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Abstract According to the braneworld idea, ordinary mat-
ter is confined on a three-dimensional space (brane) that
is embedded in a higher-dimensional space-time where
gravity propagates. In this work, after reviewing the lim-
its coming from general relativity, finiteness of pressure
and causality on the brane, we derive observational con-
straints on the braneworld parameters from the existence of
stable compact stars. The analysis is carried out by solv-
ing numerically the brane-modified Tolman–Oppenheimer–
Volkoff equations, using different representative equations
of state to describe matter in the star interior. The cases of
normal dense matter, pure quark matter and hybrid matter
are considered.

1 Introduction

Braneworld ideas and, in particular, the Randall–Sundrum
(RS) models [1,2] have been extensively investigated dur-
ing the last decade, mainly motivated by the development
of string theory. A remarkable feature of the braneworld is
that it modifies the Einstein equations locally and non-locally,
leading to an effective energy-momentum tensor. These mod-
ifications have important consequences for cosmology [3],
since significant deviations from Einstein gravity could have
occurred at very high energies in the early universe. In partic-
ular, in brane cosmology, the expansion rate of the universe
H scales with the energy density ρ as H ∝ ρ, whereas this
dependence is H ∝ ρ1/2 in standard cosmology. This high-
energy behaviour, which is generic and not specific to RS
braneworld scenarios, may affect early universe phenomena,
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such as inflation [4] and the generation of the cosmological
baryon asymmetry [5–8].

In the Randall–Sundrum type-II brane model, the bulk
geometry is curved and the brane is endowed with a ten-
sion that is fine-tuned against the bulk cosmological con-
stant to ensure a flat Minkowski space-time in the brane.
The brane tension λ relates the Planck masses, MP and M5,
in four and five dimensions, respectively, via the equation
λ = 3M6

5/(4πM2
P ), where MP = 1.22 × 1019 GeV. Suc-

cessful big bang nucleosynthesis requires that the change in
the expansion rate due to the new terms in the Friedmann
equation be sufficiently small at scales ∼ O(MeV). A more
stringent bound can be obtained by requiring the theory to
reduce to Newtonian gravity on scales larger than 1 mm [4].

Modifications to Einstein gravity are also relevant in the
vicinity of massive compact objects as black holes and neu-
tron (quark, hybrid) stars. Compact stars are therefore a spe-
cial laboratory to look for possible modifications of gen-
eral relativity (GR) and to test extra dimensions [9]. From
the existence and stability of such astrophysical objects, one
expects additional constraints on the parameters of alterna-
tive theories of gravity [10–17]. In particular, it has been
shown that neutron stars (NS) put a lower bound on the brane
tension λ, which is stronger than the bound coming from
big bang nucleosynthesis, although weaker than the experi-
mental Newton-law limit [10]. Furthermore, the well-known
compactness limit GM/R ≤ 4/9 [18], obtained in GR by
requiring the finiteness of pressure at the centre of a uniform
star, is reduced by high-energy 5D gravity effects.

The macroscopic properties of compact stars also crucially
depend on the constituent matter in the star interior. More pre-
cisely, star masses and radii are determined by the equation
of state (EoS) of matter, i.e. by the relation p(ρ) between the
pressure and the energy density inside the star. In the absence
of a unique framework to describe the physics of compact
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stars, several approaches can be adopted for the determina-
tion of the EoS. For instance, it can be reconstructed from
mass–radius measurements [19–21]. Alternatively, one can
resort to theoretical calculations based on chiral effective
field theories and obtain stringent constraints for the NS
radii [22], when combined with mass measurements.

