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Abstract In D-dimensional spherically symmetric f (R)

gravity there are three unknown functions to be determined
from the fourth order differential equations. It is shown that
the system remarkably may be integrated to relate two func-
tions through the third one to provide a reduction to second
order equations accompanied with a large class of potential
solutions. The third function, which acts as the generator of
the process, is F(R) = d f (R)

dR . We recall that our generating
function has been employed as a scalar field with an accompa-
nying self-interacting potential previously, which is entirely
different from our approach. Reduction of f (R) theory into
a system of equations seems to be efficient enough to gener-
ate a solution corresponding to each generating function. As
particular examples, besides the known ones, we obtain new
black hole solutions in any dimension D. We further extend
our analysis to cover non-zero energy-momentum tensors.
Global monopole and Maxwell sources are given as exam-
ples.

1 Introduction

f (R)gravity is one of the modified theories of Einstein’s gen-
eral relativity that attracted much attention in recent times [1–
6]. In [7] f (R) = R + αR2 with α > 0 has been introduced
as the model of inflated universe while f (R) = R − α/Rn

(α > 0, n > 0) was considered as a candidate for the dark
energy model [8–13]. This model, however, is not a viable
model for dark energy and instead f (R) = R − αRn with
α > 0 and 0 < n < 1 emerged as alternative which has
been proposed in [14,15]. Later on more viable models were
studied in [16–20]. A detailed review of these models is in
[21] (other review papers are in [22–25]). Some recent works
on solutions in f (R) gravity are [26–48]. For f (R) = R,
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in D = 4 dimensional spacetime it coincides with stan-
dard general relativity but otherwise it comes with an action
that is arbitrarily dependent on the Ricci scalar. Finding
exact solutions in this theory with fourth order derivatives of
the metric tensor is both important and challenging. Apart
from exact analytic solutions there are f (R) models that
can only be expressed implicitly in non-polynomial expres-
sions. Each particular model has advantages/disadvantages
as far as experimental tests are concerned [49–55]. There
are even models that lack the Einstein’s R-gravity limit.
Among other expectations the UV/IR behaviors at near/far
distances, quantum renormalizability with power counting
of the counter terms are prominent. At any cost preferring
to abide by the classical regime we confine ourselves first
to sourceless (vacuum) f (R) models that admits exact inte-
grals. In the last section we extend our discussion to cover
external sources such as global monopole [56] and electro-
magnetic field. Let us add that the equivalence of f (R) grav-
ity to Brans–Dicke (BD) theory (ω = 0) with a potential
has also been highlighted extensively in the past as a tran-
sition between Jordan and Einstein frames. In this approach
the exact solutions can be generated by adopting scalar field
ansatzes which in general brings into the Lagrangian intri-
cate potentials. Our method will be confined entirely to the
Jordan frame without reference to the BD field or any scalar
potential.

The vacuum of f (R) gravity is known to carry its own
curvature sources. By vacuum in this theory is meant the
absence of an external energy-momentum tensor Tμν , of any
physical source [57]. Carames and Bezarra de Mello in the
latter work have considered the spherically symmetric vac-
uum solutions of f (R) gravity in higher dimensions. We
shall rederive most of their results anew together with some
additional extensions which we are interested in as we can to
develop this further. Addition of external Tμν �= 0, no doubt
makes the problem technically more complicated, but fol-
lowing the lesson learned from the vacuum/empty solutions
of f (R) = R theory of gravity we will attempt to derive the
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most general equations and in some specific cases the solu-
tions as well. The D dimensional spherically symmetric line
element that we shall consider will be

ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2d�2

D−2, (1)

in which A(r) and B(r) are metric functions to be determined
while d�2

D−2 represents the (D − 2)-dimensional unit spher-
ical line element. In particular integrals we have the restric-
tive case A(r) = B(r) included, but more general cases with
A(r) �= B(r) must be interesting as well. Beside the metric
functions A(r) and B(r) we shall employ a third function
denoted by F(R) = d f (R)

dR , which characterizes the type of
the f (R) gravity. Let us add that not in all cases of f (R)

models the explicit form of f (R) can be expressed analyt-
ically in terms of the variable R, the Ricci scalar. Instead,
it involves a transcendental part that cannot be inverted in
the form of r = r(R), these are hybrid forms. We add that
even these hybrid forms do not prevent us from calculating
d f
dR > 0 and d2 f

dR2 > 0, which are crucial terms to deter-
mine the absence of ghosts and thermodynamic stability,
respectively.

