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Abstract We study the radiation emitted by inertial charge
evolving on the expanding de Sitter spacetime. Performing
a perturbative calculation, within scalar quantum electrody-
namics (SQED), we obtain the transition amplitude for the
process and using this we define the energy radiated by the
source. In the non-relativistic limit we find that the leading
term is compatible with the classical result (Larmor formula).
The first quantum correction is found to be negative, a result
which is in line with a number of similar quantum field theory
results. For the ultra-relativistic case we find a logarithmic
divergence of the emitted energy for large frequencies, which
we link to the nature of the spacetime. We compare our results
with that of Nomura et al. (JCAP 11:013, 2006), where the
authors make a similar calculation for a general conformally
flat spacetime.

1 Introduction

It is a well known result in classical electrodynamics that
accelerated charges radiate. The emitted power is given by the
famous Larmor formula [1]. The radiated energy in the case
of non-relativistic motion of the source and with acceleration
parallel to the velocity, adjusted for units, can be written as

e? 2
Eg = —/x(t) dr. (1)
6

It is expected that the same result can be recovered from
quantum theory in the limit # — 0. Indeed, in Ref. [2],
the authors obtained from sQED the lowest order contribu-
tion, it being in agreement with the Larmor formula. The
authors considered two distinct cases of external electromag-
netic fields that give rise to the same classical acceleration.
Interestingly, although the leading term in both cases agrees
with the classical result, the main quantum corrections dif-
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fer. Similar results were obtained in Refs. [3,4] in a spatially
homogeneous time-dependent electric field and electromag-
netic plane-wave background.

A distinct problem is the radiation of a charge in a time-
dependent spacetime. In this case, in the GR picture, the
source is inertial and the dynamic background plays the role
of the external field. The problem was tackled in Refs. [5,6],
in the general case of a conformally flat spacetime, by using
the WKB approximation for the mode functions. The authors
found that the leading term reproduces exactly the relativistic
version of (1), when the trajectory is expressed in terms of
conformal time.

Because of its privileged position in cosmological physics,
the case of the de Sitter spacetime deserves a separate, more
detailed treatment. Our goal in this paper is to obtain the
term corresponding to the classical radiation and to calcu-
late the leading quantum corrections for the energy radiated
by a charge evolving on the expanding de Sitter spacetime
(dS). We approach the problem with a perturbative calcula-
tion within SQED. We derive the radiated energy from the 1st
order transition amplitude of the process which is analogous
to the classical one.

One might wonder why there is radiation at all, given that
the source is inertial (i.e. it follows a geodesic trajectory). The
motion of charges in gravitational fields has produced some
controversy over the past decades, resulting in a considerable
amount of literature on the subject [7-9]. The peculiarities of
the problem are nicely illustrated by Chiao’s paradox [10, 11].
The question asked by Chiao is the following: will a charge
on a circular orbit around a planet radiate and thus spiral
inwards, as Newtonian intuition predicts, or continue moving
along the geodesic, in accordance with the equivalence prin-
ciple ? The paradox can be solved by noting that the equiva-
lence principle has only local validity, while an electromag-
netic charge along with its field is an extended object. “The
Coulomb field of the particle, as it sweeps over the *bumps’
in spacetime, receives ’jolts’ that are propagated back to the
particle. [...] The radiated effect comes from the work per-
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formed by this force” [12]. An important feature of this radi-
ation is that it is observer dependent. The classical example is
that of the uniformly accelerated charge in flat space. While
an inertial observer sees the charge radiating according to
the Larmor formula, a co-accelerated observer will detect no
radiation [13]. A similar situation arises in de Sitter space
for comoving versus non-comoving observers. On physical
grounds we expect that, similarly to the uniformly acceler-
ated case [ 12], the radiation reaction on a charge in dS cancels
out, leaving the particle on the initial (geodesic) trajectory.
The rule of thumb is: if there is variation in the local (phys-
ical) momentum of the charge in the relative motion with
respect to the observer, there will be radiation.