In our analysis, the non-local “dark” components [3,13]
arising from the bulk Weyl tensor are modelled via the sim-
ple linear proportionality relationP = w U between the dark
energy U and dark pressure P . Such a functional form fol-
lows, for instance, from the requirement that the vacuum
on the brane admits a one-parameter group of conformal
motions and the field equations are invariant with respect
to the Lie group of homologous transformations [23]. The
above relation has also been used in [11] to study the junc-
tion conditions between the interior and exterior of static
and spherically symmetric stars on the brane. Recently, it
has been employed in the study of the mass–radius relation
of some hadronic stars, hybrid stars (HS) and quark stars
(QS) in the braneworld [14]. In a different context, this type
of state-like relation is commonly assumed in cosmology to
describe the matter content of the universe at different epochs
(w = 1/3 for radiation domination, w = 0 for a matter dom-
inated universe, and w = −1 for a cosmological constant).

It is pertinent to stress the limitations of our approach.
We admittedly consider a linear relation between the dark
energy U and dark pressure P that appear in the effective 4D
equations. These quantities come from the 5D Weyl tensor,
which cannot be determined solely from the 4D equations.
The particular choice P = wU is therefore a restriction.
The alternative ways to proceed would be either to consider
an infinite number of functional dependences P(U) or, more
appropriately, to remove the ambiguity by solving the full 5D
Einstein equations. The latter has proven a very demanding
task so far.

The purpose of the present work is twofold. First we
study the limits coming from general relativity, finiteness
of pressure and causality, applied to compact objects in the
braneworld. In particular, assuming a star interior with a
vanishing dark pressure and a non-vanishing dark density,
and considering a pure causal EoS, we shall derive a brane-
modified causality limit that depends on the brane tension,
and which is more restrictive as λ decreases. Second, we
study compact stars in the RS type-II braneworld in order to
establish limits on the parameters of the model.

Our analysis is based on astrophysical observations and
we use representative EoS to describe matter in the star inte-
rior. In particular, for dense nuclear matter, we shall con-
sider the analytical representation given in [24] for the uni-
fied Brussels–Montreal EoS models, which are based on the
nuclear energy-density functional theory with generalized
Skyrme effective forces. For quark matter, we shall employ
the simple phenomenological parametrisation given in [25],

which includes QCD and strange-quark mass corrections. We
shall also consider a hybrid EoS to study hybrid stars, i.e.,
stars with a hadronic outer region surrounding a quark (or
mixed hadron–quark) inner core.

The study of the macroscopic stellar properties is car-
ried out through the solution of the Tolman–Oppenheimer–
Volkoff (TOV) equations, properly modified to include local
and non-local bulk effects. The local and non-local bulk cor-
rections to the energy-momentum tensor turn out to play a
crucial role in the stability of compact stars on the brane and
in establishing agreement with the observational constraints.
The present work extends previous studies (e.g. [14]) not
only by including in the analysis the compactness and causal-
ity limits in the braneworld, but also by considering the full
parameter space for the brane tension λ and the w coefficient
of the assumed dark EoS.

The paper is organised as follows. In Sect. 2 we present and
briefly discuss the TOV equations on the brane. The brane-
modified compactness limits are summarised in Sect. 3 and
a new causality limit is derived requiring the subluminality
of the EoS for matter inside the compact star. In Sect. 4, we
present the brane TOV solutions for several representative
EoS. The predicted mass–radius relations are then compared
with the observational constraints. Finally, our concluding
remarks are given in Sect. 5.

2 TOV equations on the brane

The field equations induced on the brane have the form [3]

Gμν = Rμν − 1

2
Rgμν = κ2Tμν + 6κ2

λ
Sμν − Eμν, (1)

where Gμν is the usual Einstein tensor, κ2 = 8πG, and Tμν

is the standard energy-momentum tensor.1 For a spherically
symmetric star, the metric in static coordinates is given by

ds2 = −e2�(r)dt2+e2�(r)dr2+r2 (dθ2+sin2 θ dφ2). (2)

The tensors Sμν and Eμν encode the local and non-local bulk
corrections, respectively. For a perfect fluid, the expressions
for Tμν and Sμν are given by [3]