In brief what has been achieved in this paper is to show
that the metric functions A(r) and B(r) are related through
an integral expression for the function f (R) (or f (r)). This
amounts to the fact that once f (R) is given it acts as a gener-
ator to generate a new set of (A(r), B(r)) pair. The function
A(r) is expressed in terms of B(r) and f (R) and the remain-
ing equation is reduced into a master equation satisfied by
B(r). Once we give an ansatz for f (R) our master equation
can be integrated in principle to obtain B(r). In this manner
we can obtain an infinite class of metrics in f (R) gravity
generated from an infinite set of f (R). No doubt the dimen-
sionality of spacetime D (= d + 1) also plays a role in the
derivation. In particular, we present examples of new black
hole solutions in D ≥ 3, by the method described above. We
wish to add also that in the reduction process the system of
differential equations in f (R) gravity reduce naturally from
the fourth order to the second order.

The paper is organized as follows. In Sect. 2 we rederive
the f (R) field equations in D dimensions, which is compara-
ble in some sense with [57]. A number of examples to justify
the effectiveness of our method are given. Generalization to
Tμν �= 0 is analyzed in Sect. 3. We end our discussion with
our conclusions in Sect. 4.

2 The field equations in D dimensions

The D-dimensional vacuum f (R) gravity is represented by
the action

I = 1

16πG

∫
dDx

√−g f (R), (2)

in which f (R) is a function of the Ricci scalar R and D ≥ 3.
Variation of the action I with respect to gμν provides the field
equations (in the metric formalism)

FRν
μ − 1

2
f δν

μ − ∇ν∇μF + δν
μ�F = 0, (3)

in which F = d f
dR and � is the covariant Laplacian. The

general spherically symmetric line element is given by (1)
and the field equations (3) are explicitly given by

FRt
t − f

2
+ B

(
F ′′ + B ′F ′

2B

)
+ D2BF ′

r
= 0, (4)

FRr
r − f

2
+ BA′F ′

2A
+ D2BF ′

r
= 0, (5)

and

FRθ
θ − f

2
+ BF ′

2

(
A′

A
+ B ′

B
+ 2D3

r

)
+ BF ′′ = 0, (6)

in which

Rt
t = − 1

4A

(
B ′A′ + 2BA′′ − BA′2

A
+ 2D2BA′

r

)
, (7)

Rr
r = − 1

4A

(
B ′A′ + 2BA′′ − BA′2

A
+ 2D2B ′A

r

)
, (8)

and

Rθi
θi

= − 1

2r2A

(
r BA′ + r AB ′ + 2D3A (B − 1)

)
, (9)

for 1 ≤ i ≤ D2. Herein and in the rest of the paper, Dk =
D−k, a prime stands for the derivative with respect to r , and
F = d f

dR . A particular combination of these three equations
leads to two equations which are independent of f . The first
of Eq. (4) may be written

2ABr F ′′ + H
(
AB ′ − BA′) = 0, (10)

which can be integrated to

A = BH2 exp

(
−2D1

∫
F ′

H
dr

)
(11)

where

H = r F ′ + D2F �= 0. (12)

The second one of Eq. (5) upon considering (11) becomes
independent of A too. The closed form of the second equation
reduces to a linear equation for B(r), which is given by

B ′′ + PB ′ + 2QB + 2D3

r2 = 0, (13)
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where

P = 3r

H
F ′′ + H

rF
− 2

r
(14)

and

Q = r F ′′′

H
+

(
H2 − D1r FF ′) F ′′

FH2 + F − H

r2F
. (15)

Finally, the explicit form of f in terms of r is given by

f = 2B
(
2r F ′ + FD3

)
F ′′

H

+ 2r F ′ (r B ′ + D3B
) − 2

(
r B ′ + D3 (B − 1)

)
F

r2 .

(16)

To complete our analysis we give the explicit form of the
Ricci scalar in terms of r ,

R = −B′′ − D2
(
2r B′ + D3 (B − 1)

)
r2

− 2r3BF ′′′
Hr2 +

r2F ′′ (3r2B′F ′ + FD2
(
3r B′ + 2BD1

))

H2r2 .