The paper is structured as follows: In Sect. 2 we gather the
basics of SQED on de Sitter spacetime. In Sect. 3, starting
from the transition amplitude, we define the energy radiated
through the process. We obtain an asymptotic form for the
energy in a weak gravitational field and proceed by expanding
the result for different regimes of motion of the source. In the
non-relativistic limit, we obtain the leading term and the first
quantum contributions to the radiated energy. We obtain also
a closed form for the energy in the ultra-relativistic limit. We
find that the total emitted energy in this case is plagued by
divergences, which is a typical feature of dS. In Sect. 4 we
summarize and discuss our main results.

We work in natural units where 77 = ¢ = 1.

2 Basics of SQED on dS

The expanding patch of the de Sitter spacetime is described
by the line element

1
ds? = df? — e*'dx? = W(dn2 —dx?), (2)

where w is the Hubble constant, and we have introduced for
convenience the time parameter wn = e~ !, n € (0, 00),
with opposite sign as compared to what one usually calls
conformal time.

The scalar modes that define the Bunch—-Davies vacuum
are [14,21]

1 [7 (on)’/?

Waans Y (m e, 3)

fp(x) =

where v = i\/u? —9/4, and m = wu is the mass of the
scalar field. The momenta appearing in (3) are the conformal
momenta which are related to the physical momenta by p =
pé’)—‘;ys and p¥ =,/ p? + (%)2

Given that the electromagnetic field is conformally invari-
ant, the covariant components of the field are identical to their
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Minkowskian counterparts, while the contravariant compo-
nents can be obtained by raising the indices with the metric
tensor. The mode functions for the Maxwell field are! [23]:

1 , , )
ezkn+1kx8;\ (k)e—Zwt. (4)

1
@2n)** 2k

Following Ref. [17] we work with the electromagnetic field
in the Coulomb gauge, given by A = 0,

(v=ga’) =o.

31
5

wim(x) =

Given the mode functions (3) and (4), we can write the
usual mode expansion for the scalar and Maxwell fields as

o) = [ & (a@ o0 +5 @) 00)

M@ =3 [ @k (etou, 0+ wum). ©
A

where a' (p), b7 (p), ¢ (k) are the respective creation opera-
tors for the scalar particles, antiparticles, and photons.

We are interested here only in tree-level QED processes,
which are generated by the 1st order term in the expansion
of the S-matrix:

sH = / \/—_g(wf(x) e so(X)) A%(x). ©)

We have dropped the four-point interaction term because it
does not contribute to the process studied here.

We use a general prescription for interacting fields, follow-
ing the classical textbook [14]. A detailed treatment of SQED
on dS, including the reduction mechanism, can be found in
Ref. [22].

The transition amplitude can be written as

Ainout = (out| S [in). 7

3 Quantum radiation of scalar charges

We are interested in the quantum theoretical counterpart of a
charge emitting electromagnetic radiation given an external
influence. In our case the charge is inertial, the expanding
background playing the role of the external influence. The
setup is as follows: in the initial state there is one scalar par-
ticle with momentum p’, and in the final state we have a
photon with momentum k and an arbitrary state of the scalar
field. We average over all configurations that are indistin-
guishable from the point of view of a detector measuring

! Notice that the sign in /¥ is positive. This is due to the fact that the
conformal time is equal to (—n).
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(a)

Fig. 1 Feynman diagram for a photon emission and b triplet production

the emitted radiation. This means basically summing over
all possible final states of the scalar field. We have
. b* (1) 2
E~ Y [(lias ag, bl 1SV] 1)
a,b*

= > (IS i ag, bl M Tis ag, by 1SV 1),

a,b*

®)

where a and b* represent the number of scalar particles and
antiparticles. Notice that the quantity (8) is independent of the
definition of particles in the out state. Indeed this is the case
because we can factor out an identity in (8), which can in turn
be replaced by any complete orthonormal basis. The most
natural way to proceed is in fact to insert an in basis (built
from the Bunch—Davies modes (3)), which then truncates the
sum at a finite number of terms. In our case we are left with
the following terms:

2 %1 a(l) 2
+ ’(11(,)\.; 1p/7 lq/, lq |S |1p/> .
)

E~ |(Ix; 1p 1SD1)

The first term represents a particle emitting a photon, while
the second term represents the particle passing through with-
outinteracting, accompanied by the production of a pair and a
photon from the vacuum.? The two configurations are illus-
trated by the Feynman diagrams Fig. 1. A very important
observation is that the second process yields homogeneous
and isotropic radiation. In an experimental context we can
imagine that the detector can be adjusted to account for this
background radiation. We can then drop this contribution and
focus on the first term only.