Tμν = ρuμuν + p (gμν + uμuν) (3)

and

Sμν = 1

12
ρ2uμuν + 1

12
ρ(ρ + 2p)(gμν + uμuν), (4)

1 Hereafter, we use a system of natural units with c = 1.
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where uμ is the four-velocity of the fluid. The tensor Eμν

reduces to the form

Eμν = − 6

κ2λ

[
Uuμuν + Prμrν

+ 1

3
(U − P) (gμν + uμuν)

]
, (5)

for the case of a static spherical symmetry. Here, rμ is a
unit radial vector, U is the non-local energy density (dark
radiation) and P is the non-local pressure (dark pressure) on
the brane. From Eqs. (1) and (5), we see that standard 4D
general relativity is recovered in the limit λ → ∞.

Solving Einstein’s equations for a perfect fluid matter, the
following modified TOV equations are obtained on the brane:

dm

dr
= 4πr2ρeff , (6)

dp

dr
= −(ρ + p)

d�

dr
, (7)

d�

dr
= 2Gm + κ2r3

[
peff + (4P)/(κ4λ)

]
2r(r − 2Gm)

, (8)

dU
dr

= −1

2
κ4(ρ + p)

dρ

dr
− 2

dP
dr

− 6

r
P

− (2P + 4U)
d�

dr
, (9)

where

ρeff = ρloc + 6

κ4λ
U , peff = ploc + 2

κ4λ
U . (10)

In the above expressions,

ρloc = ρ + ρ2

2λ
, ploc = p + pρ

λ
+ ρ2

2λ
(11)

denote the effective local matter density and pressure, respec-
tively. In order to solve the system of differential equa-
tions (6)–(9), an equation of state p(ρ) for matter and a
relation P(U) are required. As explained before, we shall
assume the simplest state-like relation P = w U . With this
choice, Eqs. (6)–(9) become

dm

dr
= 4πr2ρeff , (12)

dp

dr
= −(ρ + p)

d�

dr
, (13)

d�

dr
= 2Gm + κ2r3

[
peff + (4w U)/(κ4λ)

]
2r(r − 2Gm)

, (14)

dU
dr

= − 2

1 + 2w

[
κ4

4
(ρ + p)

dρ

dr
+ 3w

r
U

+ (w + 2)U d�

dr

]
, (15)

where the last equation holds for w �= −1/2. The case w =
−1/2 should be treated separately. Solving for U in Eq. (9)
and using (8), we obtain for w = −1/2,

U(r) = κ4(ρ + p)2

6v2
s

2Gm + κ2r3 ploc

2(3Gm − r) + κ2r3 ploc
, (16)

where vs is the speed of sound,

v2
s = dp

dρ
. (17)

To integrate the TOV equations, we need appropriate initial
conditions at the centre of the star. As in general relativity, we
assume that the enclosed mass is zero at the centre,m(0) = 0,
and that p(0) = pc, where pc is the central pressure. At
the stellar surface, we require p(R) = 0, i.e. a vanishing
pressure, which corresponds to a star mass m(R) = M . As
for the dark component U , we shall assume that U(0) =
0. We remark that different initial conditions for the dark
energy density U can be chosen. They could be given either
at the centre of the star or at its surface. In the latter case, a
shooting method is required for the integration of the system
of equations [17]. The boundary condition chosen here, i.e.
a vanishing dark density at the centre, is the simplest choice.
Note also that if w = −1/2, the value of U at the centre is
obtained directly from Eq. (16).