(17)

In summary, the only equation to be solved is Eq. (13)
which is second order and linear for B. Therefore the proce-
dure is reduced to set a f (R)—which eventually represents
the form of f (R)—and solve the only equation, Eq. (13), to
find B (r) and consequently A(r).

2.1 Applications of the method

Before we give certain applications for our formalism we
would like to compare our approach with the work of
Carames and Bezerra de Mello [57]. The main difference
can be seen from the fact that in [57] there are two generat-
ing functions (so to say) which are F and Y . In other words
Eqs. (16) and (17) of [57] are coupled and one must consider
them together to find a solution to the field equations. In our
formalism we have only one generating function, which is F ,
and Eq. (13) is the only equation to be solved. In the follow-
ing three cases we shall show that for simple cases (F = 1
and F = 1 + αr ) our results overlap with [57] but for more
complicated case (F = αra) our solution is the general one
while the solution given in [57] is a restricted one (look at
Eq. (46) in [57] and (35) and (36) in this work).

2.1.1 F(r) = 1

We start with the simplest case, with F = 1 or equivalently
H = D2. Definition of F = d f

dR implies

f = R − 2	, (18)

in which −2	 is an integration constant to be interpreted as
the cosmological constant. The main equations (11) and (13)
admit

B(r) = A(r) =
{

1 + C1
r D3

+ C2r2, D > 3,

C1 + C2r2, D = 3,
(19)

for the integration constants C1 and C2 and consequently

f (r) = −2C2D1, (20)

R = −C2DD1,

with

	 = −1

2
D2D1C2. (21)

Finally the solution becomes

B (r) = A(r) =
{

1 − 2M
D3r D3

− 2	
D2D1

r2, D > 3,

−M − 	r2, D = 3,
(22)

in which we set

C1 =
{− 2M

D3
, D > 3,

−M, D = 3,

where M is the ADM mass. The solution for D > 3 is
Schwarzschild de/anti de-Sitter black hole solution and for
D = 3 it is the BTZ black hole. Let us add that f (R) =
ξ =constant, does not change the nature of the solution for
the metric with constant scalar curvature. We note that our
results in this section expectedly is the same as Sect. 3.1 in
[57].

2.1.2 F(r) = 1 + αr , with α = constant

As regards Sect. 3.2 of Ref. [57], we consider F ′′(r) = 0 in
our general formalism but instead of going through a general
D-dimensional solution, we investigate the cases in closed
form for f (R). From Eq. (10) with F ′′ = 0 one obtains A =
B (up to a constant which one can set it unity via a redefinition
of time). For an arbitrary D the solution for B may not be
possible in a closed form but for specific dimensions we may
find.

D = 3 In three-dimensional spacetime the solution for B
becomes

B = A = C2r
2 + C1

(
αr − 1

2

)
− C1r

2α2 ln

(
1 + 1

αr

)

(23)
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and

f = −4C2 +4C1α
2 ln

(
1 + 1

αr

)
− 2C1α (1 + 2αr)

r (1 + αr)
, (24)

where C1 and C2 are integration constants with the curvature
scalar

R = −6C2 + 6C1α2 ln

(
1 + 1

αr

)
−

C1α
(

2 + 9αr + 6α2r2
)

r (1 + αr)2 .

(25)

The hybrid relation between f (r(R), R) and R is given by

f = 2

3
R − 2C1α

3r (1 + αr)3 . (26)

Note also that from the foregoing expressions we can iden-
tify the cosmological constant by C2 = −	. Furthermore,
setting α = 0, one recovers the previous example with C1

scaled, which suggests that it is related to the mass of the
central object.

D = 4 In four dimensions the solution is given by

B = A = C2r
2 + 1

2
+ 1

3αr

+ C1

r

(
3αr − 2 − 6α2r2 + 6α3 ln

(
1 + 1

αr

))
(27)

with

f = −6C2 − 36C1α
3 ln

(
1 + 1

αr

)

+ 6αC1
(−1 + 6α2r2 + 3αr

)
r2 (1 + αr)

+ 2αr + 1

r2 (28)

and

R = −12C2 − 72C1α
3 ln

(
1 + 1

αr

)

+ 6αC1
(−1 + 6α2r2 + 6αr

)
(1 + 2αr)

r2 (1 + αr)2 + 1

r2 . (29)

We see clearly the role of C2 = −	
3 and we wish to proceed

with C1 = 0, which implies

B = A = −	

3
r2 + 1

2
+ 1

3αr
, α �= 0, (30)

so that

f = R + 2α
√
R − 4	 − 2	. (31)

