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Abstract The understanding of the pion structure as
described in terms of transverse-momentum-dependent par-
ton distribution functions (TMDs) is of importance for the
interpretation of currently ongoing Drell-Yan experiments
with pion beams. In this work we discuss the description of
pion TMDs beyond leading twist in a pion model formulated
in the light-front constituent framework. For comparison, we
also review and derive new results for pion TMDs in the bag
and spectator model.

1 Introduction

The pion is one of the few hadrons, besides nucleon and
nuclei, whose partonic structure can be studied, mainly
thanks to the Drell-Yan process (DY) [1,2] with pion beams
impinging on nuclear targets [3—6]. DY data provide access to
the twist-2 “collinear” parton distribution function (PDF) of
the pion f{'(x) [7-14] and more. In fact, the unpolarized DY
cross section differential in the dilepton angular distribution,
given in the Collins—Soper frame [15] by

do 2 . V..o

o) o (1 + Acos” 6 + wsin26 cos¢ + 3 sin Gcos2¢),

ey

provides also information on transverse-momentum-depe-
ndent parton distribution functions (TMDs). In the TMD fac-
torization framework, the coefficient A is due to the twist-2
unpolarized TMD flq (x, pr) and 1/Q%-suppressed terms,
o arises from certain twist-3 TMDs [16], v is due to the
naive time-reversal odd (T-odd) Boer—Mulders function [17].
One important current development consists in extending the
DY measurements to include polarization effects, which is
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being pursued with polarized proton beams at RHIC (BNL)
[18] and pion beams impinging on polarized proton targets at
COMPASS (CERN) [19,20]. These experiments will test the
TMD factorization approach, in particular the predicted sign
change of naive T-odd TMDs [21], and provide new insights
on the nucleon structure.

In our context, the COMPASS program is of particular
interest. It will give at the same time new insights on the
pion structure at leading and subleading twist, and it will
go far beyond what was learned from earlier Fermilab and
CERN experiments [22-24] owing to the availability of a
polarized target. Moreover, previous measurements suffered
from limited statistics, and most of them found for instance
a subleading-twist coefficient © compatible with zero. Also
with this respect new data from COMPASS may improve the
situation [19].

Higher-twist PDFs and TMDs are of interest in their own
right, as they provide a window on quark—gluon dynam-
ics. By exploring the equations of motion (EOM) of QCD,
higher-twist PDFs and TMDs can in general be decom-
posed into contributions from leading-twist, current quark
mass terms and pure quark—gluon interaction-dependent
(“tilde”) terms. An interesting question is how such genuine
QCD interaction-dependent terms are modeled in constituent
frameworks, which for our purposes are defined as models
without explicit gluon degrees of freedom.

In a previous study we addressed this question in the con-
text of unpolarized nucleon PDFs and TMDs [25]. We have
shown that internally consistent descriptions of the unpolar-
ized leading- and higher-twist PDFs and TMDs are possible
using several constituent model approaches. The respective
effective interactions mimic in various ways the QCD quark—
gluon interactions, giving rise to non-trivial tilde terms in
some models. To which extent constituent models can pro-
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vide phenomenologically reliable estimates for higher-twist
effects remains to be tested. At least an encouraging agree-
ment was observed [25] in the case of the nucleon twist-3
PDF ¢4 (x) of which recently a first extraction became avail-
able [26].

In this work we will present a study for the pion case.
The main scope is to prepare an understanding of T-even
pion TMDs at leading and especially subleading twist in the
framework of constituent models which can be tested and
used in future phenomenological applications to analyze and
interpret first data. Our particular focus will be on critically
reviewing the internal consistency of the models, and assess
their range of applicability. We will also investigate how the
genuine higher-twist terms are modeled in different effective-
model frameworks. Our focus will be on the aspects peculiar
to the meson sector, i.e. on aspects related to the modeling
of 2-body dynamics of the gg-pair in the pion as opposed
to the modeling of 3-body dynamics in the nucleon state
investigated in prior work [25].

The three models discussed in this work are the light-front
constituent model (LFCM), the bag, and the spectator model.
All results for higher-twist TMDs are new and original in
the LFCM and bag model. In the spectator model analytical
expressions for twist-3 pion TMDs were quoted in the lit-
erature, but to the best of our knowledge they were neither
evaluated nor were their properties discussed. We discuss and
compare the results from the different models with the goal
to establish differences and common features of constituent
frameworks of the pion structure.

It is important to keep in mind that none of these mod-
els accounts for the perhaps most important feature of the
pion, namely its nature as Goldstone boson associated with
spontaneous chiral symmetry breaking. Instead, the models
discussed in this work treat the pion on the same footing as
all other hadrons, i.e. as a particle composed of the respec-
tive constituent degrees of freedom. In our assessment of the
applicability of the models, we shall also discuss the rational
for this approach. A study of twist-2 pion TMDs in a chiral
(Nambu-Jona-Lasinio) model was presented in Ref. [27].

The outline is as follows. In Sect. 2 we define and discuss
the properties of pion TMDs in constituent models. In Sect. 3
we study pion TMDs in the LFCM. In Sect. 4 we review the
descriptions of pion TMDs in the bag and spectator model.
In Sect. 5 we present the numerical results from the different
models and compare them to nucleon TMDs. Finally, Sect. 6
contains the conclusions. Technical details are collected in
the appendices.

2 T-even pion TMDs in quark models

TMDs are described in terms of quark correlators. In con-
stituent approaches without explicit gluon degrees of free-
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dom, the Wilson lines of QCD reduce to unit matrices in
color space. As a result T-odd TMDs are absent, and only
T-even TMDs appear. The structure of a spin-zero hadron,
like the pion, is described in terms of four TMDs,

dz=d*zr _
/ ﬁ PPV Oy Y @IP) =0 = £ (x, pr),

(2a)
dZidZZT iz .
/W” (P (0) 1 % (2)|P)|+—0
= 2% o9 (x, pr) ob)
p+ - PT)
dz=d%zr ;o
fﬁe”’ (P (0)y 9 ()| P+ =0
= 2% et @
- pt , PT)s o)
dz=d%z7 . _
/ﬁequW(O)y V()| P)+—o
m: o
= prplalepr)- 2d)

Here |P) is a pion state with 4-momentum P, g is a fla-
vor index for the quark and antiquark contribution and m
is the pion mass. We use light-front coordinates a* =
@ +£a3)/v2,ar = (a', a*) with ar = |ar| and the metric
isa-b=ath” +a"b" —ar by withd*z = dzTdz"d%z7.
The model results generically refer to a low (‘“hadronic”)
normalization scale below 1 GeV [28-30]. Integrating Eq.
(2) over pr provides the definition of the corresponding
PDFs. Note in particular that because of the explicit pé fac-
tor in Eq. (2c) there does not exist any PDF counterpart to
f+4(x, pr). One can, however, formally define f La(x) =
[ &pr fHa(x, pr).