The system (12)–(15) must be supplemented with the
Israel–Darmois junction conditions [26,27] at the stellar sur-
face. On the brane, this leads to the matching condition

[
peff + 4

κ4λ
P

]
surf

= 0, (18)

where [ f ]surf ≡ f (R+) − f (R−), and the superscripts +
and − refer to quantities defined outside and inside the star,
respectively. The requirement p(R) = 0 at the surface then
implies

κ4

4
ρ2(R)+ U−(R)+2P−(R) = U+(R) + 2P+(R). (19)

In the absence of any Weyl stress in the interior, we have
P− = U− = 0 and Eq. (19) implies that the exterior must
be non-Schwarzschild, provided that the energy density ρ

does not vanish at the surface. The same conclusion holds if
w = −1/2, since in this case U−(R)+2P−(R) = 0. On the
other hand, if ρ(R) �= 0 and the exterior is Schwarzschild
(P+ = U+ = 0), then necessarily U−(R) + 2P−(R) �= 0
in the star interior. Note that the condition P = U = 0 is
the condition for a perfect fluid without non-local or Weyl
corrections. While for the exterior this corresponds to the
Schwarzschild solution, this is not the case for the star inte-
rior, where local high-energy corrections are present. A con-
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sistent version of the Schwarzschild interior metric in the
context of the braneworld, including local and non-local bulk
terms, has been found in [28]. Regarding the matching condi-
tions, it has been shown that the exterior Schwarzschild solu-
tion is compatible with a stellar distribution made of regular
matter [29].

We also note that the TOV equations in the braneworld
admit asymptotically flat exterior solutions different from
the Schwarzschild solution. In the following, our analysis is
restricted to solutions in the star interior with generic dark
energy and dark pressure components obeying the EoS rela-
tion P = w U . Possible exterior solutions are not considered
in this work.

3 Compactness limits in the braneworld

In this section, we revisit the compactness limits on a uniform
star coming from general relativity and the requirement of the
finiteness of pressure. We shall also derive a brane-modified
causality limit for the existence of stable stars.

Assuming a uniform density and P = U = 0, the high-
energy brane corrections are local. In this case, an astro-
physical lower limit on λ, independent of the Newton-law
and cosmological limits, can be established for all uniform
stars [10]:

λ ≥ GMρ

R − 2GM
, (20)

with ρ = 3M/(4πR3). For a positive brane tension, this
implies R > 2GM , so that the Schwarzschild radius remains
a limiting radius. Below the astrophysical limit (20), stable
neutron stars cannot exist on the brane. This bound is much
stronger than the cosmological nucleosynthesis constraint,
but turns out to be weaker than the Newton-law lower bound.
From Eq. (20), we find the following upper bound for the
mass:

M(R) = 2R2

3

(√
πλ

(
3G−1 + 4πλR2

) − 2πλR

)
. (21)

As expected, in the limit λ → ∞, we recover the
Schwarzschild limit of GR:

M(R) = 1

2

R

G
. (22)

The astrophysical bound given by Eq. (21) is illustrated in
Fig. 1 for different values of λ (solid lines). As can be seen
from the figure, brane corrections to the compactness limit
would be significant for λ � 104 MeV/fm3, leading to a
less compact star in the braneworld, when compared to the
general relativity case.

R [km]
0 5 10 15 20 25

M
/M

0

0.5

1

1.5
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2.5

3

Schwarzschild limit
p < ∞ (GR)
λ = 102

λ = 103

λ = 104

Fig. 1 General relativity and pressure finiteness limits on the brane,
assuming a star interior with P = U = 0. The brane tension λ is given
in units of MeV/fm3

Another important limit comes from requiring the pressure
inside the compact object to be finite. Since the pressure
decreases with the radius r , this condition is equivalent to
the requirement of a positive and finite pressure at the centre
of the star. This gives the constraint [10]

GM

R
≤ 4

9

1 + 7ρ/4λ + 5ρ2/8λ2

(1 + ρ/λ)2(1 + ρ/2λ)
. (23)

Solving for M to find the maximum mass, we obtain

M(R) = 4
√

πR2

9G

[
−2

√
πGλR +

√
Gλ

(
5 + 4πGλR2

)

× cos

(
1

3
tan−1 x

)]
, (24)

where

x =
(
125G−1λ−1 + 264πR2 + 144π2GλR4

)1/2

2
√

π R
(
3 + 4πGλR2

) . (25)

In the limit λ → ∞, we recover the pressure finiteness limit
of GR,

M(R) = 4

9

R

G
. (26)

The curve defined by Eq. (24) is presented in Fig. 1 for dif-
ferent values of the brane tension (dot-dashed lines). As in
the case of the Schwarzschild limit, high-energy braneworld
corrections are significant for λ � 104 MeV/fm3. We also
note that for a given radius R the maximum mass allowed by
the bound (24) is lower than that coming from the limit in
Eq. (21).

