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Abstract The BB-mode correlation angular power spec-
trum of CMB is obtained by considering the primordial gravi-
tational waves in the squeezed vacuum state for various infla-
tionary models and results are compared with the joint anal-
ysis of the BICEP2/Keck Array and Planck 353 GHz data.
The present results may constrain several models of inflation.

1 Introduction

Cosmic inflation is the most widely known scenario proposed
for resolving several problems associated with the standard
model of cosmology [1,2]. A number of inflationary models
have been proposed over several decades [1–8]. The recent
observations on the cosmic microwave background (CMB)
anisotropy data may constrain many of the inflationary mod-
els [9–13]. It is believed that inflation seeded the formation
of the large scale structures in the universe. Inflation also
predicts a nearly scale invariant spectrum for the scalar and
tensor perturbations which occurred in the early universe.
The tensor perturbations of cosmological origin are known
as primordial gravitational waves (GWs).

It is believed that the primordial gravitational waves have
left an imprint on the cosmic microwave background. The pri-
mordial GWs can be studied with the aid of CMB anisotropy
and polarization. The CMB is polarized in the early universe
due to the Thomson scattering. The density (scalar) fluctua-
tions generate the E-mode polarization of the CMB, while
the gravitational waves generate both E-mode and B-mode
polarizations [14–17]. The primordial gravitational waves
are a unique source of B-mode of CMB and its detection
will help in understanding the inflation as well as the primor-
dial gravitational waves itself.

The gravitational waves were generated during the infla-
tion period due to the zero-point quantum oscillations [18].
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An initial vacuum state (no graviton) can evolve into a multi-
particle quantum state known as the squeezed vacuum state
[19], which is a well-known state in the context of quan-
tum optics [20–22]. The primordial gravitational waves are
believed to exist in the squeezed vacuum state [23–25]. The
primordial gravitational waves are placed in the squeezed
vacuum state and its effect on the BB-mode correlation angu-
lar power spectrum of CMB is studied with WMAP data
[26]. Recently, it is shown that the BB-mode angular power
spectrum gets enhanced at its lower multipoles by consider-
ing the primordial gravitational waves in thermal state [27].
These studies show that the primordial gravitational waves
may exhibit both the squeezing and the thermal features and
hence it is worthwhile to examine their combined effects on
the BB-mode correlation angular power spectrum in light of
the recent joint BICEP2/Keck Array and Planck data.

The aim of the present work is to study effect of primor-
dial gravitational waves in the squeezed vacuum state on
the BB-mode correlation angular power spectrum of CMB
for various slow-roll inflationary models. Thus the obtained
BB-mode correlation angular power spectrum of CMB for
the squeezed vacuum as well as the joint effect of squeezing
and thermal cases are compared with the joint BICEP2/Keck
Array and Planck data.

2 Tensor power spectrum in squeezed state

The perturbed metric for a flat Friedmann–Lemaître–
Robertson–Walker universe can be written as

ds2 = R2(τ )[−dτ 2 + (δi j + hi j )dx
idx j ], (1)

where δi j is the flat space metric and hi j is the tensor pertur-
bation, |hi j | � δi j , ∂i hi j = 0, δi j hi j = 0, and dτ = dt

R is
the conformal time.

In quantum theory, the field hi j (x, τ ) can be written in the
Fourier mode as
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hi j (x, τ ) = D

(2π)
3
2

∫ +∞

−∞
d3k√

2k

2∑
p=1

[
h(p)
k (τ )b(p)

k eik.xε
(p)
i j (k)

+h(p)∗
k (τ )b(p)†

k e−ik.xε
(p)∗
i j (k)

]
, (2)

where D = √
16πlpl is the normalization constant, lpl = √

G
is the Planck length and k is the wave vector. The wave

number is k = (δi j ki k j )
1
2 and is related to wavelength,

λ = 2πR
k . The two polarization states ε

(p)
i j , p = 1, 2 sat-

isfy the conditions ε
(p)
i j δi j = 0, ε

(p)
i j ki = 0, ε

(p)
i j ε(p′)i j =

2δpp′ , ε
(p)
i j (−k) = ε

(p)
i j (k). These linear polarizations are,

respectively, known as plus (+) polarization and cross (×)

polarization.
The creation (b(p)†

k ) and annihilation (b(p)
k ) operators

satisfy the relationships [b(p)
k , b(p′)†

k′ ] = δpp′δ3(k − k′)
and [b(p)

k , b(p′)
k′ ] = [b(p)†

k , b(p′)†
k′ ] = 0. The evolution of

these operators are governed by the Heisenberg equations of
motion,

d

dτ
b†
k (τ ) = −i[b†

k (τ ), H ], d

dτ
bk(τ ) = −i[bk(τ ), H ].