This is a black hole solution with a singularity at r = 0
such that

R = 1

r2 + 4	. (32)

If we set 	 = 0, with α < 0 we may introduce a horizon for
the solution located at

rh = 2

3 |α| , (33)

while for α > 0 the solution possesses a naked singularity
at r = 0. To complete our investigation let us determine
the absence of ghosts and thermodynamic stability of the
explicit f (R) found in (31). We see that d f

dR = 1 + α√
R−2	

and d2 f
dR2 = − α

2(R−2	)3/2 . Clearly both conditions cannot be

satisfied simultaneously.

2.1.3 F(r) = αra

Our next example is a power-law form for f (R), i.e.,

F = αra, (34)

with constants α and a, which upon using (11) yields

A = r
2a(a−1)
a+D2 B. (35)

Substituting into (13) one finds

B = C1r
− 2a2−6a+6+(2a−5)D+D2

a+D2 + C2r
2
(
D2+2a−a2

)
a+D2

+ D3 (a + D2)2(
2a2 − 6a + 6 + (2a − 5) D + D2

) (
D2 + 2a − a2

) ,

(36)

in which C1 and C2 are the integration constants. Using A
and B we also find

f = 2αC2D1 (a − 1) (D2 + 2a) r
a(D−a)
a+D2

a + D2
+ 2aαD1D3ra−2

D2 + 2a − a2

(37)

and

R = C2D1 (D − a) (D2 + 2a)

(a + D2) r
2a(a−1)
a+D2

− aD1D3 (a − 2)(
D2 + 2a − a2

)
r2

. (38)

We also note that although α and a are two arbitrary constants
a must satisfy a �= −D2, 1 ± √

D1. It is remarkable to
observe that in Sect. 3.3.2 of [57] the same ansatz for F has
been considered but the solutions to the field equations (see
Eq. (46)–(49) of [57]) are not the same as what we found
here is more general. As a matter of fact our solutions (35)–
(38) with C2 = 0 reduce to their solutions. This shows that
reducing the field equations into a master equation with a
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single generating function makes advances in finding exact
solutions in f (R) gravity.

In D = 3 dimensions the solution becomes rather specific
since the last term vanishes for all values of a. The functions
then read

A = r
2a(a−1)
a+1 B, (39)

B = C1r
−2a2
1+a + C2r

2(1+2a−a2)
a+1 , (40)

f = 4αC2
(
2a2 − a − 1

)
a + 1

r
a(3−a)
a+1 , (41)

and

R = 2 (2a + 1) (a − 3)C2

a + 1
r

2a(1−a)
a+1 . (42)

This is nothing but the solution found by Zhang, Liu and Li
in [58] with their parameters

p = −2a (1 − a)

a + 1
(43)

and

kL = −2 (2a + 1) (a − 3)C1

a + 1
. (44)

Note that

f ∼ R
(3−a)

2(1−a) , (45)

which yields f ∼ R2 for the specific choice a = 1
3 .

For D ≥ 4 one may set C2 = 0 and therefore

B = C1r
− 2a2−6a+6+(2a−5)D+D2

a+D2

+ D3 (a + D2)2(
2a2 − 6a + 6 + (2a − 5) D + D2

) (
D2 + 2a − a2

)
(46)

with an analytic relation for f (R) given by

f = ᾱR1− a
2 , (47)

in which ᾱ is a constant which can be set to unity (by a fine
choice of α). In the case of a = 0 the theory gives R gravity.
The solution is a black hole with a singularity at r = 0. Let
us also add that with C1 = 0 and a = 1 the solution reduces
to

ds2 = −ξdt2 + 1

ξ
dr2 + r2d�2

D2
, (48)

in which

ξ = D3

D2
(49)

with

R = D3

r2 (50)

and

f = √
R. (51)

This represents a global monopole-type solution with a deficit
angle. Another interesting setting is for a = −2 and C2 = 0,
by which upon making a proper choice of α one finds

f (R) = R2, (52)

and the solution becomes

B(r) = C1r
− DD9+26

D4 − D3D2
4

(DD9 + 26) D10
, (53)

while

A(r) = r
12
D4 B(r). (54)

Clearly D = 10 and D = 4 are excluded. D = 4 is not
allowed directly from (10) where H = 0 with F = α

r2

demanding AB = 0, which is not acceptable. For D = 10
the particular solution can be obtained: we have

B = C2 − C1

6r6 − 7

3
ln r (55)

and

f = −4α (9C2 − 7 − 21 ln r)

r4 (56)

with the Ricci scalar

R = 98 + 168 ln r − 72C2

r2 . (57)

The metric function A (r) follows accordingly from (11), it
is given in (54).

