)

+

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)2

(

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

−

(
π3/2ξE2
√

Prc
α

+ 8π Prcθ
n (α1+αθ)
α

)(
16π2E2 + 32π2ξE dE

dξ
− dv

dξ

)

(

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

+ 4π2E2 + 8π2ξE dE
dξ

+ 8π Prcθ
−1+n (nα1+(1+n)αθ) dθ

dξ

α

1 + 4π3/2ξE2
√

Prc
α

− v

)
2

⎞

⎟
⎟
⎠ . (42)
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