Sum rules are of particular importance when testing the
consistency of models. Let N, be the valence number of
flavor ¢, which is for instance Ny, = N; = lin 7", The sum
rules are given by

fmﬁm:m, (3a)

Z/dxxff(x)=1, (3b)
q
On
Z/dx el(x) = —, (3¢)
q g
/dx xel(x) = L N, (3d)
My

2 / dx fi(x) = N,. 3e)

The valence number sum rule (3a) is the same in QCD and
constituent models, but the momentum sum rule (3b) is sat-
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urated solely by valence degrees of freedom in constituent
models at the initial scale (with the exception of the spec-
tator model which we will discuss in detail). Equation (3c)
formally relates ¢4 (x) to the sigma term [31,32], which cor-
responds to the scalar form factor o (f) at zero-momentum
transfer. The sigma term of the pion is given by o; = % My
in the leading order of the chiral expansion. Since m% X my
owing to the Gell-Mann—Oakes—Renner relation, the sum
rule (3c) for the pion diverges like 1/m in the chiral limit.
The Jaffe—Ji sum rule (3d) connects the first moment of e (x)
to the current quark mass m, in QCD, or the constituent (or
effective) mass in models [25,33]. In the chiral limit this sum
rule goes to zero like m . The sum rule (3e) formally arises
from the normalization of the minus-component of the vec-
tor current, just as (3a) arises from the normalization of its
plus-component. The validity of (3e) is subtle, both in QCD
and in quark models [25], as we shall discuss in Sects. 3 and
4. In Eq. (3¢c) and throughout this work, we neglect isospin-
violating effects and assume m, = m, = my for current or
constituent quark masses. Unless otherwise stated, we will
refer to the distributions in positive pions using the nota-
tion j¥, (x, pr) = j¢(x, pr), where j, = j, = j¢ =
j:;‘, =2j = ngo = 2j;’0 = ngo holds due to isospin
symmetry and charge conjugation, and j?(x, pr) denotes a
generic TMD.

Positivity inequalities provide another important test,
although they can be spoiled in QCD already at leading twist
(let alone at twist-4) due to subtractions in the renormaliza-
tion procedure. In consistent models one expects [25]

flx, pr) =0, (4a)
fix, pr) = 0. (4b)

In approaches without explicit gauge-degrees of freedom,
the quark correlator of a spin-zero (or unpolarized) hadron
has a general Lorentz decomposition in terms of three inde-
pendent amplitudes parametrized in terms of four TMDs.
In such situations “quark-model Lorentz-invariance relations
(qLIRs)” arise [34].! In our case, the qLIR is given by [25]

1 d
flx) = 5 flx) + af”””(x), 5)

2
with fL90 () = [d?pr L5 fH9(x, pr).

It is important to remark that flq and the twist-3 pion
TMDs e9 and f 14 can be accessed in DY [16], but not the
twist-4 TMD f4q , which therefore has to be considered as an
academic object. Nevertheless ff completes the description

1 We stress that such relations are valid only in quark models (or for the
(academic) TMDs with straight gauge links implemented in lattice cal-
culations [35]), and should be distinguished from the LIRs in collinear
twist-3 formalism recently derived in Ref. [36].

of the quark correlator through twist-4 [37], and Eq. (5) is
of value as it provides a powerful test for the theoretical
consistency of a model.

Next, let us state the relations which result from employing
the EOMs

x el (x, pr) =xéq<x,pr>+;”1—"f{f<x,m>, (6a)
x fH(x, pr) = x fHx pr) + £ pr), (6b)
2 2
xsz(x, pr) = xzﬁf(x, pr) + % flq(xv Pr).

(6¢)

In QCD the tilde terms are expressed in terms of quark—
gluon—quark correlators. In quark models, they still denote
“interaction-dependent terms” which arise from applying the
respective model EOMs.

3 Pion structure in the LFCM

In this section we discuss pion TMDs in the LFCM. We first
derive the general expressions for the subleading-twist TMDs
in leading order of the Fock-space expansion for the pion,
and discuss the consistency of the approach. We then intro-
duce the phenomenological model for the light-front wave-
functions (LFWFs) which we will employ later to obtain
definite predictions.

3.1 General formalism

The formalism for the calculation of the unpolarized higher-
twist T-even TMDs in the light-front framework has been
discussed in Ref. [25], with an explicit application to the
nucleon. The same approach is adopted here in the case of
pion. We recall that in light-front quantization the Fock-space
expansion of the hadron states is performed in terms of free
on-mass-shell parton states with the essential QCD bound-
state information encoded in the LFWF. The gg component
of the light-front state of the pion can be written as

w1 = 3 [ A1 o g 0)

Al,A2

where \IJ;fl(ﬂQ is the gg-LFWF with A (12) and g (g) referring
to the light-front helicity and flavor of quark (antiquark),
respectively. The LFWF includes an isospin factor 7,; which
projects onto the different members of the isotriplet of the
pion, i.e. T; = Zrl,n(%ﬂ%fﬂlfn) with 71, 72 and 7, the
isospin of the quark, antiquark, and pion state, respectively.
In Eq. (7) ri = (xiMo, pr;), and My denotes the mass of

the non-interacting g ¢ state. Furthermore, we introduced the
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notation p = (p*, py) for a generic light-front momentum
variable p. Since momentum conservation implies py; +
pro = 07 and x| + x = 1, the LFWF actually depends
only on the variables x = x; and k7 = p7. The integration
measure in Eq. (7) is defined as

d[11dp2] = ‘d 2

5(1 — X1 — X2)

d? pTld pPr2 5@

220y (P11 + pr2) > )

so that we can write

/ d[11d[2] F(x1, prys 2. Pra)

dx d2kr _ _
:/mz(zn)3F(x,lcT,l—x,—lcT). 9)

The pion TMDs are given by the expressions

f]q(x’ PT)ZPq(ﬁ)’ (10a)

xed(x, pr) = ;"1—‘173‘7(;5» (10b)

x fH(x, pr) = PL(p), (10¢)
2 2

2 feepry = P pa . (10d)
2’"71

which formally coincide with the expressions for the unpo-
larized nucleon TMDs [25], except that the quark density
operator P4(p) is evaluated in the pion states, which are
given in terms of the pion LFWFs by

>l (. (11)

A,A2

P4(p) =

Equations (10a)—-(10d) are model-independent in the sense
that they are valid in every light-front approach in which
the Fock-space expansion includes the leading (“‘valence”)
sector and truncates higher Fock-space components.

3.2 Internal consistency of the approach

Let us now test the internal consistency of the approach. From
Egs. (10a)-(10d) we obtain the relations

x el (x, pr) = ZZ—q FCx, pr), (12a)

x fH(x, pr) = ff(x pT) (12b)
p +m

2 fale pr) =~ : f1 (x, pr), (12¢)

which coincide with the EOM relations (6a)—(6c¢), respec-
tively, with vanishing tilde terms as expected for free on-shell
partons described in terms of LFWFs.

@ Springer

The valence number sum rule (3a) and the momentum
sum rule (3b) are satisfied in the LFCM by construction. As
a consequence of Eq. (12b), one finds [ dx xfL4(x) = N,
and }°, [dxx? fLax) = 1.

The sum rules for the first and second Mellin moment of
e(x) in Egs. (3c) and (3d) are valid with the proofs analog to
the nucleon case [25]. The sum rule (3d) also follows directly
from Eq. (12a), which in addition implies a sum rule for the
second moment 3, [ dx x%ed(x) = my/my.