(3)

The initial vacuum state |0〉 is defined as

b(p)
k |0〉 = 0.

Under the Bogoliubov transformation, the creation and anni-
hilation operators become

b†
k (τ ) = u∗

k(τ )b†
k (0) + v∗

k (τ )bk(0), (4)

bk(τ ) = uk(τ )bk(0) + vk(τ )b†
k (0), (5)

where b†
k (0) and bk(0) are the initial values of the operators,

uk(τ ) and vk(τ ) are complex functions and they satisfy the
condition

|uk |2 − |vk |2 = 1.

The coupling of the mode functions hk(τ ) with R(τ ) gives

h(p)
k = χ

(p)
k

R
, (6)

where χ
(p)
k can have the following form1:

χk(τ ) = uk(τ ) + v∗
k (τ ), (7)

1 Since we take the contribution from each polarization to be the same,
here onwards we drop the superscript (p).

which satisfies the equation of motion

χ ′′
k +

(
k2 − R′′

R

)
χk = 0, (8)

where prime indicates the derivative with respect to the con-
formal time τ .

Two-point correlation function of the tensor perturbation
is given by:

〈hkh∗
k′ 〉 = 2π2

k3 PT (k)δ3(k − k′), (9)

where the angle bracket denotes ensemble average and PT is
known as the tensor power spectrum.

Using Eqs. (2) and (6), taking the contribution from each
polarization to be the same,

h(x, τ ) = D

R(τ )(2π)
3
2

∫ +∞

−∞
d3k[χk(τ )bk + χ∗

k (τ )b†
k ]eik.x.

(10)

The primordial gravitational waves are created due to
the zero-point quantum oscillations in the early universe
[18,28]. The initial vacuum state with no graviton evolves
into multi-particle quantum state through parametric ampli-
fication. Hence the primordial GWs are possible to be con-
sidered in the squeezed vacuum state [23,29,30].

The squeezed vacuum state is defined as [20,31]|ζ 〉 = Z(ζ )|0〉, (11)

where Z(ζ ) is the single mode squeezing operator and is
given by

Z(ζ ) = exp

[
1

2
ζ ∗d2 − 1

2
ζd†2

]
, (12)

where ζ = rseiγ is a complex number, rs is the squeezing
parameter and γ is the squeezing angle. The unitary trans-
formations of the squeezing operator Z on the annihilation
and creation operators lead to:

Z†(ζ ) d Z(ζ ) = d cosh rs − d†eiγ sinh rs,

Z†(ζ ) d† Z(ζ ) = d† cosh rs − de−iγ sinh rs . (13)

Using Eqs. (2) and (13), the two-point correlation for the
tensor perturbation in the squeezed vacuum is obtained:

〈hkh∗
k′ 〉 = D2

R2

[
(1 + 2 sinh2 rs)|χk |2

+1

2
sinh 2rs(χ

2
k e

iγ + χ∗2
k e−iγ )

]
δ3(k − k′).

(14)

Thus from Eqs. (9) and (14), we get the tensor power spec-
trum in the squeezed vacuum state as
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PT (k) = k3

2π2

D2

R2

[
(1 + 2 sinh2 rs)|χk |2

+1

2
sinh 2rs(χ

2
k e

iγ + χ∗2
k e−iγ )

]
. (15)

In the case of a quasi-de Sitter universe during inflation,
R(τ ) = −1

Hτ(1−ε)
, where the slow-roll parameter ε is related

to the scalar field potential V and is given by ε = m2
pl

2

(
V ′
V

)2
.

For small ε, ϑ = 3
2 + ε, and nT = −2ε = 3 − 2ϑ .