We comment that f = ᾱR1− a
2 does not satisfy d f

dR > 0

and d2 f
dR2 > 0 simultaneously unless we set a to be negative

(Note that ᾱ = 1 is needed to have the Einstein gravity
recovered.). For instance with ᾱ = 1 and a = −2, which
implies f = R2, and both conditions are satisfied.

2.1.4 A new black hole solution in D = 3

In [58] where f (R) = Rd+1 in three-dimensional spacetime
with d = const . has been studied, the solution does not cover
the case d = − 1

2 , which makes f (R) = √
R. This can be

seen from Eq. (12) of [58] and Eq. (45) (note that 3−a
2(1−a)

= 1
2
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has no answer) and in that paper both do not cover the case
f (R) = √

R. However, in the following we wish to show
that the solution f (R) = √

R can easily be obtained in three
dimensions. To do so let us consider

F(r) = βr exp (αr) (58)

with α and β two real constants. This yields

A = C1

r
+ C2r

2, (59)

B =
(
C1

r
+ C2r

2
)

exp (−2αr), (60)

f = 2αβ

(
C1

r
+ 4C2r

2
)

exp (−αr), (61)

and

R = 4α

(
C1

4r2 + C2r − 3C2

2α

)
exp (−2αr) . (62)

Note that C1 and C2 are two integration constants such
that C2 effectively plays the role of a cosmological con-
stant. The solution is a black hole with a horizon located

at rh =
(−C1

C2

)1/3
with the condition that −C1

C2
> 0. Also

from R we see that the solution is singular if and only if
C1 �= 0. In the sequel we are interested in C2 = 0, which
makes the solution rather simple but singular. Accordingly
the forms of f and R are given by

f = 2αβC1
exp (−αr)

r
, (63)

R = αC1

(
exp (−αr)

r

)2

, (64)

by which upon tuning the free parameter β by 4αβ2C1 = 1
the form of f becomes

f = √
R. (65)

Here α and C1 are positive constants and the line element
finally reads

ds2 = −r0

r
dt2 + r

r0 exp (−2αr)
dr2 + r2dθ2 (66)

in which r0 = 1
4αβ2 is also a positive constant.

2.1.5 A general class of solutions in 2 + 1 dimensions

In three dimensional spacetime in addition to what we found
by now, we wish to show that there exist an important class of
solutions yet to be discovered. This specific class, however,

is a characteristic feature of only three dimensions. To see
this solution let us set D = 3 in (13) which yields

r2F
(
r A′ − 2A

)
F ′′

−r
[(
r A′′ − A′) F + (

r A′ − 2A
)
F ′] (

r F ′ + F
) = 0

(67)

where we substituted B(r) by A(r) using (11) i.e.,

B = Ae4
∫ F ′

r F ′+F
dr

(r F ′ + F)2 . (68)

Equation (67) possesses a trivial solution for A(r) irrespec-
tive of the form of f (R), which is given by

A(r) = C0r
2 (69)

in which C0 is an integration constant. In this situation the
field equations are all satisfied provided B(r) and A(r) satisfy
the condition (68) i.e.,

B = C0r2e4
∫ F ′

r F ′+F
dr

(r F ′ + F)2 . (70)

One can see easily that with F = ξ =constant we obtain

B = C0

ξ2 r
2. (71)

The solution given by (69), (71), and

f (R) = η + ξ R (72)

with η = const., constitutes a particular class. Note that
since the choice of f (R) in (70) is arbitrary this can be used
to generate an infinite class of solutions. This will not be
searched any further here.