3.1 Transition amplitude and radiated energy
The amplitude corresponding to the process depicted in Fig.
la was obtained in Ref. [19] by one of the authors, and it

equals

2 Note that momentum conservation constrains the momenta
p + k = p’ in the first, and k + q + q’' = 0 in the second process.

(b)

AP, p.K) = (I 1pl 1p)
= —e/d4x«/—g (flf(x) (gi fp/(x)> wf(i(x)
ier(p’ +p)- €;i(k)

=80 -p-k
PP 427)32/2k
0 .
x /0 dn M (p'mHE (pn) e 1<,

(10)

In Ref. [19] we numerically analyzed the result of the tem-
poral integration and found a closed analytical form for the
amplitude. Here instead we are interested only in the weak
gravitational field limit (m/w — o0). With this in mind, we
search for an asymptotic expression of the amplitude, in order
to obtain the emitted energy as a power series in the Hubble
constant w.

The energy emitted through the process can be computed
as the energy of a photon 7k, weighted with the probability
of emitting a photon with the corresponding momentum. The
expression for the energy can be written as

27)3 /
Ezz%[d%/cﬁphk [A®, . 1)
A

dE

= / ——_ dkdQ, (11)
dk d§2

where V is the conformal volume, which will cancel the §(0)
term from the amplitude via the usual trick. Making use of
momentum conservation p’ = p + K, the polarization term
in (10) gives

N k>2)
kz

2 2

Dol +p)-eik)| =4 (p/
A

— 4p"*sin 6. (12)

Integrating over the final momentum of the source and with
the use of (12), the radiated energy becomes

@ Springer
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:/d3 272 4p'?sin? 0
16 2027)
o0 ) 2
X/o dpn HO (p'mHP (pyy e *1=en - (13)

In the following we attempt to find an asymptotic form for
the temporal integral in (13).

3.2 Asymptotic expression in weak gravitational field

We seek an asymptotic expression for the radiated energy in
the weak gravitational field regime. The idea is to obtain the
energy as a series in powers of the Hubble constant . The
leading term should be independent of 7, so that we can con-
sider it the “classical” radiation, i.e. it should reproduce the
result obtained from classical electrodynamics. Our expecta-
tion is enforced by the results obtained in Ref. [5] for a con-
formally flat universe (of which dS is a particular instance of).
The calculation in [5] was performed in the WKB approxima-
tion, and the condition for weak gravitational field (u — o0)
indeed ensures that the WKB condition is fulfilled in our case
also.

To obtain an asymptotic expansion of (10) we start by
writing the Hankel functions HV, 1, in terms of modified
Bessel functions K, [20]:

HV(ze?) = e 7 Ky(2)
@ (zpH 2
HP@e ™) = ——e T K@), (14)

Using the property of the modified Bessel functions
K, (z) = K_,(2), 15)
we write the product of Hankel functions as follows:

=HO (p'mHP (pn)

4 _im i
= K- (p’ne 2>Kv (pnez)- (16)

%
10 )

Next, we use a large argument expansion [20]:

N ERE ()
K,(vz) ~ EW {1 + ;(_) o ( (17)
where

=vVI+22+In—F——

1+ V1422

® 3r — 513 ) 1
u = =,
1 24 I+22
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which holds uniformly for | arg z| < %n when v — 00>, The
sign of the indices in (16) has been taken so that the condition
on arg 7 is always fulfilled.

Substituting the expansion (17) into (16) and keeping only
terms up to order (9(%), we obtain

v = Pt e inE
1> ,(n
p-p 7T,U«\/ 1+ 22 V1 +22
1 3¢ — 57 1 3t —5¢°
x (1 =) (1- —
in 24 in 24
2 ezu\/l —l,LL\/
Can 17 Vit
7 in z —ip
X
G (=)
1 3t —5¢3 1 3t — 523
X1+ ——){1-— ,
in 24 in 24
(18)
where 7/ = 21 ,z = 21 and we have considered v ~ i .