The sum rule (3e) for fi1(x) is not supported in the
LFCM of the pion, and also the qLIR (5) is not valid. These
observations were also made in the nucleon case [25] and
are related to each other. The fact that the same features
occur in the pion (2-body) and nucleon (3-body) case, indi-
cates that this is not an artifact but a general property of
LFCMs. To ensure the compliance with the sum rule (3e)
it is necessary to consider zero modes in the light-front
quantization [38] or to include higher light-front Fock states
[39]. These considerations are beyond the scope of LFCMs
based on the minimal Fock space, so that both the sum rule
(3e) and the qLIR (5) are consequently not satisfied [25].
The LFCM of the pion complies, however, with positivity
(4a), (4b).

Thus, the LFCM is internally consistent. It satisfies all
general relations except for the sum rule (3e) and the qLIR
(5) which are beyond the scope of this approach, and both
related to the academic twist-4 PDF ff (x) such that it has
no relevance for practical applications.

3.3 Phenomenological model for LFWF

To obtain definite predictions one has to choose a spe-
cific model for LFWFs. In this work we choose the pion
LFWFs proposed in Refs. [40,41]. One could include the
effects of confinement in the light-cone approach [42], but
the phenomenological LFWFs of [40,41] provide already
a phenomenologically acceptable description. They were
applied in Refs. [30,43] to the calculations of leading-twist
T-even and T-odd TMDs, and generalized parton distribu-
tions of the pion. For completeness, we briefly review this
model.

The explicit expression for the momentum-dependent part
of the LFWF reads

Mo(E, kr) e/
4x(1—x) m3/4Ap32°

U (%, k1) = V2(27)3

13)

where k = (KT, k;) is the quark three-momentum, with

K. = Mo(X, k1) (X — 3), (14)
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and the free invariant mass squared is given by
mé + K%
(1 —x)
The LFWF (13) depends on the free parameter S and the
quark mass mg, which have been fitted to the pion charge
radius and decay constant. In particular, we take m, = 0.250
GeV and 8 = 0.3194 [40]. For the spin-dependent part of
the LFWF we refer to the derivation in Ref. [30].

The results obtained with this pion LFWF model will be

discussed, and confronted with other models in
Sect. 5.

M3 (%, k7) = (15)

4 Pion structure in bag and spectator model

In this section we discuss pion TMDs in two other models, the
bag and spectator model. We focus on physical aspects and
internal consistency in these approaches, and skip technical
details which are collected in Appendix A and Appendix B.

4.1 Bag model framework

The bag model describes hadrons in terms of n free quark
and/or antiquark constituents confined inside a spherical
cavity of radius Rp,e by appropriate boundary conditions
[44]. In its simplest version m- and p-mesons are mass-
degenerate, as it makes no difference whether a gg-pair
is placed in an s-wave with aligned or anti-aligned spins.
This unrealistic situation can be improved [45] by invok-
ing a gluon-exchange potential (which is an intrinsic prop-
erty of the bag wave-function, and different from the glu-
onic effects related to initial- or final-state interactions [46]
that give rise to T-odd TMDs). Also “center-of-mass correc-
tions” were used to construct wave-packet superpositions of
static bag solutions with naturally light pion masses [47] that
met phenomenological success [48]. A bag model version
constructed to comply with chiral symmetry is the “cloudy
bag” [49].

In this work we use the simple MIT bag model with mass-
less quarks. At first glance this seems not to fit in the generic
picture of massive, effective, constituent degrees of freedom.
Butif desired, one can introduce a quark mass parameter with
numerical but no conceptual differences in the model, with
a value around m, ~ 120MeV [50] which is natural from
the point of view of the constituent picture (although also
smaller values were discussed in the literature). More impor-
tantly, the quantum numbers of hadrons are determined by a
fixed number of valence (quark, antiquark) degrees of free-
dom, which allows one to classify the bag model as a con-
stituent framework. This approach is therefore sufficient for
our purposes to investigate generic features of TMDs in con-
stituent models. The bag model expressions for flq (x, p1),

el (x, pr), fr4(x, pr), and ff(x, pr) in the pion are given
in Appendix A.1.

Keeping in mind the well-known general shortcomings,
the description has to be considered as consistent: the bag
model TMDs satisfy the sum rules? (3a), (3b), (3e). The
sum rules (3c), (3d) are more subtle, and discussed in
Appendix A.2 where we show that they are consistently satis-
fied in the model albeit in a quite different manner compared
to QCD. The bag results satisfy the inequalities (4a), (4b).
As a last and stringent consistency check of the description
of higher-twist TMDs, we remark that the bag model satis-
fies the gLIR (5). This was proven analytically for nucleon
TMDs in [25]. The proof can be carried over to the pion case
such that also pion TMDs comply with Eq. (5). The EOM
relations (6a)—(6¢) hold with non-zero interaction-dependent
tilde terms which are due to bag boundary effects [25,31].

Overall we find that the bag model description of higher-
twist TMDs is internally consistent within the model,
although not all features of the model are consistent with
QCD. The PDFs in the bag model exhibit also interest-
ing symmetry properties which we discuss in detail in
Appendix A.3. We shall return to the bag model and discuss
further properties of TMDs and numerical results in Sect. 5.

4.2 Spectator model

In the spectator approach the pion structure is modeled in
terms of an effective pion—quark—spectator vertex. The spec-
tator has the quantum numbers of an antiquark but, constitut-
ing an effective degree of freedom, it could in principle have
a different mass. We distinguish the spectator mass Mg and
constituent mass m, in the formulas in Appendix B, but we
set them equal in the final results. This choice is closest to
the spirit of constituent models where, after the active quark
is struck, one would identify the “remainder” with an anti-
quark. This is of course not a necessary step. However, the
rational for working with a distinct effective degree of free-
dom is less convincing than in the nucleon case, where the
“remainder’ has the quantum numbers of diquarks, i.e. effec-
tive bosonic degrees of freedom whose masses are a priori
free parameters which cannot be associated with the con-
stituent quark mass. This approach was used to compute the
pion TMDs £/ (x, pr), f(x, pr), 4 (x, pr) in Ref. [51].
In Appendix B.1 we review the expressions for these TMDs,
and derive also the spectator model expression for f4q (x, pr).

2 For that it is crucial to extend the integrals over the whole x-axis
including negative x and the regions |x| > 1. At negative x the TMDs
describe sea quarks where the bag results violate positivity (4a), (4b) in
the nucleon case. The non-zero (albeit numerically small) support in the
regions |x| > 1 is a technical problem in models where corrections due
to center-of-mass motion have to be applied. These issues are known in
the bag model of the nucleon and not specific to the pion.

@ Springer
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: 100
50f
% s X

Fig. 1 LFCM results for PDFs as functions of x. The solid curves cor-
respond to the pion results with the LFWF of Ref. [30] for the u-flavor in
7. The dashed-dotted curves show for comparison the corresponding

Let us now concentrate on discussing the consistency of
the approach which, regarding the sum rules (3a)—(3e), is con-
ceptually the same in the spectator model of the pion as in the
spectator model of the nucleon [25]. The valence sum rule
(3a) is satisfied in this model by construction, as the normal-
ization of the effective vertex is chosen adequately. In con-
trast, the momentum sum rule (3b) is not valid for any choice
of model parameters: one obtains less than unity in Eq. (3b).
In a specific parametric limit, one obtains a quasi-model-
independent result that the valence quark and antiquark carry
% of the pion’s momentum. Such “%—paradoxes” have a long
history in the literature and illustrate that the model is incom-
plete; see the detailed discussion in Appendix B.2.