A third relevant constraint on the maximum star mass
comes from causality, i.e. from requiring the subluminal-
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ity of the EoS,2 i.e. v2
s ≤ 1. The bound obtained from this

condition is controlled by the stiffness of the matter EoS, and
several limits have been derived in the literature [31–33] (see
also [19] for a review). In particular, a stringent causal limit
has been obtained in [33], based on the “minimum period”
EoS,

p =
{

0, ρ < ρs,

ρ − ρs, ρ ≥ ρs,
(27)

where ρs is the surface energy density. This EoS corresponds
to maximal stiffness at high densities and minimal stiffness
at low densities, thus supporting the largest mass with the
smallest radius. In general relativity, such EoS also implies
that the maximum value of the mass scales with the radius as
M ∝ R. The numerical integration of the TOV equations for
various initial values of the central pressure pc then leads to
the GR relation [33]

R � 2.82 GM. (28)

As we shall show next, this compactness limit is modified in
the braneworld.

First we notice that, from Eqs. (10) and (11), and using
the conservation equations for ρ and U , the effective speed
of sound [3] is obtained:

v2
s,eff ≡ dpeff

dρeff
= v2

s (1 + ρ/λ) + (ρ + p)/λ + v2
U

1 + ρ/λ + 3v2
U

, (29)

where

v2
U = 8

3κ4λ

U
ρ + p

. (30)

As expected, in the limit λ → ∞, we have vs,eff = vs . Note
also that v2

U is not necessarily a positive number, since the
Weyl energy density can be negative. Moreover, when the
radiation term vU dominates over the matter components,
one has v2

s,eff � 1/3. On the other hand, if v2
U � ρ/λ then

v2
s,eff � v2

s + p/ρ + 1.
Let us consider the case of a Schwarzschild exterior and a

star interior with P = 0 (i.e. w = 0) and U �= 0. In this case,
the boundary condition (19) yields a negative dark radiation
density at the star surface. We obtain U = −κ4ρ2

s /4, so that
v2
U = −2ρs/(3λ) at the surface. From Eq. (29) we then find

v2
s,eff = v2

s (1 + ρs/λ) + ρs/(3λ)

1 − ρs/λ
. (31)

2 For some caveats on the speed of sound and the requirement of causal-
ity see e.g. [30].

Requiring vs,eff ≤ 1, the constraint

λ >
(4/3 + v2

s ) ρs

1 − v2
s

, (32)

with v2
s < 1, is obtained.

Next we illustrate how the corrections due to brane effects
lead to modifications of the GR compactness limit given in
Eq. (28). Solving numerically the system of equations (12)–
(15) from the star centre up to the surface, we can determine
the maximum star mass. The results are presented in Fig. 2
(upper plot) for different values of the brane tension λ and
taking w = 0. Deviations from the causality limit in GR
(black solid line) occur for λ � 104 MeV/fm3, as can be
seen from the curves for maximal masses depicted in the
figure. In this case, for the star radii range of interest, the
maximum mass (minimal radius) can be well approximated
by a straight line, M � αR/G, with a slope α that increases
as the brane tension λ increases, reaching the GR limit (28)
when λ → ∞. The values of α−1 are presented in the second
column of Table 1 for different values of λ.