The temporal 1ntegra1 with the expansion (18) cannot be
solved analytically. To continue, we need to further expand
the asymptotic formula for small and large values of z. By
observing that

o= 2 = ot 19)

nw m

we can properly consider pphys < m to be a non-relativistic
approximation, while pphys > m represents an ultra-
relativistic limit.

3.3 Radiation in the non-relativistic limit

First we discuss the radiation in the non-relativistic limit (z <
1). Expanding all functions around small z and again keeping

terms only up to order O (ﬂ ) the asymptotic expression
(18) reduces to

2 einI432%) min(i432) ik
1" (n) ~ — <—>
pp T (1 + %z’z) (1+32) \p

2+ 12\ L] o]
245 1 72 12ipn 12ip
2 i N\
~ —(1 +—(p" - pz)n2> (”—) : (20)
T 4 p

3 We numerically tested that (17) holds also for complex indices i.e.
for |v| — oo.
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With the help of (20), we can now compute the squared abso-
lute value of the temporal integral from the expression of the
energy (13):

00 2
'/0 dnn HD (p'myHP (py) e~

2 (P\'T 1
T\ p (ik + ¢)?

ii(p”—p%]r

2u (ik+e)*
4
= 7202
W 3ke p2—p* | 9 (PP -pP?
(k2+62)2 " (k2+62)4 4'u2 (k2+62)4 '

21

Gathering all terms we can now obtain via Eq. (11) the energy
emitted under a unit solid angle and frequency:

dE 5 ¢?p’sin?0 1( 1

dkdQ2 202m)3  p? \ (k2 4 €2)?
3ke (k2 —2p*kcosO) 9 (k2 —2p*kcosh)?
w2 +edt 4p? (K2 4 ’
(22)

where the integration over the final momentum p was ren-
dered trivial due to the Dirac delta function (p? = p’ Zip2-
2kp’ cos 0).

We note that all integrals are of the following form:

(k2 +e2)f — 2P-a=3r(p)

This leads us to the resulting angular distribution of the emit-
ted energy:

(23)

dE _ 2p”sin?0 1 {1 1<2 3p’cose>

dQ 1672 dep? w\m 4e
1 /45 6p'cosf 9pcos?h
_(__ p p ) 24
u2\32 e 8eZu?

Plotting Eq. (24) we observe: (a) the characteristic sin?

distribution for the radiation in the case of vanishing momen-
tum of the source, (b) as we increase the source momentum
the radiation is emitted in a narrowing cone around the direc-
tion of motion, (c) increasing amount of radiation in the back-
ward direction. In order for Eq. (24) to remain valid, the 1/
corrections must remain small as compared to the leading
term. We require thus that p’/e < u (Fig. 2).

A further integration over d2 gives us the total energy
emitted in the process:

2.x1078 |

-2.x1078 |

Fig. 2 Angular distribution of the emitted radiation, for © = 100. For
small momentum we see the characteristic sin® distribution. Increasing
the momentum of the source causes the energy to be emitted in a cone
in the forward direction. The cut-off parameter is ¢ = 10~2 and the
small momentum curve was enhanced by a factor of 102

2 N\ 2 2
1 2 1,45 9
E=(2) “fi- =+ (o +05) @
6mr \ /) 4e T uE\32  40e2

If we write E = E¢ + E(V 4+ E® we can identify from Eq.
(25) the lowest order term as

e2p/2a)2 1

Eg=——-+——.
c 6mrm? 4e

(26)

Guided by the results of Ref. [5], we consider the acceleration
to be

d
ko =g (%) . 27)

For our non-relativistic approximation this gives

HOE % (Zan)

ldpphys
m dn
pw

o

(28)
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The remaining factor of ﬁ is due to the presence of the
adiabatic cut-off. When we take the limit ¢ — 0 the energy
diverges. This can be understood as follows: the role of the
cut-off is to decouple the fields and thus halt the interaction
on time scales larger than 1/¢. When we take the vanishing
limit this is equivalent to considering an infinite interaction
time. Then the energy radiated with a constant rate, under an
infinite time, will be infinite. This also holds for a constantly
accelerated charge in flat space. The results are consistent
with that of Ref. [2].