The sum rules (3¢) and (3d) for ¢ (x) do not hold in the
spectator model of the pion. This is apparent from the fact
that the first and second moments in Eqs. (3¢) and (3d) should
be positive, while €7 (x) is negative in this model as discussed
in Appendix B.3.

Also the sum rule (3e) for ff (x) is not satisfied in the
spectator model, but this has a different origin. Both sum
rules (3a) and (3e) can be traced back to the conservation
of the Noether vector current. The form factors, which are
introduced in an ad hoc manner to describe the effective ver-
tex (see Eq. (39) in Appendix B.1) in general violate current
conservation. It is therefore possible to satisfy (3a) or (3e)
but not both sum rules simultaneously.

The spectator model complies with the positivity require-
ment (4a) for flq (x), and satisfies the inequality (4b) for
ff (x) provided one choses the model parameters appropri-
ately; see Appendix B.3. As alast test of the spectator model,
we notice that the qLIR (5) is satisfied. The proof for that can
be carried over from the nucleon case [25].

Finally, let us remark that the EOM relations (6a)—(6c)
hold in the spectator model of the pion with the tilde
terms arising due to the off-shellness of the quark, ana-
log to the nucleon case [25]. Remarkably, in the pion the
off-shellness effects and hence the tilde terms are large
when one identifies the mass of the spectator particle with

@ Springer

results for the d-flavor PDFs in the proton in the LFCM of Ref. [25],
which have the same normalization for flq (x)

the constituent quark mass. This is discussed in detail in
Appendix B.4.

5 Numerical results

In order to discuss the model results, we first focus on
the integrated TMDs in the three models in Sects. 5.1-
5.3. Then we discuss the pr-dependence of the TMDs in
Sect. 5.4.

5.1 Integrated TMDs in LFCM

In Fig. 1 we show the LFCM results for the integrated
TMDs £ (x), e?(x), f9(x), and f](x) of the pion in
comparison with the corresponding results for the down
quark in the nucleon, obtained from the three-quark LFWF
of Refs. [25,52]. In the LFCM the distribution of quark
with longitudinal momentum fraction x is equal to the dis-
tribution of the corresponding antiquark with longitudinal
momentum fraction 1 — x, i.e. for instance in 7+ we have
) = fld (1 — x). Furthermore, one has the relation

f fj (x) = f}'(x) which gives as final result a momentum dis-
tribution symmetric with respect to x = % The shape of the
unpolarized momentum distributions for the pion and proton
is quite different, reflecting the different valence-quark struc-
ture of the hadrons. For the proton, the unpolarized momen-
tum distribution of the valence quark is peaked at x ~ 1/3,
while for the pion it reaches its maximum at x = 1/2.

The twist-3 distributions of both the pion and the nucleon
can be expressed in terms of the unpolarized momentum
distribution as in Egs. (10a)-(10d), with the corresponding
hadron mass and constituent quark mass.> The small value
of the pion mass accounts for the enhancement of the e? and
f4 parton distributions with respect to f;, which is much

3 In the model calculation of Ref. [30] the mass of the constituent quark
in the nucleon was chosen as m,; = 0.263 GeV.
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L
f'(x) a e’(x) b f(x) c f,'(x) d
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Fig. 2 Bagmodel results for pion PDFs (solid lines) as functions of x at
low scale: a flq x),bel(x),¢e f(x),d ff (x). The pion results (solid
curves) refer e.g. to the u-flavor in 7 *. For comparison the correspond-

more pronounced than in the case of the nucleon, especially
for ff.

Finally, let us remark that in the LFCM it is possible
to evaluate also inverse moments. For instance, the inverse
moment

1 q
o, =/ dx fr @ (16)
0

exists and is well defined in the LFCM. In fact, thanks to the
EOM relations (6a) and (6b) it is related to the first moment
of f149(x) or the first moment of ¢ (x) (and by means of (3c)
also to oy ) in this model. Such inverse moments have been
discussed in the literature [53] in the context of a modern
reformulation of the Weisberger sum rule [54]. In general,
in QCD as well as in the other models considered in this
work, such inverse moments diverge and are ill-defined, so
it is noteworthy that the LFCM provides a framework where
they can be evaluated—giving the opportunity to study sum
rules based on inverse moments. We will not pursue this line
further in this work, and we only remark that numerically
one obtains

2.82  for the pion (this work),

X (17)
3.97  for the nucleon, Ref. [25].

<x_l>q = Ng

5.2 Integrated TMDs in bag model

The numerical results for the integrated pion TMDs from the
bag model are shown in Fig. 2 in comparison to the results
from the nucleon in this model [25,55]. For f lq (x) the results
are qualitatively similar in shape and magnitude to those from
the LFCM. But for e?(x), f19(x), and f! (x) the bag model
predicts much smaller distributions than the LFCM. This can
be understood by means of the sum rules. In fact, f lq (x)
obeys the sum rules (3a) and (3b) which dictate comparable
magnitudes in all quark models. On the other hand, the Jaffe—
Ji sumrule (3d) does not place the same constraints regarding

ing nucleon PDFs from Ref. [25] are shown (dashed-dotted curves) for
d-flavor in the proton, such that in panel a both curves are normalized
to unity (cf. footnote 3)

the magnitude of e (x) in all models. The second moment of
e9(x) is sizable in the LFCM because the constituent mass
mg = 250 MeV enters the normalization of this sum rule in
the LFCM. In contrast to this, the quarks in the bag model
are massless and the sum rule (3d) is realized differently, see
Appendix A.2, due to the different EOMs in the bag model.
Another principal difference is that the TMDs of the pion and
nucleon have the same order of magnitude in the bag model
in contrast to the LFCM.

There are several interesting observations, which we sum-
marize here leaving the details to Appendix A.3. In the bag
model flq (x) exhibits a global maximum at xy,x ~ % where
n is the number of constituents, and shows an approximate
reflection symmetry £ (x) ~ f{!(2xmax — x), which is sat-
isfied numerically (for the pion with n = 2) with an accu-
racy better than O(1 %) in the valence-x region. As a conse-
quence of this symmetry the unpolarized distribution in the
pion is smaller and broader than that in the nucleon, where
flq (x) is approximately symmetric with respect to its peak at
Xmax ~ % These are natural features in a system made of n
constituents each one carrying on average about x ~ % of the
hadron momentum. With increasing n one would expect the
distributions to exhibit narrower peaks around their maxima,
as we observe. We remark that ff (x) has similar proper-
ties to flq (x), except that this PDF peaks at a different value
Xmax = ﬁ and exhibits an approximate symmetry around
this value; see Appendix A.3.

For pions the approximate symmetry £, (x) ~ f(1—x)
implies that flq (x) has as much support at unphysical x > 1
as in the region x < 0 where it would describe minus the dis-
tribution of antiquarks according to flq x) =— flq (—x). If
we are willing to accept the spurious contributions at x > 1
as a bag artifact (which can be remedied by adequate pro-
jection techniques), then we recognize that the pion has no
sea quarks in the bag model, besides a spurious bag arti-
fact contribution. This is a qualitatively and quantitatively
different situation than in the nucleon, where flq (x) peaks
around Xpax ~ % and the bag generates, through the sym-

@ Springer
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Fig. 3 Results for pion PDFs (solid lines) from the spectator model as
functions of x at low scale: a flq x),be(x), ¢ fJ-q (x),d ff (x). The
pion results refer e.g. to the u-flavor in 77 . For comparison the corre-

metry flq (x) ~ flq (% — x), sizable sea quark contributions
in the nucleon which violate positivity (4a).