If the slow-roll parameter ε is considered as constant, then
Eq. (8) gets modified as

χ ′′
k +

[
k2 − 1

τ 2

(
ϑ2 − 1

4

)]
χk = 0. (16)

The general solution for Eq. (16) is given by

χk(τ ) = √−τ [C1(k)H
(1)
ϑ (−kτ) + C2(k)H

(2)
ϑ (−kτ)],

(17)

where H (1)
ϑ and H (2)

ϑ are respectively the Hankel functions of
the first and second kind, and C1 and C2 are the constants of
integration. Within the horizon (k >> RH ), the approximate
solution is given by

χk(τ ) = 1√
2k

e−ikτ .

Using the above approximate solution, one can obtain

C1(k) =
√

π

2
exp

[
i

(
ϑ + 1

2

) (π

2

)]
, C2(k) = 0. (18)

Therefore, for long wavelength limit (k << RH ), Eq. (17)
leads to

χk(τ ) = e
i
(
ϑ− 1

2

)
( π

2 )2ϑ− 3
2

�(ϑ)

�
( 3

2 )
) 1√

2k
(−kτ)

1
2 −ϑ . (19)

Using Eq. (19) in Eq. (15), the tensor power spectrum in
the superhorizon limit (k << RH ) is obtained:

PT (k) = AT (k0)

(
k

k0

)nT [
1 + 2 sinh2 rs

+ sinh 2rs cos
(
γ + (2 − nT )

π

2

)]
, (20)

where AT (k0) = D2
(
Hk0
2π

)2
is the normalization constant

and Hk0 is the Hubble parameter at RH = k0 during the
inflation, k0 being the pivot wavenumber.

3 Inflationary models and tensor power spectrum

In most models of inflation [3], a homogeneous scalar field,
called inflaton, is considered as candidate for the inflation.
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Fig. 1 BB-mode angular spectra for quadratic chaotic inflation model
for unlensing (top panel) and lensing (bottom panel) effects for various
values of squeezing parameter and angle with BICEP2/Keck and Planck
joint analysis result

The inflaton field φ is governed by the equation of motion
given by

φ̈ + 3H φ̇ + V ′ = 0, (21)

where dot and prime indicate derivatives with respect to time
(t) and the field (φ), respectively. The Hubble parameter H
is determined by the energy density of the inflaton field,

ρφ = φ̇2

2
+ V,

thus the Friedmann equation can be written as

H2 = 1

3m2
pl

(
1

2
φ̇2 + V (φ)

)
. (22)

In the slow-roll limit, the energy density of the inflaton field

is dominated by its potential, φ̇2

2 � V . From Eq. (22), the
Hubble parameter and the inflaton potential are related by

H2 	 V

3m2
pl

. (23)

This condition is characterized by the slow-roll parameters
which are defined in terms of the inflaton potential V and its
derivatives as [4,32–34]
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Fig. 2 BB-mode angular spectra for quadratic chaotic inflation model
with thermal effect for unlensing (top panel) and lensing (bottom
panel) effects for various values of squeezing parameter and angle with
BICEP2/Keck and Planck joint analysis result

ε ≡ m2
pl

2

(
V ′

V

)2

,

η ≡ m2
pl

(
V ′′

V

)
,

ξ2 ≡ m4
pl
V ′V ′′′

V 2 ,

σ 3 ≡ m6
pl
V ′′V ′′′′

V 3 ,

(24)

and so on. Inflation lasts as long as the slow-roll conditions
are satisfied, i.e., ε � 1 and |η| � 1. The duration of infla-
tion is characterized by the e-fold number, N , which can be
written in terms of the inflaton potential,

N 	 1

m2
pl

∫ φ

φend

V

V ′ dφ. (25)

In the slow-roll approximation, the power spectrum of the
scalar perturbations (PS) and the tensor perturbations (PT )
generated outside the horizon are, respectively, given in terms
of the potential [35,36]

PS 	 1

12π2m6
pl

V 3

V ′2 |k=RH , (26)
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Fig. 3 BB-mode angular spectra for quartic chaotic inflation model
for unlensing (top panel) and lensing (bottom panel) effects for various
values of squeezing parameter and angle with BICEP2/Keck and Planck
joint analysis result

PT 	 1

3π2m4
pl

V |k=RH , (27)

where k = RH indicates that H and hence, V is evaluated at
the time when the mode with wave number k crosses the hori-
zon. For all calculations, we take the scalar power spectrum
to be PS = 2.43 × 10−9.