2.1.6 3 + 1-dimensional black hole solution in
f (R) = R + 2α

√
R gravity

Previously we found an exact solution for the model of grav-
ity in the form

f (R) = R + 2α
√
R (73)

with α �= 0. The solution to the field equations is given by

A(r) = B(r) = 1

2
+ 1

3αr
(74)

with

R = 1

r2 . (75)
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The solution is a black hole solution with α < 0 and therefore
one may write

ds2 = −1

2

(
1 − r+

r

)
dt2 + dr2

1
2

(
1 − r+

r

) + r2d�2, (76)

in which the horizon is shown as r+. A change of variables
of the form t = √

2T, r = ρ√
2

reduces (76) to

ds2 = −
(

1 − ρ+
ρ

)
dT 2 + dρ2

1 − ρ+
ρ

+ 1

2
ρ2d�2, (77)

which is the Schwarzschild black hole with a deficit angle
caused by a cosmic string.

3 Generalization to f (R) gravity coupled to matter
sources

In this section we extend our vacuum analysis to the presence
of matter coupled with gravity. Therefore the action becomes

I =
∫

dDx
√−g

(
1

16πG
f (R) + Lm

)
(78)

in whichLm is the matter Lagrangian density. The field equa-
tions become

FRν
μ − 1

2
f δν

μ − ∇ν∇μF + δν
μ�F = 8πGT ν

μ (79)

with T ν
μ = diag (−ρ, p, q, q) the energy-momentum tensor

of the matter source. The line element is going to be a spheri-
cally symmetric as (1) and without going through the details
of the field equations, we give the changes in the field equa-
tions (11) and (13). The field equation corresponding to Eq.
(11) reads

A = BH2 exp

(
−2

∫ (
D1F ′

H
− (ρ + p)

BH

)
dr

)
, (80)

while the main Eq. (13) i.e. the master equation for B(r)
takes the form

B ′′+
(
P+ r (p+ρ)

HB

)
B ′+2QB + 2S+ 2r2 (ρ + p)

H2B
=0

(81)

in which P , Q, and H are given in (14), (15), and (12),
respectively, and

S = D3

r2 + (p − q)

F
−

(
D1F ′ − r F ′′) (ρ + p)

H2 . (82)

Note that, unlike the source-free case, here the master B
equation is not a linear equation. It can also be observed that
the particular choice of ρ + p = 0 removes the non-linearity
in the B Eq. (81). Further choice of p = q leaves us with
the same equation for B as in the sourceless case. Yet with
q �= 0, the source shows itself in the � function as given in
the sequel.

The closed form of f is given by

f = −2q + 1

r2A
� (83)

where

� = 2r2ABF ′′ + [
Br A′ + (

r B ′ + 2BD3
)
A
]
r F ′

−F
[
Br A′ + (

r B ′ + 2 (B − 1) D3
)
A
]
. (84)

The foregoing expressions are not very impressive unless we
provide concrete examples. This is our aim in the following
section.

3.1 Applications

3.1.1 3 + 1-dimensional global monopole coupled to
f = R + 2α

√
R modified gravity

One immediate application of Eq. (81) is the extension of
the f = R + 2α

√
R in 3 + 1-dimensional vacuum to the

gravity coupled to the global monopole [56] whose energy-
momentum at very large distance is given by (we assume
A = B in the line element)

T ν
μ = diag.

η2

r2 [1, 1, 0, 0] (85)

in which η represents the global monopole charge. The solu-
tion for the metric is given by

A = B = 1

2
+

(
2η2 + 1

)
3αr

(86)

with

R = 1

r2 (87)

and

F(r) = 1 + αr. (88)

Again we must have α �= 0 and in the limit η = 0 one
recovers the vacuum solution.
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3.1.2 2 + 1-dimensional Maxwell electric field coupled to
f (R) gravity

Let us consider now the Maxwell electric field to be coupled
to f (R) gravity in 2 + 1 dimensions. Using the line element
(1) and the standard Maxwell Lagrangian together with F =
1 + αr one finds

T ν
μ = diag.

Q2

r2 (−1,−1, 1) (89)

in which Q is the electric charge. The solution with small α

up to first order simply reads

A = B 	 2Q2 (2αr − 1) ln r

+ 2α
(
Q2 + M

)
r − M + C2r

2 + O
(
α2

)
(90)

and

f 	 R + 2C2 + 4Q2α

r
+ O

(
α2

)
(91)

with

R 	 −6C2 + 2Q2

r2

− 4α

r

(
4Q2 + M + 2Q2 ln r

)
+ O

(
α2

)
. (92)

Clearly by setting α = 0 one recovers the charged BTZ
black hole with cosmological constant 	 = C2. We add that
the solution when the energy-momentum tensor of the mat-
ter source is of the form of a fluid, one should consider it
as an interior solution. Therefore one has to make sure that
the Israel junction conditions are satisfied at the interface
between exterior and interior solutions [59]. In two exam-
ples we studied here, the energy-momentum tensors are long-
range fields which allow us to consider our solutions to be
exterior.