Interestingly, if we naively take the non-relativistic limit
in the results of Ref. [5] and also consider the adiabatic cut-
off, we would obtain a result that is twice larger than (26).
This is due to the fact that their calculation was tailored for a
conformally flat spacetime with the conformal time ranging
over the complete real axis. For the particular case of dS,
this would mean the global de Sitter space. A similar situ-
ation was reported in Refs. [21-23] for Coulomb scattering
in the expanding de Sitter space. For the expanding patch of
dS, described by the line element (2), the calculation in Ref.
[5] breaks down in Eq. 30 where the boundary terms were
neglected and in the subsequent integration over frequencies.
If we were instead to consider the non-relativistic approxi-
mation (z < 1), by neglecting from the beginning quantities
of order (p/p®)? ~ z? and with the adiabatic cut-off, the
results would be identical to ours.

The leading quantum correction to the emitted energy is
EWD 2w

= ——_, 29
E Tm 29

A negative quantum correction was also reported in all simi-
lar studies [2-6], for charges evolving in external electromag-
netic and gravitational fields. The fact that the quantum effect
suppresses the classical result thus seems to be a generic fea-
ture in such contexts. In Refs. [3,5,6] it is noted that the
quantum corrections arise due to a non-local integration in
time over the classical trajectory. In our case the trajectory
is fixed, with constant acceleration X (1) = 7‘” and the non-
locality is implicit in the result. On the other hand, in Ref.
[4], the authors do not find the aforementioned non-locality
for the case of a charge moving in an electromagnetic plane-
wave background. The difference is that this calculation is
performed using the Schwinger—Keldysh (in—in) formalism.
It remains an open question why this difference arises. It
will be an interesting subject for future work to calculate
the radiation of a charge in de Sitter space using the in—in
formalism and to compare with the results obtained in this
paper.

In Ref. [6] it is found that the first correction to the radi-
ation of a charge moving in a conformally flat background
contains third derivative terms. Up to the orders that we have
considered in our case we have X'(n7) >~ 0. The fact that we
have a non-zero first order contribution thus suggests that

@ Springer

our method captures terms that the in—in formalism with the
WKB approximation misses.

3.4 Radiation in the ultra-relativistic limit

In this section we examine the behavior of the probability and
the emitted energy through the process in the ultra-relativistic
limit. Starting from (18) and imposing the condition for ultra-
relativistic motion of the source (z >> 1), we obtain

#ein([”—m. (30)

I (n) =
Py mnp'p

The energy radiated under a unit solid angle and in a unit
frequency thus becomes

2.2 2.2 2
_er p'“sin” 6 2 /Oo dn o' —p—k+ie)
4 20273 |\z/p'plo
2 /
1
S (31)

T2 p (p—p—kP+er

Integrating over the momenta of the photon we obtain the
total energy emitted in the process:

2 [ 1 / i 02
0
S kde/ dcoso) - —
87= Jo -1 p(p—p—k=+e
(32)
By changing the integration variable to

p= \/ p’2 + k% — 2p’k cos 0, the angular integral becomes

| _ WP=p?=k2?

g [T p/+kd 4p” k2 33
_W/o /p/k| p(P/—P—k)Z-FGZ' 53

A further change of variable to z = p — p’ + k results in

2 00 2k 1
E = —2 f kdk/ dZ
87= Jo |p/—k|—p'+k

The indefinite integral over z has the following result:

_ @@=22(p'—k)—2kp')?
4p/2k2

24€?

(34)

1
B(z) = {51(12162 + 1217/2 +6p'z+ 22 —6k(6p’

- 4k2p/2
4 2) — 3€3) + e(—4k% + 12kp’ — 4p"> + €2) arctan =
€

120K — p' +k(=2p* + X)) log (2 + 62)}‘
(35)
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Fig. 3 Frequency distribution of the radiated energy in the ultra-
relativistic limit for p’ = 1. For large frequencies the radiation falls
off as 1/k

Using the notation introduced above we can write the energy
emitted in the process as

2 v
E=c /0 k dk [B(zk) - B(O)]
6’2 00 ,
tar ), k dk [B(2k) — Bk —2p )] (36)