With this last observation one arrives (somewhat paradox-
ically in view of the reservations regarding chiral symmetry)
at the conclusion that the bag seems “better suited” for the
description of the pion structure than the nucleon structure,
as the problem of unphysical sea quarks does not appear in
the pion case.

5.3 Integrated TMDs in spectator model

In Fig. 3 we compare the integrated TMDs flq (x), e4(x),
f14(x), and ff (x) from the pion spectator model with the
parameter fixing as described in Appendix B.3 to the results
in the nucleon case obtained in [25,51]. Interestingly, and
in contrast to other models and to the nucleon case in the
spectator model, the integrated pion TMDs do not exhibit
a global extremum at finite x, but at the boundary value
x = 0. The predictions for the functions e?(x) and 9 (x)
of the pion and nucleon differ significantly in this model.
Although the description of these TMDs is conceptually the
same (one basically deals with the same effective diagram
in the “crossed channel” [51]), this is a consequence of the
different parameters and the different relative size of off-
shellness effects in pion and nucleon; see Appendix B.4.

5.4 pr-dependence in models

In this section we turn our attention to the pr-dependence
of the TMDs. Let us define the mean transverse momenta
(n = 1) and the mean squared transverse momenta (n = 2)
in a generic TMD j (x, pr) as follows:

(o) = [dx [d%pr pt j(x, pr)
r [dx [d%pr j(x, pr)

(18)
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sponding nucleon integrated TMDs from Ref. [25] are shown (dashed-
dotted curves) for d-flavor in the proton, such that in panel a both curves
are normalized to unity

If a TMD had exactly Gaussian pr-dependence one would
find for the ratio

_2 ) 1)

VT ()

the result R = 1. This has been occasionally used as a
quick test to see to which extent a model supports Gaussian
pr-behavior [28] which is observed phenomenologically in
many DIS reactions [56,57]. However, one should use such
tests with caution as the following results from the LFCM
show.

In Table 1a we show the results from the LFCM of the pion
for (p), (p% )1/2 and the ratio Rg. Although R is very close
to unity for all TMDs, the Gaussian Ansatz is only a rough
approximation for flq , ¢4, {14 and not applicable at all for
4, as shown in the right panel of Fig. 4.

Table 1 (a) (pr) and (p%)l/2 in units of GeV as defined in Eq. (18),
and the ratio R as defined in (19) for pion TMDs from LFCM. (b)
The Gaussian widths (p%v)l/2 defined in (20) in GeV for pion TMDs
at x, = 0.5 from LFCM, spectator and bag model

(a) Pion LFCM

TMD (pr) (P2 R¢

1 0.28 0.32 0.99

el 0.26 0.30 0.99

fta 0.26 0.30 0.99

fi 0.30 0.33 0.98

(b) Pion LFCM Bag Spectator
TMD (pF ) (P77 (pF )
Vi 0.420 0.063 0.180

el 0.420 0.055 0.195
f 0.420 0.063 0.200

fi - 0.063 0.235
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Fig. 4 a f|'(xy, pr) at x, = 0.5 as functions of pr. The solid curves
show the predictions from the LFCM, while the dashed-dotted curves
are the respective Gaussian approximations from Eq. (20) with the
Gauss widths in Table 1b. b f;(x,, pr) at x, = 0.5 as functions of

) £(x,, pp) (GeV?) b

20/

10f
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pr. We do not show results for e? (x, pr) and f“’ (x, pt), which differ
merely in the overall normalization but exhibit the same pr-dependence
as f{'(x. pr)
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Fig. 5 Bag model results for pionTMDs at x, = 0.5 as functions of

pratlowscale:a fil (x, pr),be? (x, pr),c fX9(x, pr),d fl(x, pr).
The solid curves show the predictions from the bag model, while the

A more reliable test for the applicability of the Gaussian
Ansatz can be performed by introducing a different definition
of { p%v) [55], which is adjusted such that one obtains (if it is
possible) a useful approximation of the true pr-dependence
of a TMD j (x, pr) at a given value of (valence-) x in terms
of the Gaussian Ansatz as

pr )
(PF )

Although this definition is x-dependent, typically the x-
dependence is weak in the valence-x region where quark
models are applicable [55]. For definiteness, we choose the
value x,, = 0.5 for the pion as a reference point where flq (x)
exhibits a peak in most models.

In Table 1b the second column displays the results from
LFCM of the pion for (p7.,)'/? of f{!, €%, f+4, where the
Gaussian approximation is rough but still makes sense; see
Fig. 4. These numbers deviate significantly from the results
for (p%) 1/2 in Table la. The important lesson is that the “Rg-
test” is only a necessary but not a sufficient condition for the
usefulness of the Gaussian approximation. Using the def-
inition (20), we can also directly compare all models; see

J (v, pr) % j(xy, 0) eXp(- (20)

dashed-dotted curves are the respective Gaussian approximations from
Eq. (20) with the Gauss widths in Table 1b

the Figs. 5, 6 and other columns in Table 1b. (Notice that
the definitions (18) would not be useful in the bag model,
where the integrations over x in general include unphysical
contributions, cf. footnote 2 and the discussion in Sect. 5.2.)
Comparing the models we see that the predictions for the
widths vary significantly from model to model. Notice that
in the LFCM and the spectator model the physical scale is
set by the constituent quark mass, and the widths tend to
be broader. In contrast to this, in the bag model the widths
( p%’v) 172 of the pion are substantially smaller. The reason is
that the only dimensionful parameter in the bag model (here
we work with massless “current quarks” confined in the bag)
is the pion mass m, which is rather small.

Finally, for comparison we show in Table 2 the same infor-
mation as in Table 1b but for the nucleon in which case
x, = 0.3 is a more appropriate choice as this is where flq (x)
peaks in quark models. The nucleon results in Table 2 are
from Ref. [25].%

4 We would like to use this occasion to correct a numerical mistake
in the second column of Table 2 in Ref. [25], where the widths in the
LFCM of the nucleon were incorrectly scaled by a factor of 1//7. The
second column of Table 2 in this work gives the correctly scaled values.
This correction does not affect any of the conclusions of Ref. [25].

@ Springer
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Fig. 6 Spectator model results for pion TMDs at x, = 0.5 as func-
tions of pr at low scale: a flq(x, pr), bel(x, pr), ¢ qu(x, pr), d
ff (x, pr). The solid curves show the predictions from the spectator

Table 2 For comparison, the same as Table 1b but for the nucleon and
at x,, = 0.3. Notice that in the LFCM of the nucleon and the bag model
the widths for u- and d-flavors are the same, but not in the spectator
model of the nucleon

Nucleon LFCM Bag Spectator (u/d)
TMD (P72 (pr. )" (pF. )2

f]" 0.240 0.280 0.200/0.270

e 0.240 0.230 0.160/0.180
fa 0.240 0.270 0.180/0.230

ff 0.350 0.170 0.180/0.250

The comparison of the results for pion and nucleon in
Table 2 is very interesting. We see that the three models make
three different predictions. In the LFCM the pr-distributions
in the pion are broader than those in the nucleon. In the bag
model the situation is opposite. In the spectator model the
two hadrons have comparable Gaussian widths. Currently
these predictions cannot be tested except for the case of
flq (x, pr), where phenomenological studies indicate that the
pr-distribution in flq (x, pr) of the pion is broader than in the
nucleon [57]. This is in qualitative agreement with the pre-
dictions of the LFCM in Table 2. One should keep in mind,
though, that the phenomenological result was inferred from
Drell-Yan data at center-of-mass energies of /s ~ 23 GeV
and refers to scales Q > 4 GeV above the charmonium res-
onance region [57].