4 Conclusion

The integrability of f (R) vacuum gravity with spheri-
cal/circular symmetry is reduced first to a set of master rela-
tions, i.e., Eq. (11) and a master equation for B (r), i.e., Eq.
(13). Given any ansatz generating function F = d f

dR in terms
of the coordinate r , our method generates a solution pair of
A (r) , B (r) and a solution for the function f (R). Most of
our solutions encountered are of hybrid nature, that is, f (R)

cannot be expressed explicitly in terms of R. The power-law
form for instance, of the form f (R) ∼ Rk , with a rational
number k, is obtained easily in our method. Some of the solu-
tions presented as applications are already known. Yet, new
and rare types of solutions can also easily be obtained. In the
second part of the paper, we extend the integrability of the

vacuum case to the non-vacuum f (R) theories. For this case
we found also a master relation, i.e., Eq. (80) and a master
equation, i.e., Eq. (81). Considering f (R) to be the generat-
ing function for our formalism and Tμ

ν = diag [−ρ, p, q, q]
to be our energy-momentum tensor one finds a solution to the
master equation (81). We presented two examples. In the first
example we set F = 1+αr with a global monopole coupled
to gravity in 3 + 1 dimensions. The second example con-
siders the Maxwell electric field coupled to gravity in 2 + 1
dimensions with the same generating function. In this case we
found the solutions approximately for small α. Let us also add
that among the few examples we have studied we found some
closed form of f (R) such as f (R) = R+2α

√
R − 2	−2	

and f (R) = ᾱR1− a
2 . We found that the first one cannot sat-

isfy the conditions for the absence of ghosts and thermo-
dynamic stability simultaneously, while the second one for
specific a does satisfy the conditions. Finally it will be in
order to state that our method of reduction for the spherically
symmetric f (R) gravity has a large scope as far as solu-
tions are concerned. Physical implications of the solutions
obtained, such as a dark matter connection, are not consid-
ered in the present study. An extension of our formalism to
problems with different symmetries, such as stationary axial
symmetry, requires a separate investigation.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. P.G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968)
2. T.V. Ruzmaikina, A.A. Ruzmaikin, Zh Eksp, Teor. Fiz. 57, 680

(1969)
3. T.V. Ruzmaikina, A.A. Ruzmaikin, Sov. Phys. JETP 30, 372 (1970)
4. B.N. Breizman, V.T. Gurovich, V.P. Sokolov, Zh Eksp, Teor. Fiz.

59, 288 (1970)
5. B.N. Breizman, V.T. Gurovich, V.P. Sokolov, Sov. Phys. JETP 32,

155 (1971)
6. H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)
7. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
8. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002)
9. S. Capozziello, V.F. Cardone, S. Carloni, A. Troisi, Int. J. Mod.

Phys. D 12, 1969 (2003)
10. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D

70, 043528 (2004)
11. A.D. Dolgov, M. Kawasaki, Phys. Lett. B 573, 1 (2003)
12. V. Faraoni, Phys. Rev. D 74, 104017 (2006)
13. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)
14. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Phys. Rev.

D 75, 083504 (2007)
15. B. Li, J.D. Barrow, Phys. Rev. D 75, 084010 (2007)
16. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2016) 76 :338 Page 9 of 9 338

17. A.A. Starobinsky, J. Exp. Theor. Phys. Lett. 86, 157 (2007)
18. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008)
19. S.A. Appleby, R.A. Battye, Phys. Lett. B 654, 7 (2007)
20. S. Nojiri, S.D. Odintsov, Phys. Lett. B 657, 238 (2007)
21. A. De Felice, S. Tsujikawa, Living Rev. Relativity 13, 3 (2010)
22. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)
23. S. Capozziello, M. De Laurentis, Physics Reports 509, 167 (2011)
24. S. Nojiri, S.D. Odintsov, Phys. Rept. 505, 59 (2011)
25. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115

(2007)
26. L. Sebastiani, S. Zerbini, Eur. Phys. J. C 71, 1591 (2011)
27. S. Capozziello, N. Frusciante, D. Vernieri, Gen. Relativ. Gravit. 44,

1881 (2012)
28. T. Multamäki, I. Vilja, Phys. Rev. D 74, 064022 (2006)
29. A.C. Gutiérrez-Piñeres, C.S. López-Monsalvo, Phys. Lett. B 718,

1493 (2013)
30. R. Goswami, A.M. Nzioki, S.D. Maharaj, S.G. Ghosh, Phys. Rev.

