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Abstract We study the Hawking radiation of scalar and
Dirac particles (fermions) emitted from a rotating scalar hair
black hole (RSHBH) within the context of three dimen-
sional (3D) Einstein gravity using non-minimally coupled
scalar field theory. Amalgamating the quantum tunneling
approach with the Wentzel-Kramers—Brillouin approxima-
tion, we obtain the tunneling rates of the outgoing particles
across the event horizon. Inserting the resultant tunneling
rates into the Boltzmann formula, we then obtain the Hawk-
ing temperature (7y) of the 3D RSHBH.

1 Introduction

The most significant prediction of Einstein’s field equations
is the existence of black holes (BHs) [1]. A BH is a region of
spacetime where the gravity is sufficiently strong to trap light.
According to general relativity (GR), classically, BHs are per-
fect absorbers from which emission is impossible. However,
this idea was dramatically overturned by quantum mechan-
ics (QM). In a remarkable discovery, Hawking [2] demon-
strated the mechanism of radiation by BHs. He showed that,
rather than being completely “black™ as predicted by GR,
BHs emit thermal radiation; the so-called Hawking radiation
(HR). His discovery can be rederived by various methods
(see for instance [3,4] and references therein), leading to
quantum gravity (QG), an intriguing theory that relates GR
and QM [5]. On the other hand, this revolutionary result is
not fully compatible with the principles of QM because ther-
mal radiation provides no information as regards the object
that sourced the BH. Consequently, once the BH has evap-
orated this information, it is lost forever, violating a basic
tenet of QM: that information must be conserved. This con-
tradiction is known as the information loss paradox (ILP)
[6]. ILP has been extensively referenced in [7]. Moreover,
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HR can be considered as the quantum tunneling of particles
from BH horizons [8—10]. According to this theorem, when a
virtual particle pair is created just outside the BH horizon, the
antiparticle (negative energy particle) can tunnel through the
BH horizon by a process similar to QM tunneling, whereas
the real particle (positive energy particle) is ejected into spa-
tial infinity. Inversely, by particle—antiparticle symmetry, a
virtual pair can be created just inside the horizon. In this
case, the real particle can tunnel inward, while the antiparti-
cle remains inside the BH [11].

Traditionally, BHs are regarded as very simple objects that
can be completely characterized by three parameters: mass,
charge, and angular momentum. Because of their simplicity,
Wheeler [1], who named BHs, insisted that “ BHs have no
hair.” In honor of this statement, the traditional concept of
BHs is known as the no-hair theorem (NHT) [12]. However,
some researchers have suggested that BHs might be hairier
than previously thought. In a new mechanism developed by
Herdeiro and Radu [13, 14], scalar and other types of fields (in
principle) admit hairy BHs. Explicit solutions of hairy BHs
have been reported in the literature (e.g., [13—19] and refer-
ences therein). Cosmologists frequently use scalar fields to
model the evolution of the Universe [20]. However, the phys-
ical properties of scalar hair BHs, and their role in the natural
cosmos, require further study. On the other hand, since the
seminal work of Deser et al. [21-23] and Witten [24,25], the
foundations of classical gravity and QG have increasingly
been investigated by GR in 3D spacetime [26]. Therefore,
we here consider a 3D RSHBH [19,27-30] as a solution to
the Einstein gravity equations with a non-minimally coupled
scalar field ¢. In the absence of the scalar field (¢ = 0), the
3D RSHBH reduces to the well-known rotating Bafiados—
Teitelboim—Zanelli (BTZ) BH [31-33].

To investigate the HR of a 3D RSHBH, we obtain the tun-
neling rate of the outgoing scalar and spinor particles pene-
trating the event horizon of the 3D RSHBH. In the deriva-
tion, we combine the Hamilton—Jacobi (HJ) ansi tze with
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the Wentzel-Kramers—Brillouin (WKB) approximation [34].
Inserting the computed tunneling rates into the Boltzmann
formula [36], we then prove that the standard Ty of the 3D
RSHBH is obtainable for all particle types.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the geometrical and physical properties
ofthe 3D RSHBH. In Sect. 3, we explore the HR of scalar par-
ticles emitted from the 3D RSHBH using the Klein—Gordon
equation (KGE). Section 4 is devoted to the HR of fermions
tunneling from the 3D RSHBH. Conclusions are presented
in Sect. 5.

Throughout the paper, we use units wherein c = G =
kp = 1.