In contrast to this the LFCM results refer to a low scale
o ~ 0.5GeV. For a more quantitative comparison it is
necessary to take carefully evolution effects into account.

6 Conclusions

We have studied in constituent model frameworks the T-
even TMDs of the pion focusing on higher twist, with the
goal to establish common features, investigate the origins
of tilde terms, and compare the results to the description of

@ Springer

model for « = 3 model, while the dashed-dotted curves are the respec-
tive Gaussian approximations from Eq. (20) with the Gauss widths in
Table 1b

unpolarized TMDs in the nucleon. To avoid bias and mini-
mize model dependence, we investigated several constituent
models, including the LFCM, bag and spectator models. The
results give interesting insights on the internal structure of
the pion in the valence-x region.

Our focus was on the aspects related to the modeling of
2-body dynamics of the gg-pair in the pion as opposed to
the 3-body dynamics in the nucleon state. The theoretical
expressions and numerical results for all higher-twist pion
TMDs ¢4, f14, f}! from the LFCM and bag model are new,
and so are the spectator model expressions and results for ff
(in that model expressions for e, f14 were quoted in [51]
but numerical results have not been presented previously).

We addressed the question of how genuine QCD inter-
action-dependent terms contribute to higher-twist TMDs and
are modeled in constituent frameworks. In LFCM the hadron
states are obtained from a light-front Fock-space expansion
in terms of free on-mass-shell parton states, with the essential
QCD bound-state information encoded in the LFWF. Each
constituent parton state obeys the free equation of motion.
Therefore, certain unintegrated relations among TMDs that
are valid in free quark models are naturally supported in this
approach for both the pion and the nucleon cases, but not
all. In particular, relations involving the twist-4 unpolarized
TMD ff are not satisfied for the pion, confirming the results
obtained in the nucleon case. A fully consistent description
of f4[’ (x) in light-front formalism requires the inclusion of
zero modes or higher Fock states which go beyond the scope
of the LFCM. Due to the academic character of the twist-4
function ff this is of no relevance for practical applications.

For comparison we discussed results for pion TMDs in bag
and spectator model. We found that the three models make
different predictions especially for higher-twist TMDs. We
also explored to which extent the approaches are compatible
with a Gaussian shape of the transverse momentum distri-
butions, and found that all model results can be reasonably
approximated by a Gaussian pr-shape, except for ff in the
LFCM model. In contrast to the bag model and the specta-
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tor model, the LFCM predicts broader pr distributions in
the pion than in the nucleon, which is in qualitative agree-
ment with phenomenology. This may indicate that a more
realistic description of the pion structure is achieved in the
light-front approach than in the other models. More data and
phenomenological studies are needed to clarify the situation.

In the quark models discussed in this work, the pion was
treated on the same footing as other hadrons, i.e. as a particle
composed of the respective constituent degrees of freedom.
It has to be regarded as a limitation that these models do not
account for the nature of the pion as a Goldstone boson of
chiral symmetry breaking. In view of the importance of chi-
ral symmetry breaking, one may wonder to which extent we
can trust the picture of the pion structure deduced from such
models. We do not know the answer, but recently encouraging
observations were made in this regard [25]. In the nucleon
chiral symmetry breaking effects were shown to have pro-
found consequences for the sea quark structure, but far less
so for valence distributions [58]. In fact, the description of
valence-quark distributions in chiral models [58] is qualita-
tively similar to those obtained in quark models [51,55]. We
are not aware of any argument why this situation should be
fundamentally different in the pion case, though it has not
yet been investigated and remains an interesting question to
address. Another argument in favor of modeling pions and
nucleons on the “same footing” in constituent approaches is
based on the observation that pion and nucleon have sim-
ilar sizes. In quark models like LFCM or spectator model,
the scale for that is set by the constituent quark mass which
also governs the pr-behavior of valence-quark TMDs. As
a last encouraging observation, let us mention that in the
LFCM aphenomenologically rather successful description of
the leading-twist pion structure (including the T-odd Boer—
Mulders function) was obtained [30]. It of course remains
to be tested in future studies whether this success continues
beyond leading twist.

Our results will provide useful guidelines for the inter-
pretation of Drell-Yan data from pion-nucleon collisions,
which are currently under study at the COMPASS experi-
ment at CERN. These data are expected to provide important
insights on the (spin) structure of the nucleon. At the same
time, these data will provide the unique opportunity to gain
valuable insights on the structure of the pion at both leading
and subleading twist. In fact, both aspects are tightly con-
nected, and one can view it either way: the pion is used as
a tool to investigate the spin structure of the nucleon, and
polarized nucleons are used to shed new light on the struc-
ture of the pion. In any case, a good understanding of the
pion structure is indispensable and worth exploring for its
own sake.
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Appendix A: Bag model in detail
In this appendix we include the bag model expressions for
pion TMDs and PDFs to make this work self-contained, then
we discuss the sum rules for the twist-3 function ¢? (x) and
investigate the symmetries of PDFs.
A.1 Expressions for TMDs in bag model
The bag model expressions for the pion TMDs,

P
fl e, pr) =Ny A [tg(p) +2 f o(p)ti(p) + tlz(P)},
el (x, pr) = Ny A [r§<p> - t%(p)]

Miq
G, pr) =N, A [2 % fo(p)ty (p)],

A 2
[, pr) =Ny 7 [tg(p) -2 % to(p)ti(p) + tf(p)]
21

with p =,/ p% + p% and p, and hadron mass Mp,g given by

3 4 w
Pz =\X——-—) Mnad, Mpaa =31 (22)

4n 3 Rpag ’
coincide with those for unpolarized nucleon TMDs [25,55],
if one considers the flavor structure, e.g. N, = N; = 1 for
7T, and writes the normalization constant A in a way valid
for mesons (n = 2) and baryons (n = 3) as follows:

Mhada)3 RS

B 472(w — 1) sinfw

(23)

where @ &~ 2.04 is the dimensionless “frequency” of the
lowest bag eigenmode. In practice one uses the physical
hadron mass for Mp,q and adjusts the bag radius accord-
ingly. The functions #(p) in Eq. (21) can be expressed in
terms of the spherical Bessel functions j; with / = 0, 1 as
1(p) = fy duu? ji(up Roag) ji (o).

The bag model expression for flq (x, pr) of the pion was
also derived in [59].