The tensor-to-scalar ratio can be written in terms of the
parameter ε as [37–39]

r ≡ PT (k)

PS(k)
	 16ε. (28)

This parameter is often used to characterize the amplitude of
the tensor perturbation at the CMB scale. Physically, r is a
measure of the slope (of the quantum hill) down which the
scalar field is rolling. Since inflation predicts a nearly scale
invariant spectrum, the slope is small but not flat. Hence,
r is small and can differentiate between the many inflation
models.

Next, we obtain the slow-roll parameter and tensor spec-
tral index corresponding to various slow-roll inflation mod-
els given below. For this purpose, we use the e-fold number
N = 60 for all the inflationary models under the present
work [40].
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Fig. 4 BB-mode angular spectra for quartic chaotic inflation model
with thermal effect for unlensing (top panel) and lensing (bottom
panel) effects for various values of squeezing parameter and angle with
BICEP2/Keck and Planck joint analysis result

3.1 Quadratic chaotic inflation

The chaotic inflation model assumes that the scalar field rolls
down its potential and rests at its vacuum state for a while,
then after getting displaced due to some fluctuations, rolls
back to its true vacuum state and the same mechanism repeats
itself. For quadratic chaotic inflation, the scalar field has the
potential given by [4]

V (φ) = 1

2
m2φ2, (29)

where m is the mass of the inflaton field and is taken to be
m = 1.53 × 1013 GeV.

Using Eqs. (25) and (29), the slow-roll parameter and
index of the tensor power spectrum for the quadratic chaotic
inflationary model are obtained:

ε = 8.26 × 10−3,

nT 	 −1.65 × 10−2. (30)

The corresponding tensor-to-scalar ratio is obtained as, r =
0.132.
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Fig. 5 BB-mode angular spectra for new inflation model for unlensing
(top panel) and lensing (bottom panel) effects for various values of
squeezing parameter and angle with BICEP2/Keck and Planck joint
analysis result

3.2 Quartic chaotic inflation

The quartic chaotic inflation model suggests the existence
of the curvaton which generates the curvature fluctuations
during inflation after the inflaton field has decayed, while it
does not drive the inflation itself. The model has the potential
given by [5]

V (φ) = 1

4
λφ4, (31)

where normalization gives the self-coupling of the scalar field
(φ) as λ = 5.94 × 10−14 GeV, and hence

ε = 1.626 × 10−2,

nT 	 −3.25 × 10−2. (32)

The tensor-to-scalar ratio for this model is found as r = 0.26.

3.3 New inflation

The new inflation model [6] is based on the Coleman–
Weinberg potential [41,42],

V (φ) = 1

4
λφ4

(
ln

φ

σ
− 1

4

)
+ λσ 4

16
. (33)
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Fig. 6 BB-mode angular spectra for new inflation model with thermal
effect for unlensing (top panel) and lensing (bottom panel) effects for
various values of squeezing parameter and angle with BICEP2/Keck
and Planck joint analysis result

In this model, the parameters are taken to be σ = 10mpl,
where mpl is Planck’s mass, and λ = 2.36×10−14 GeV. σ is
the vacuum expectation value of the scalar field at minimum
and λ is the quadratic self coupling of the field. Therefore we
get

ε = 1.16 × 10−2,

nT 	 −2.32 × 10−2. (34)

The tensor-to-scalar ratio in this case is obtained: r = 0.186.

3.4 Hybrid inflation

In this model, the inflation is driven by two scalar fields,
in which one of the fields (φ) is responsible for the normal
slow-roll inflation while the other field (σ ) triggers the end
of inflation. The potential for this model is [7,8]

V (φ) = 1

4λ
(M2 − λσ 2)2 + 1

2
m2φ2 + 1

2
g2φ2σ 2, (35)

where the parameters are taken to be as follows: g = 8 ×
10−4, λ = 1 are the self-coupling constants of the inflaton
field and the trigger field, respectively, and the masses of
the fields are m = 1.5 × 10−7mpl, M = 1.21 × 1016 GeV,
respectively.
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Fig. 7 BB-mode angular spectra for hybrid inflation model for unlens-
ing (top panel) and lensing (bottom panel) effects for various values of
squeezing parameter and angle with BICEP2/Keck and Planck joint
analysis result

The φ field drives the inflation, thus determining the period
of inflation while the σ field determines the rate of inflation.
Therefore we get

ε = 2.65 × 10−4,

nT 	 −5.3 × 10−4. (36)

The tensor-to-scalar ratio in this case is found as r = 4.24 ×
10−3.