It has been recently conjectured that the speed of sound
should satisfy the bound vs ≤ 1/

√
3 in any medium [34]. It is

well known that this bound is saturated in conformal theories,
including non-interacting massless gases for which p = ρ/3.
The limit also applies to non-relativistic and weakly coupled
theories, and is respected by several strongly coupled theo-
ries. If such a bound actually holds for the speed of sound, it
would modify the causality limit for compact astrophysical
objects. In particular, it has been pointed out that the exis-
tence of neutron stars with M ∼ 2M
, combined with the
knowledge of the EoS of hadronic matter at low densities, is
in strong tension with this bound [34].

To illustrate the implications of the bound vs ≤ 1/
√

3 for
the stability of compact stars, let us consider the minimal
causal EoS,

p =
{

0, ρ < ρs
(ρ − ρs)/3, ρ ≥ ρs,

(33)

which saturates the bound.3 The numerical integration of the
TOV equations of GR implies the causality relation

R � 3.68GM, (34)

which is more restrictive than the bound (28). The inclu-
sion of brane corrections leads to modifications to this limit.
For the case of a star interior with P = 0 and U �= 0, the

3 Note that the simple EoS of the well-known MIT bag model (with
massless quarks and no strong coupling constant) has also this form. In
this case, the parameter ρs is associated to the bag constant, ρs ≡ 4B.
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Fig. 2 Causality constraint on the brane, obtained from the causal EoS
of Eq. (27) (top plot) and Eq. (33) (bottom plot). A star interior with
P = 0 (i.e. w = 0) and U �= 0 is assumed. The brane tension λ is given
in units of MeV/fm3

results are shown in Fig. 2 (lower plot). Once again, signif-
icant deviations from the causality limit of GR take place
for λ � 104 MeV/fm3. As before, the minimum radius is
well approximated by a straight line whose slope varies with
the brane tension. The results are given in the last column of
Table 1. We note that, for any given value of λ, the constraint
obtained from requiring vs ≤ 1/

√
3 is always stronger than

the one previously found under the assumption vs ≤ 1.

4 Brane TOV solutions and observational constraints

Due to the uncertainties in the description of the many-body
interactions and the nuclear symmetry energy, as well as our
lack of knowledge of the precise nature of strong interac-
tions, the EoS of dense matter above the nuclear saturation
density (ρ0 = 2.7 × 1014 g/cm3 � 150 MeV/fm3) is largely

Table 1 Causality limit in the braneworld for two causal EoS (with
vs ≤ 1 and vs ≤ 1/

√
3), assuming a vanishing dark radiation pressure

(P = 0) and a non-zero dark energy density U in the star interior. The
minimum radius is approximately described by a straight line with a
slope that varies with the brane tension

λ (MeV/fm3) vs ≤ 1 vs ≤ 1/
√

3
R/(GM) R/(GM)

10 3.77 4.96

102 3.45 4.64

103 3.06 4.13

104 2.83 3.73

∞ (GR) 2.82 3.68

unknown. Depending on the matter composition in the neu-
tron star interior, three main types of equations of state have
been commonly used, namely, EoS for normal dense matter,
pure quark matter or hybrid matter.

In the case of normal dense matter, neutron stars are sup-
ported against gravitational collapse by neutron degeneracy.
The EoS takes into account nucleon–nucleon interactions
and is characterised by a vanishing pressure at null densi-
ties. For hybrid stars, the EoS is usually softened at high
densities by adding hadronic or pure quark matter at the
inner core of the star, which leads to a phase transition at
a given critical density. Normal and hybrid EoS do not lead
to stringent bounds for the star radii, which in principle can
be large (∼100 km). On the other hand, pure quark stars are
conjectured to be mainly composed of strange-quark mat-
ter (SQM) in the ground state, with a vanishing pressure at
non-zero densities. For such stars the maximum radius is not
so large (∼10 km). In all three EoS cases, the mass–radius
relation predicts a maximum mass Mmax. While typically
Mmax � 2M
 for hybrid and strange-quark EoS, maximum
masses up to 2.5M
 can be reached with normal matter EoS.