@ Springer
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A.2 Sum rules for ¢ (x) in bag model

The sum rules (3c), (3d) can be evaluated analytically in the
bag model, and one finds for massless quarks

N,
q _ q
/dxe (x) = o1 (24a)
N, 3
q -4 -
/dxxe (x) = o—1) dn’ (24b)

This is in contrast to QCD, where in the chiral limit the sum
rule in Eq. (24a) should diverge and the one in Eq. (24b)
should vanish. These results reflect that the MIT bag model
is at variance with chiral symmetry [31]. The problem can
be traced back to the bag boundary condition, which breaks
chiral symmetry. A trivial cure to this problem is to remove
the bag boundary.’ In this way one restores free quarks
which comply with chiral symmetry in the massless limit.
However, in this way one also removes the only interac-
tion in this model, and all tilde terms [25]. In particular, in
this way e?(x, pr) vanishes, as it is a pure bag-boundary
effect [31]. Interestingly, this in itself is consistent, because
from the general decomposition in Eq. (6a) we see that
in the chiral limit and in the absence of interactions one
obtains x e?(x, pr) = 0, although this does not necessar-
ily imply that e? (x, pr) itself must vanish as it could contain
a §(x)-contribution [32,33]. Notice, however, that Eq. (24a)
is within the model consistent, and provides the correct bag
contribution to sigma term as can be seen from the cloudy
bag model study of the nucleon sigma term in Ref. [61].

It is interesting to confront (24a), (24b) with the sum rules
[dx fl(x) = Ny and [dxx f'(x) = N,/n showing that
the bag model predicts that at low scale ¢? (x) is concentrated
toward the region of lower x as compared to f; lq (x),

[dxx e?(x) _

3 JSdex flx) 1
[ dx e?(x) 4

1
— L = 2
n Vs [ dx flq(x) n @)

A.3 Symmetries of PDFs in bag model

From Eq. (21) one obtains the following expressions for
the PDFs (where p, retains its meaning as defined in
Eq. (22), but p denotes a dummy integration variable in this
section):

5 A non-trivial cure to restore chiral symmetry is provided by ade-
quately “matching” chiral fields to the bag surface as explored in the
cloudy bag model of the nucleon [49,60].

@ Springer

o) = Nq2nA/oodp p
Pz
x [r(%(p) +2 % to(p)ti(p) + r%(p)],

¢?(x) = Ny 27 A / dp p[t&(p) - t%(p)},

Pz

fH @) =N, 271A/oo
Pz

dp p

Mha,
dp p[2 % to(p)tl(p)],

fle) =N, ZnA/

Pz
x [z&(m -2 % to(p)t1(p) + z%(p)]. (26)

To understand the exact and approximate symmetries of the
PDFs in the bag model, we need to recall that #(p) is an
even function of p, while 71 (p) is an odd function of p. This
implies that the integrands of all PDFs are odd functions of
p, i.e. in all cases the identity ffK --- = 0 holds where the
dots indicate the respective integrands. If we choose k = p,
we immediately conclude that for all PDFs one can equally
well replace the lower integration limit by (—p;) or simply
by | p;|. This will be useful in the following.

The exact properties of e (x) can be derived as follows.
We can find the maximum of e?(x) by differentiating

d !
() = =Ny 27 A Miaa p: [ 1§ (p2) = 1} (p2) | £ 0

& () p.=0 or (i) Z(p)=(p). (27

The condition (i) yields the position of the global maximum
(as one can confirm by inspecting the second derivative)

3
Xmax = 7 - (28)

4n
For completeness we remark that condition (ii) leads to many
more extrema with most of them appearing in unphysical
regions of x.

Next, as we have seen above, the lower integration limit
in Eq. (26) can also be chosen as |p;|. Since no factor of
P, appears in its integrand, this means that ¢ (x) is a func-
tion symmetric under p, +— —p;, i.e. it satisfies the exact
symmetry

3
Xmax = 7 (29)

e? (2xmax — x) = e (x), n

The above derivation can be repeated step by step with
f+4(x). Although it has a different shape, this PDF exhibits
a global maximum at the same position as e (x) and satisfies
also the same exact symmetry

1 Qxmax — x) = fH(X),  Xmax = N (30)
4n
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For f}! (x) and f}! (x) the situation s different, and no exact
symmetry of the above kind exists due to the appearance of
the explicit factor of p, in their integrands in Eq. (26). What
one can derive in this case is the exact relation

3
flq(x)=2f4q<%—X>, (31)

though the value x = % is not related to the maxima of
f{(x) or 2 (x). One interesting application of Eq. (31) is
that it immediately follows that [ dx f{(x) = [dx 2 (x)
if one recalls the remarks in footnote 2.

One can use the above method to find the maximum of
flq (x). The unpolarized function has its maximum at that
value of x which solves the integral equation

Pz (to(p) +11(p))* = 2/ dp to(p) t1(p), (32)
Pz

where x appears implicitly in p,; see Eq. (22). The solution
can be found numerically and reads

1
Xmax = (1.00534...) x —. (33)
n

This is numerically very close to x = ril and an intuitive
result, see Sect. 5.2. There is also an approximate symmetry

2
fi (——x)~ fa), (34)

which for n = 2 is satisfied to within O(1 %) accuracy for
x € [0, 1] (the approximate symmetry flq (2Xmax — X) &~
flq (x) is much better in the vicinity of xyax but interestingly
overall somewhat worse).

The situation for ff (x) is similar to that of flq (x) except
for the difference that the maximum appears at xpax ~ T
More precisely, for f4[’ (x) one deals with the integral relation

o0
p: (to(p2) — 11 (p2))* = —2/ dp t1o(p) i (p) ., (35)
Pz
and the solution is
1
Xmax = (0.989327...) x —. (36)
2n

Appendix B: Spectator model in detail

In this appendix we review results for flq (x, pr), el (x, pr)
and f Lq (x, pr) from [51], derive in addition the expression
for f4[’ (x, pr), and discuss the momentum sum rule, and
parameter fixing in the spectator model.

B.1 Expressions for TMDs in spectator model

In the quark—spectator—antiquark model of the pion, the cor-
relator (2) is evaluated as follows:

-q2
/ &I it (PO IP) o

2(2m)3
_ Tr[®T] 37
T 40— P, plaxmd 37
pr=amy ==
where
2512
&7 — lg(p)I (ﬂ+mq)(4’+mn)(y+m4)’ (38)

20 (P> —m2)?

with g(p?) a form factor. This form factor is often assumed
to be [62]

2 2
2y P Ty
g(p )—N|p2_—A2|w (39)

where A is a cut-off parameter and N is a normalization
constant. This choice has the advantage of killing the pole of
the quark propagator.

The results for the quark TMDs of the pion read

2 2
£ pr) = Bw’
— X
A, pr) = —2— [ = 2y + xm) 0 + 1)
5 (1—)C)2 q bd q b4

~MRG+ ) — (14 2pt ]

FH(x, pr) = a2 [(1 - xz)mi +2mgmy (1 —x)
-M} - p}],
fi(x PT)=L (I—X)[(m +m )2—M2]
e 2(1 — x)2 ¢ R
2 2T 2 2
pr+Mi | pr Mg _ 2
A [ (=) MM UH)'"”“’

(40)

where we introduced for convenience

2a
N? 1—x
= 4
b= 2eny [p%vLA%(X)} @

with
2() = (1 —x)A> + xMz — x(1 — x)m>. (42)
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The results for the integrated TMDs read

f ) = B [2(a — D(mg + xmz)* + 13(0)].