In Fig. 3 we have plotted the integrand of (36), which is the
frequency distribution of the energy. The bulk of the radia-
tion is emitted under frequencies k < p’ as one would expect
on physical grounds. For a small cut-off we see that most of
the radiation is emitted for small frequencies. Increasing the
€ parameter reveals that there is actually another compet-
ing channel around k >~ p’. This is not present in the non-
relativistic case. We can understand this as follows: because
we are investigating the process under weak gravitational
field conditions, there is a loose energy conservation princi-
ple at action, which is reminiscent from flat space. For the
non-relativistic case, where the energies go as ~ p2, the pho-
ton momentum cannot compete with the source, and thus the
only route toward energy conservation is p >~ p’,k — 0.
On the other hand in the ultra-relativistic limit, because the
energies go as ~ p, the energy of the photon is on the same
footing as the energy of the source, and the channel with
k ~ p’, p — 0 becomes relevant. Thus we understand the
peak at k >~ p’ as arising from an interplay between the
gravitational field, which gently lifts the energy conserva-
tion constraint, and the relativistic regime, which puts the
energy of the radiation on a par with that of the source.

For large frequencies k > p’ we have a tail that falls off
as 1/k, which leads to a logarithmic divergence when inte-
grated over. The presence of this divergence is intimately
linked to the famous divergence problem of de Sitter space

[24]. We can understand it as a symptom of the finite inte-
gration over conformal time in (13). Because the Maxwell
field is conformal, the photon effectively “lives” in conformal
time and “feels” the limit  — 0 as being abrupt, although
in the physical picture everything seems to be diluted away
smoothly by the expansion of space. The finite limit for the
temporal integration manifests like a finite-time sudden cut-
off which leads to transitory effects, undesirable divergences
and other artifacts [25-29].

4 Discussion

In this paper we have analyzed the quantum radiation of a
charge evolving on the expanding de Sitter spacetime. The
emitted energy was derived from the transition amplitude of
the corresponding sQED process. We compared the results
of our perturbative calculation with that of Ref. [5], which
was done in the WKB approximation. We have obtained the
radiated energy as a power series in the Hubble constant, in
the asymptotic case of a weak gravitational field. For a non-
relativistic motion of the source, we have found the leading
term to be compatible with the expected classical results.
This is also identical to the results of Ref. [5], within the
same approximation. Furthermore, the leading quantum cor-
rection was found to be negative, a result also reported in all
similar studies. In the ultra-relativistic limit we expected to
obtain a result which takes the form of the relativistic gen-
eralization of the Larmor formula. Instead we found that the
energy has a logarithmic divergence for large frequencies.
We interpret this as follows: the finite integration limit for
the conformal time mimics a sudden decoupling of the inter-
action at time n — 0. Because this “event” happens under
an arbitrarily small time interval, arbitrarily high frequency
modes can get excited. Thus we also understand why this
effect does not show up in the non-relativistic case, where
only small frequency photons are emitted.

It would be interesting to see whether the above men-
tioned pathological fingerprint also shows up in a classical
calculation, for the same setup. There are a number of papers
that deal with the radiation of classical charges evolving on
the global dS [30-33]. For the expanding patch of dS, the
only study that we are aware of is done in Ref. [34]. We note
that our results are compatible with that of Ref. [34], in that
we find that comoving observers see no radiation. Indeed if
we set p’ = 0 in Egs. (25) and (36) we find a vanishing
energy in both the non-relativistic and the relativistic cases.
The situation is similar to the uniformly accelerated case in
flat space. It was shown in Ref. [35] that if we consider the
problem in a non-inertial (Rindler) reference frame: while
the observers which are co-accelerated with the charge see
no radiation, if there is mutual motion between the observer
and the charge in the Rindler frame, an energy flux will be
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present. It would be interesting to do a systematic study in
the lines of Ref. [35], of the classical radiation emitted by
charges on arbitrary trajectories on the expanding dS. Also
it would be interesting to see how our results change if we
consider proper Dirac electrons.

One more thing is worth noting. It is a pleasing fact that
out of all 1st order processes the one studied here is the only
one that falls off as an inverse power of © as we go toward
the flat space limit. As we have also signaled in Ref. [36],
the probabilities for all other 1st order processes are expo-
nentially suppressed as e ~*@* including the one depicted
in Fig. 1b. This is linked to the fact that the process in Fig.
la, which forms the object of this study, is the only one that
has a classical analog.
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