4 BB-mode angular power spectrum of CMB

The CMB radiation can be polarized due to the gravitational
waves called the B-mode of CMB [43–45].

The angular power spectrum of the B-mode of CMB is
given by [46,47]

CBB
l

(4π)2 =
∫

dk k2 PT (k)

×
∣∣∣∣
∫ τ0

0
dτg(τ )hk(τ )

[
2 j ′l (x) + 4 jl(x)

x

]∣∣∣∣
2

, (37)

where g(τ ) = κe−κ is the visibility function, κ is the differ-
ential optical depth for the Thomson scattering, x = k(τ0−τ)

and jl is the spherical Bessel function.
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Fig. 8 BB-mode angular spectra for hybrid inflation model with ther-
mal effect for unlensing (top panel) and lensing (bottom panel) effects
for various values of squeezing parameter and angle with BICEP2/Keck
and Planck joint analysis result

The BB-mode correlation angular spectrum of CMB is
obtained for the gravitational waves in the squeezed vacuum
and thermal vacuum states for the quadratic chaotic, quartic
chaotic, new inflation and hybrid inflationary models. The
angular power spectra for the different inflation models are
generated using the CAMB code with the tensor spectral
index nT corresponding to each inflationary model. For all
the cases, the optical depth is taken as κ = 0.08, the pivot
wave number for tensor modes is taken as k0 = 0.002 Mpc−1

and that for scalar mode is k0 = 0.05 Mpc−1. The tensor-
to-scalar ratio used for each inflationary model is taken from
the previous section where their values are computed. The
obtained BB-mode angular power spectrum for various val-
ues of the squeezing parameter and temperature are com-
pared with the limit of the BICEP2/Keck Array and Planck
353 GHz joint analysis data. The implemented limit (BK ×
BK −α BK × P)/(1 −α) at α = α f id = 0.04 is evaluated
[48] from the auto-spectra and cross-spectra of the combined
BICEP2/Keck 150 GHz maps and Planck 353 GHz maps
to clean out the dust contribution, BK × BK indicates the
BICEP2/Keck auto-spectra at 150 GHz and BK × P indi-
cates the cross-spectra of BICEP2/Keck maps at 150 GHz
and Planck maps at 353 GHz. This combination is taken after
the subtraction of the dust contribution which is 0.04 times
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Fig. 9 BB-mode angular spectra for hybrid inflation model for non-
thermal (top panel) and thermal (bottom panel) effects with lensing for
various values of squeezing parameter and angle with BICEP2/Keck
and Planck joint analysis result

as much in the BICEP2 band as it is in the Planck 353 GHz
band (see Ref. [48] for details).

The BB-mode correlation angular spectra for the differ-
ent inflation models for zero squeezing with nonthermal and
thermal effect for unlensing and lensing effects are obtained
and their corresponding plots are given in Figs. 1, 2, 3, 4, 5,
6, 7, 8, and 9. The BB-mode angular spectrum for the hybrid
inflationary model for squeezing, thermal and their combined
effects with lensed and unlensed cases are given up to l=160
to highlight their effects on the angular power spectrum (Fig.
9). It can be seen that for various values of the squeezing
parameter and squeezing angle, the quadratic chaotic, quar-
tic chaotic and new inflation models are out of the limit of
BICEP2/Keck Array and Planck 353 GHz joint data. For the
thermal effect with various values of the squeezing parameter
and squeezing angle, the quadratic chaotic, quartic chaotic
and new inflation models are also not found within the limit
of BICEP2/Keck Array and Planck 353 GHz joint data.

It can be observed that the BB-mode correlation angu-
lar power spectrum corresponding to the hybrid inflation
model for various values of squeezing parameter and squeez-
ing angle is found within the limit of the BICEP2/Keck and
Planck joint analysis data at l 	 145, even though the squeez-
ing and thermal effects enhance the angular power spectrum.
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Thus the analysis of the present results show that the hybrid
inflation model is most favorable by considering the primor-
dial gravitational waves in the presence of squeezing and
thermal effects.