D 90, 084011 (2014)
31. S.H. Hendi, B.E. Panah, S.M. Mousavi, Gen. Relativ. Gravit. 44,

835 (2012)
32. M. Sharif, M. Zubair, Astrophys. Space Sci. 342, 511 (2012)
33. S.E.P. Bergliaffa, Y.E.C. de Oliveira Nunes, Phys. Rev. D 84,

084006 (2011)
34. A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, Phys. Rev. D 80,

124011 (2009)
35. F.S.N. Lobo, M.A. Oliveira, Phys. Rev. D 80, 104012 (2009)
36. T.R.P. Caramês, E.R. Bezerra de Mello, Eur. Phys. J. C 64, 113

(2009)
37. A. Azadi, D. Momeni, M. Nouri-Zonoz, Phys. Lett. B 670, 210

(2008)
38. S. Nojiri, S.D. Odintsov, Phys. Rev. D 78, 046006 (2008)

39. L. Hollenstein, F.S.N. Lobo, Phys. Rev. D 78, 124007 (2008)
40. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S.

Zerbini, Phys. Rev. D 77, 046009 (2008)
41. S. Capozziello, A. Stabile, A. Troisi, Class. Quantum Grav. 25,

085004 (2008)
42. K. Kainulainen, J. Piilonen, V. Reijonen, D. Sunhede, Phys. Rev.

D 76, 024020 (2007)
43. G. Cognola, M. Rinaldi, L. Vanzo, S. Zerbini, Phys. Rev. D 91,

104004 (2015)
44. T. Clifton, J.D. Barrow, Phys. Rev. D 72, 103005 (2005)
45. R. Myrzakulov, L. Sebastiani, S. Zerbini, Int. J. Mod. Phys. D 22,

1330017 (2013)
46. S. Nojiri, S.D. Odintsov, D.S. Gomez, Phys. Lett. B 681, 74 (2009)
47. K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Rev. D85, 044012 (2012)
48. E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini,

Phys. Rev. D 83, 086006 (2011)
49. C.P.L. Berry, J.R. Gair, Phys. Rev. D 83, 104022 (2011)
50. J.-Q. Guo, Int. J. Mod. Phys. D 23, 1450036 (2014)
51. B. Jain, J. Khoury, Ann. Phys. 325, 1479 (2010)
52. W.-T. Lin, J.-A. Gu, P. Chen, Int. J. Mod. Phys. D 20, 1357 (2011)
53. J. Bel, P. Brax, C. Marinoni, P. Valageas, Phys. Rev. D 91, 103503

(2015)
54. X.-J. Yang, D.-M. Chen, Mon. Not. R. Astron. Soc. 394, 1449

(2009)
55. M. Rinaldi, G. Cognola, L. Vanzo, S. Zerbini, JCAP 08, 015 (2014)
56. M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989)
57. T.R.P. Carames, E.R. Bezerra de Mello, Eur. Phys. J. C 64, 113

(2009)
58. H. Zhang, D.-J. Liu, X.-Z. Li, Phys. Rev. D 90, 124051 (2014)
59. A. Shojai, F. Shojai, Gen. Relativ. Gravit. 44, 211 (2012)

123


	Generation of spherically symmetric metrics in f(R) gravity
	Abstract 
	1 Introduction
	2 The field equations in D dimensions
	2.1 Applications of the method
	2.1.1 F (r) =1
	2.1.2 F(r) =1+αr, with α= constant
	2.1.3 F(r) =αra
	2.1.4 A new black hole solution in D=3
	2.1.5 A general class of solutions in 2+1 dimensions
	2.1.6 3+1-dimensional black hole solution in f(R) =R+2αsqrtR gravity


	3 Generalization to f(R)  gravity coupled to matter sources
	3.1 Applications
	3.1.1 3+1-dimensional global monopole coupled to f=R+2αsqrtR modified gravity
	3.1.2 2+1-dimensional Maxwell electric field coupled to f(R) gravity


	4 Conclusion
	References