/

) = 5 {2(01 = D+ 5O = ) (mg + mz)my

— X

—Mgl—(1+ ,’,Z—g)ﬁe(x)},

4

FHx) = . {2(a — D1 = x*)m2 + 2mgmz (1 — x)
—Xx
—M3] - x%(x)},
o) = B A () — Qo —3)
4 2Qa —3)m2(1—x)2 |k

X AR () [2mgmy (1 — x) + (1 — xH)m2 — 2M%]
+2( — Q2o —3) [m%(1—x)*[(mg +mz)* — M3]

—M% [2mgmz (1 —x) + (1 — x*)m2 — M,%]]}, (43)

where we introduced

2 20—1
B — N 1—x ' (44)
8(2m)2Qo — (e — 1) | A2 (x)

B.2 Limit « — 1 and momentum sum rule

In the limit of @ — 1 and Mg — my the PDFs reduce to,
see Ref. [51],

a—1

o) "= 2(1 —x), (45a)

el(x) “2' 22 (1 i ﬁ) , (45b)
My

e 2t -2, (45¢)

a1 2mZ —2mgmy (1—x)—m?% (1—x%) =223 (x)

m2 (1 — x)

(45d)

The result (45a) is interesting, as it implies that x flq (x) is
symmetric under the exchange x <> (1 — x). But except for
(45a) the results are unphysical, since the distributions do not
vanish for x — 1. Choices of « leading to acceptable results
for all TMDs are discussed in Appendix B.3.

Although the limit ¢ — 1 in (45) is not acceptable for all
TMDs, the results (45a) is useful for illustrative purposes.
We shall work with this result to discuss the sum rules (3a)
and (3b). The valence sum rule (3a) is satisfied (in the limit
a — 1 and for o # 1) though this is by construction, as
the normalization constant N is chosen adequately. But the
momentum sum rule (3b) is not valid. In the limit given by
Eq. (452) we obtain )" [ dx x e = %, where the sum
goes over, e.g., the constituents ¢ = u, d of the positive pion.

@ Springer

Taken literally this result means the constituents carry only
% of the hadron momentum. The deeper reason for this para-
dox can be traced back to the fact that the spectator model is
an incomplete system as it does not account for the forces that
would bind the constituents to form a proper hadronic bound
state which is essential® to comply with the momentum sum
rule [64]. We note that >°, [ dxx e < % fora > 1.
Notice that in semi-phenomenological models based on the
rainbow-ladder truncation of the QCD Dyson—-Schwinger
equations, one finds that valence quarks carry % of the pion
momentum [66,67]. One could therefore be tempted to argue
that the spectator model describes TMDs at somewhat higher
scales, where valence quarks do not carry anymore 100 % of
the hadron momentum. However, this is phenomenologically
not supported [51] and must not distract from the fact that
this model lacks the dynamics to form a consistent bound
state.

B.3 Fixing of model parameters

In the spectator model it is a priori not clear which value of
« should be chosen in the form factors in Eq. (39). In Fig. 7
we therefore show the results from the spectator model of the
pion for xf{! (x), xe? (x), xf 4 (x), and x f;! (x) for different
values of a. We fix Mg = mg, with m, = 360 MeV.

The dashed-dotted lines in Fig. 7 show results for ¢ = 1
chosen in Ref. [51] for f]q (x). This is not acceptable for the
other TMDs which with this choice do not vanish for x — 1;
see Appendix B.2. For o # 1 the TMDs depend also on the
cut-off A, that is taken equal to 0.4 GeV as in Ref. [51]. For
o > 1 one obtains ¢?(x) and 9 (x), which vanish as x —
1. To illustrate this point, we plot the results (dashed curves)
for « = 1.2 in Fig. 7. However, with this choice f4q (x) is
negative, violates the inequality (4b), and even diverges as
x — 1. Both artifacts can be fixed by choosing o > % The
smallest integer value « = 2 would give a very large result for
ff (x) with [ dx ff (x) = 10.3 strongly exceeding the sum
rule (3e). We plot therefore in Fig. 7 the results for o« = 3 (as
solid lines) where f dx ff (x) = 3.6 overestimates (3e) less
drastically (recall that the sum rule (3e) cannot be satisfied
for any «).

We remark that one could vary the model parameters much
more than that, e.g. one could vary the cut-off or relax the
assumption that the spectator mass should be associated with
the constituent quark mass m,. But in this work we shall
content ourselves with the insight on the model dependence

6 A situation of this type was encountered by Lorentz who found
E = % mc? for the energy of an electron assumed to consist of a charge
distribution “bound by some unknown forces of non-electromagnetic
origin” [63]. The latter citation is from Ref. [64], where another %—
paradox of this nature occurs in a particular approximation in the chiral
quark—soliton model which disappears when working in a fully consis-
tent solution of that model [65].
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Fig. 7 Integrated TMDs of up quarks in the pion from the calculation in the spectator model of the pion [51] with « = 1 (dashed-dotted curves),

o = 1.2 (dashed curves) and a = 3 (solid curves)

Table 3 Off-shellness effects in the spectator model of pion (a) and
nucleon (b) at selected values of x and pr. If the active parton was
onshell, the ratio p2 / mg would be unity and the tilde functions in
Egs. (6a)—(6¢) would be absent

(a) Pion p*/m;

pr (GeV) 0.1 0.2 0.3

X

0.1 —0.18 —0.44 —0.87
0.2 —-0.32 —0.61 —1.09
0.3 —-0.49 —-0.82 —1.38
(b) Nucleon p*/ mz

pr (GeV) 0.1 0.2 0.3

X

0.1 0.05 —0.21 —0.64
0.2 0.03 —0.26 —-0.74
0.3 —0.18 —0.51 —1.06

from the variation with respect to « in Fig. 7. The results
shown in the main text were obtained for o = 3.

B.4 Off-shellness effects and tilde terms

The explicit expression for the tilde terms in the spectator
model with Mg = m, read

2 2

p-—m

L} <x+ﬂ>,
1 —x my

xél(x, pr) =B

2 2
~ p-—m
o f e pry =B ——F,
2 2
- p-—m 1
2 7q q 2 2
, —_—p— 4 -
x“fi(x, pr) I—x 2m? |:[(mq +xmyz)” + p7l
x(p2+m2)

These terms arise from the off-shellness effects p? # mz
We recall that in the spectator model the virtuality of the

parton is given by p? = ngad - (p% + leze)/(l — X).
The results for the off-shellness effects at different values
of x and pr are shown in Table 3a, b for the case of pion
and nucleon, respectively. (The nucleon results are obtained
with the axial diquark mass, with the parameters used in [25,
51].) We observe that these off-shellness effects are larger
for the pion than for the nucleon, and the difference is more
pronounced for small x and moderate pr.

In particular, the tilde terms in e? (x) and f19(x) are not
only sizable but also negative, and in fact overwhelm the
contributions of the positive flq (x) in Egs. (6a) and (6b). This
explains why ¢4 (x) and 9 (x) are negative in the spectator
model of the pion—in contrast to the other models. This
feature is qualitatively different from the nucleon case, where
the tilde terms could be viewed as “corrections” albeit not
necessarily small ones [25]. The reason for that is that in
the pion case the constituent quark mass is larger than the
hadron mass, i.e. off-shellness effects are automatically more
extreme than in the nucleon case. As a result, the spectator
model of the pion does not support the Wandzura—Wilczek
type approximation [68] consisting in a neglect of tilde terms.
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