5 Conclusion

The primordial gravitational waves are very important in cos-
mology. It is believed that the origin of the primordial gravi-
tational waves are due to inflation mechanism. Thus the pri-
mordial gravitational waves are placed in a special quantum
state called the squeezed vacuum state, a well-known state
in quantum optics. The primordial gravitational waves have
not been detected directly yet but their effect is expected to
be observed through the B-mode of CMB. If this is the case,
then the role of squeezing effect is also expected to reflect
on the BB-mode correlation angular power spectrum of
CMB.

The BB-mode correlation angular power spectrum for
various slow-roll inflationary models are studied by consid-
ering the primordial gravitational waves in the squeezed vac-
uum state. The obtained angular spectrum for the squeezing,
thermal as well as their combined effects are compared with
the BICEP2/Keck Array and Planck 353 GHz joint analy-
sis data. The comparative study of the BB-mode angular
spectrum obtained for the various inflationary models with
the BICEP2/Keck Array and Planck 353 GHz joint analy-
sis data show that the hybrid inflation model is most favor-
able with the primordial GWs in the squeezed vacuum state.
The BB-mode correlation angular power spectrum can be
obtained even with higher or lower values of the squeezing
parameters and thermal parameter but the results do not alter
the present conclusions. Note that the BB-mode correlation
angular power spectrum for the vacuum case can be recov-
ered in the absence of squeezing and thermal effects.

Further, the result of the joint analysis data does not rule
out the existence of gravitational waves in the squeezed vac-
uum or thermal squeezed vacuum states which are in agree-
ment with previous studies.
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Appendix A: Thermal effect on GWs spectrum

After the Big Bang, the universe was in the form of plasma of
hot and dense matter. During this stage, the light particles like
free electrons, due to Thomson scattering, acted as scattering
centers for the surrounding radiation, keeping the universe at
that time thermalized and opaque to radiations. Among these
particles and radiations which got thermalized and escaped
after the recombination are the decoupled gravitons which
left an imprint on the CMB anisotropy. Due to these ther-
malized gravitons, the gravitational waves are believed to be
amplified by stimulated emission into the existing thermal
background of gravitational waves which changes the spec-
trum of the waves by temperature-dependent factor [27].

Assuming a vacuum state initially, the Fourier coefficients
in Eq. (2) satisfy the relations

〈b†
kbk′ 〉 = δ3(k − k′), (A.1)

〈bkbk′ 〉 = 〈b†
kb

†
k′ 〉 = 0. (A.2)

The time-dependent thermal state is defined as [49,50]

|0(β), τ 〉 = T̃(θk)|0, τ 〉, (A.3)

where T̃(θk) = exp[−θk(β){b̃k(τ )bk(τ ) − b†
k (τ )b̃†

k (τ )}].
The temperature-dependent parameter θ(β) is defined by

cosh θk(β) = (1−e−βk)−
1
2 , sinh θk(β)=e− βk

2 (1−e−βk)−
1
2 ,

where β = 1
T , T is the temperature.

Then the time- and temperature-dependent annihilation
and creation operators through the Bogoliubov transforma-
tion become

bk(β, τ ) = T̃ (θ)bk T̃
†(θ)

= cosh θk(β)bk(τ ) − sinh θk(β)b̃†
−k(τ ), (A.4)

b̃k(β, τ ) = T̃ (θ)b̃k T̃
†(θ)

= cosh θk(β)b̃k(τ ) − sinh θk(β)b†
−k(τ ). (A.5)

The Hermitian conjugate of the above equations give rise to
similar equations for b†

k (β, τ ) and b̃†
k (β, τ ).

Thus, Eq. (A.1) modifies to [40]

〈b†
kbk′ 〉 =

(
1 + 2

e
kB
T − 1

)
δ3(k − k′). (A.6)

The power spectrum for gravitational waves in the pres-
ence of thermal effect can then be written as

PT (k) = AT (k0)

(
k

k0

)nT
coth

[
k

2T

]
. (A.7)

This can be used to compute the BB-mode correlation angu-
lar power spectrum of CMB in the thermal state.
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