2 Features of 3D RSHBH

The general solution to the action of the 3D Einstein gravity
with a non-minimally coupled scalar field ¢, which describes
rotating BHs with scalar hair, was first reported by Xu and
Zhao [19]. The metric of the 3D RSHBH is given by

2 2 dr? 2 2
ds? = fdr* — — T do + fPdn?, (1)
with
r 222 2
f=W(Jlx—12Mlx+36>, )
=2 3)
6
where
3r +2B
vz 2122 )
r

The parameters M and J denote the physical mass and
angular momentum of the BH, respectively. B is an inte-
gration constant and A = 1l2 is the cosmological constant.
Without loss of generality, we assume that B is a positive
real number. Meanwhile, it is worth noting that when B = 0
metric (1) describes the rotating BTZ BH [28].

Equation (2) can be rewritten as follows:

Jr 2
f= <F> [(x —x1)(x —x2)], )
where

oM K 6 22 _ 12
x= 25 = (=) ﬁm (k=1,2), (6)

with (x1, x2) being real positive quantities. On the other hand,
we immediately observe that the 3D RSHBH is constrained
by M1 > J.

We now investigate the location of the event horizon (r;,)
of the 3D RSHBH. Since f(r;) = 0, Eq. (4) gives

@ Springer

r,?(k) + Xkrh(k) + By =0, @)

where

~ 3

Ay = _E’ (8)

~ 2B3

By = ——. 9
Xk

Equation (7) is merely a cubic equation [35], whose discrim-
inant is given by

44} + 2B}

D, 10
k 108 (10)
Substituting Zk and §k into Eq. (10), we obtain
—1
=B (an

Xk

If Dy > 0 or x; > 1, we have a single positive real root:

B, 1/3 B, 1/3
Thk) = <—7 + Dk> + <—— — v Dk> . (12)

2
Inserting Egs. (9) and (11) into Eq. (12), we obtain

B 1/3
Thik)y = o |:<x,f + /X7 (e — 1)>
1/3
+ (x,f —Jx (e — 1)) } . (13)

On the other hand, if Dy < Oor 0 < x; < 1, we can
define a new variable

CoOSU = ——| —— (14)

B, | 3
4cos’ ay —3cosay — —~— | —= =0. (15)
Ay Ay
Recalling the identity
cos (30) = 4cos> 6 + 3cos b, (16)
Equation (15) becomes
Gay = 25 [ (17)
COS (07 = —— |—=.
TN A

Thus, the solutions to Eq. (7) with Dy < 0 are the roots

2B 1 _ 2
Thk)y = ﬁCOS |:§ COS 1 («/Xk) — Tl’l:| s

(n=0,1,2,...). (18)
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The positive root solutions when n = 0 contradict the
result in [28]. Therefore, the event horizon reads

2B 1
Fhky = \/—x_k cos |:§ cos~! (ﬁ)} ) (19)

In [28,29], the mass (M), Ty, and BH entropy (Spp) of
the 3D RSHBH are given by

_JHEQ2B +3ry)? + 36rf

(20)
121277 (2B + 3ry)
5o Tk _ B+ [36r8 — J22(2B + 3r)?] an
=0 = 2471273 (2B + 3r1) ’
S Al ] 1 ¢2( ) 4nr§ 22)
= —_— _ - 14 = .
BH = Un g¥ \h B+,

where ¢ (r) = £ gfr corresponds to the scalar field in the
3D RSHBH spacetime and « is the surface gravity [37] of

the BH. The angular velocity of the 3D RSHBH is

Gry +2B)J
= —flm) =
r=rh 6rh

_ 8w
800

Qu = (23)

Qp is precisely the angular rotation frequency of the BH.
That is, any test body dropped into the BH will circumnav-
igate the BH at this frequency as it approaches the event
horizon. Furthermore, one can easily verify that the first law
of thermodynamics [28] holds:

dM = TydSgu + QpudJ. (24)

3 Quantum tunneling of scalar particles from 3D
RSHBH

In this section, we evaluate the Ty of the 3D RSHBH via the
relativistic KGE for scalar particles. The massive KGE can
be written as follows:

2
m
du (V—g8"" 3, Wo) + h—SJ_—g% =0, (25)

where m( denotes the mass of the scalar (spin-0) particle, and
Wy represents the scalar field. Since there exist non-diagonal
components in the metric (1), Eq. (25) takes the following
form:

3 [re" 8, Vo] + 9 [rg’ 8- Wo ] + 3y [rg" 36 Wo]
2
+0, [re"® 96 Wo] + 36 [rg® 9, W] — ';Lgrqfo 0. (26)

To apply the WKB approximation method, we assume an
ansitz of the form (see, for instance, [38])

W) = exp [%I + 1+ 0(h)i| . 27)

Taking leading powers of 7, in Eq. (26), we obtain

20 £0N\2
FN@D? = 0,0 - %(awz
2f0 (0, 1091 20 28
25 @l ]) — mf =0, (28)

As spacetime is symmetric, we have the Killing vectors
d; and dg. Thus, we can apply the separation of variables
method to the classical action I (z, r, 0):

I=—-Et+LO0+W()+c, (29)

where E and L represent the energy and angular momentum
of the scalar particle, respectively, and ¢ is a complex con-
stant. Using Eq. (29) in Eq. (28), we obtain the following
equation for W (r):

Wi(r) =

(30)

(E+L7%) = 7[(£) +m]
i/ \/ 7

Here, the positive and negative signs indicate that the
scalar particles move away from the event horizon (emission)
and toward the event horizon (absorption), respectively. On
the other hand, since f(r,) = 0, Eq. (30) possesses a sim-
ple pole at r = ry,. Thus, the integral (30) can be solved by
the residue theorem. For this purpose, we expand the metric
function f in a Taylor series about ry,:

Fn) = fn) + f o) —rm) + Ol — )1,
~ f'(ra)(r — rp). 31

Here, prime “/” over a quantity denotes a derivative with
respect to r. Hence, Eq. (30) can be approximated as

~

E
w. =+) — 32
=0 / S —ra) .

where the modified energy Eis given by
E=E+ f’(ry)L = E — LQy. (33)

Integrating Eq. (32) with respect to r (using the residue the-
orem for semi circles), we obtain

~

Wi = :I:irri (34)
T )’

The probabilities of the particles entering and leaving the
BH through the event horizon, respectively, are given by

2 2
[absorption =€XP (_Elml> = exp |:—g (ImW_ + Imc)] ,
(35)

2 2
[emission = €Xp <—;—_lIrnI> = exp |:—£ (ImW4 + Imc)] .
(36)

@ Springer



318 Page4of 6

Eur. Phys. J. C (2016) 76:318

Since the objects close to the event horizon are destined to be
swallowed by the BH, the absorption probability (I"absorption)
should be normalized to unity by choosing the imaginary
part of the constant as Imc = —ImW_. As is already known,
ImW, = —ImW_; consequently we have Imc = ImW_.
Therefore, the tunneling rate of scalar particles escaping the
event horizon of the 3D RSHBH from the interior is given
by

4
Femission = eXp (—glmW_,_) s

_ 4w E 37

Equation (37) can be explicitly rewritten as
24711 2B + 3rp) E
emission — SXP 1 — .
BB+ ) [36r0 — J22B + 3n)?
(38)

Recalling the Boltzmann factor [39]:
I' =exp(—pw), 39)

where B and w denote the inverse temperature and energy,
respectively; the surface temperature is calculated as

. h(B + rp) [36rf — J212(2B + 3ry)?]
N 2471277 (2B + 3rp) ’

(40)

This result is obviously consistent with Eq. (21). Con-
sequently, we have proven that the standard Ty of the 3D
RSHBH is recovered by the scalar particles tunneling the
event horizon.

4 Quantum tunneling of dirac particles from 3D
RSHBH

In this section, we evaluate the contribution of fermions
to the HR of the 3D RSHBH using the uncharged Dirac
equation (UDE). Spinors in 3D spacetime possess two com-
ponents, corresponding to the positive and negative energy
eigenstates. Therefore, the UDE comprises a pair of coupled
partial differential equations. As demonstrated by Sucu and
Unal [40], in flat spacetime we can apply the following con-
stant Dirac matrices @ [41,42]:

F@ _ <5<0>,5(1>’5(2)) , (41)
with
70— 5O e FO 6@ (42)

where s, 0@ 5O are the well-known Pauli matrices. The
& @5 satisfy the following anticommutation relation:

g Wz® L Fl@gz0) — 2,7(017)7 (43)

@ Springer

where 1) denotes the metric of the 3D Minkowski space-
time. Using the triad of components eé‘a) composing the
orthonormal frame, we can obtain the curved spacetime
dependent matrices o* in terms of the constant matrices as
follows:

= et 7. (44)

The Greek indices (u, v) represent the external (global)
spacetime indices, and the Latin indices (a, b) denote the
internal (local) indices. Hence, the metric tensor is given by

guv = e nap). (45)

Ultimately, as formulated in [40], the UDE of a fermion
(spin-%) with mass m; and wave function (spinor) W, in 3D
curved spacetime is given by

io [3, = D] Wy = 22w, (46)

where I, is the spinorial affine connection:
Ty = Hypus™. (47)

The rank-3 tensor H;,,,, and the spin operator sV are, respec-
tively, given by

1 .
Hyu = 78 |eluely = 5. (48)
M= % [ak, (7"] , (49)

where I'], is the Christoffel symbol. The following is a pos-
sible triad for the metric (1):

-V 0 —f%
efj) = 0 _«/LT o |, (50)
0 0 —r

which yields the following constant matrices:

3) 053 _; ()]
E“:(—U—,—iﬁo(l),rfa ivfe ) 51)

v VFr

Hence from Eq. (48), we compute the non-zero Hj,,,, com-
ponents as

Hy,g = —Hyp9 = ik

1
Ht@r = _H0tr = ng(fH)/’

1 1
Hi¢ = Hpyy = —Hygy = —Hpp = erQ + §r2(f9)/’

1 1 1
Hryp = —Hipi = o f' = Zr(f‘g)z - Zr2f9<f9)’. (52)
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Subsequently, the spinorial affine connections (47) are
evaluated as

1
o= [ =2 " ]o®
+i4 217 +r(f%) ], (53)
o V(fe)/ 1)
Iy = 4\4? : ; (54)
Iy = —#0(2) + i@ae). (55)

The UDE (46) can then be explicitly expressed as

o () Lo I 6
_zﬁat\lls +\/?O' Br\IJX + ;O’ +lﬁ0’ 8(9\113
f/ \/T 1) (fg)/" mg

-_— Y, — ——— Dy W, = — Y
+ (4\/T + 2 o K 4 2X2 ¥ A s
(56)

where I x> is the 2 x 2 unitary matrix. Equation (56) matches
with the result of [43]. Now, using the following ansétz for
the spinor:

A(t, 7, 0) exp [,;;I(z, ’, 9)]

£
|

3 . (57)
Be.r.0yexp [£1.1.0)]

(recall that I (¢, r, 0) represents the action), we obtain a pair
of coupled equations (to the leading order in 7):

;3I+iﬁ§81+<§—ﬁ>81—mg (58)
\/7 t r r ﬁ 0 - §4Ly

B . Bf? A =
—ﬁatl + i/ fAD I + (W — 7) 39l =myB. (59)

Equations (58) and (59) have non-trivial solutions for A
and B provided that the determinants of the coefficient matri-
ces vanish. Hence, we have

1 1
+ (@ - Fop1)’ = f(@.1* - =5 @1)? = m? = 0.
(60)

By the same process as the previous section, we insert
ansitz (29) into Eq. (60) and obtain the following integral
solution for W (r):

\/(E YL f [(%)2 + mg]
S

The above equation is structurally very similar to Eq. (30).
Naturally, Eq. (61) reduces to Eq. (32) near the event hori-
zon, and consequently, yields the tunneling rate computed by
Eq. (38). We remark that, similar to the scalar radiation, the
temperature of fermions radiated from the event horizon of
a 3D RSHBH is the standard Ty (21).

Wi(r) = :I:/ (61)

5 Conclusion

In this paper, we investigated the HR of scalar and Dirac
particles diverging from the event horizon of a 3D RSHBH.
For this purpose, we separated the KGE and UDE on the 3D
RSHBH geometry using particular ans étze for the wave func-
tions Eqgs. (27) and (57), respectively. We calculated the quan-
tum tunneling rates of the scalar particles and fermions using
the first-order WKB approximation, thereby demonstrating
the effect of scalar hair on the tunneling rate of a rotating
BTZ BH. Remarkably, both tunneling rates were identical
regardless of particle type. After substituting the tunneling
rate into the Boltzmann formula, Eq. (39), we recovered the
original Ty (21) of the 3D RSHBH.

Finally, whether the results are modified in other hairy
BHs, such as BHs with Abelian Higgs hair [44], is an inter-
esting question and will be investigated in our future work.
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