From the astrophysical viewpoint, an important aspect in
the study of stellar configurations is their stability. A neces-
sary condition for the stability of a compact star is given by
the so-called static criterion

dM

dρc
> 0. (35)

In other words, a compact star is stable if its mass M increases
with growing central density ρc = ρ(pc). Although the sta-
bility analysis is usually quite involved, some simple crite-
ria can be formulated based on the mass–radius configura-
tions and their stability with respect to radial oscillations (see
e.g. [35] and references therein). At each extremum (critical
point) of the M(R) curve, it is assumed that only one radial
mode changes its stability from stable to unstable or, vice
versa, from unstable to stable. Furthermore, at any critical
point, a mode becomes unstable (stable) if and only if the
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curve bends counterclockwise (clockwise). Finally, a mode
with an even (odd) number of radial nodes is said to change
its stability if and only if dR/dρc > 0 (dR/dρc < 0) at the
critical point. Using the above criteria, the stability of a given
stellar configuration can easily be checked.

In order to confront different EoS with current mass and
radius measurements, we shall use the following observa-
tional constraints. For NS radii, we adopt the range

7.6 km ≤ R ≤ 13.9 km, (36)

where the lower bound follows from the measurement of the
NS radius using the thermal spectra from quiescent low-mass
X-ray binaries inside globular clusters [36] and the upper
limit is taken from the analysis of [22], based on the chiral
effective theory. For the star masses, we consider the limits

1.08 M
 ≤ M ≤ 2.05 M
, (37)

where the conservative lower bound comes from the expected
range for the gravitational NS birth masses [37,38] and the
maximum value is obtained from recent radio-timing obser-
vations of the pulsar PSR J0348+0432 [39].

In the braneworld, the macroscopic properties of stable
stellar configurations are controlled not only by the matter
EoS but also by high-energy brane effects, characterised in
our setup by the brane tension and the assumed dark EoS.
Next we analyse the implications of these effects on the
mass–radius relations of stable compact stars for the three
classes of EoS mentioned above. In our analysis, we shall
take into account the stability criteria as well as the physi-
cally plausible condition of causality vs,eff ≤ 1, based on the
effective speed of sound defined in Eq. (29).

4.1 Neutron stars

Let us first study the example of a neutron star. To describe
the crust and the core of the star, we shall use an analytical
representation of the Brussels–Montreal unified EoS for cold
nuclear matter, referred to as models BSk19, BSk20, and
BSk21 [40–42]. We consider the following parametrisation
of p(ρ) [24]:

ζ = a1 + a2ξ + a3ξ
3

1 + a4 ξ
{exp [a5 (ξ − a6)] + 1}−1

+ (a7 + a8 ξ) {exp [a9 (a6 − ξ)] + 1}−1

+ (a10 + a11 ξ) {exp [a12 (a13 − ξ)] + 1}−1

+ (a14 + a15 ξ) {exp [a16 (a17 − ξ)] + 1}−1

+ a18

1 + [a19 (ξ − a20)]2 + a21

1 + [a22 (ξ − a23)]2 , (38)

where ξ = log10(ρ/g.cm−3) and ζ = log10(p/dyn.cm−2).
The parameters ai (i = 1, . . . , 23) for the three models are

Table 2 Parameters ai used in Eq. (38) for the EoS BSk19, BSk20 and
BSk21 [24]

BSk19 BSk20 BSk21

a1 3.916 4.078 4.857

a2 7.701 7.587 6.981

a3 0.00858 0.00839 0.00706

a4 0.22114 0.21695 0.19351

a5 3.269 3.614 4.085

a6 11.964 11.942 12.065

a7 13.349 13.751 10.521

a8 1.3683 1.3373 1.5905

a9 3.254 3.606 4.104

a10 −12.953 −22.996 −28.726

a11 0.9237 1.6229 2.0845

a12 6.20 4.88 4.89

a13 14.383 14.274 14.302

a14 16.693 23.560 22.881

a15 −1.0514 −1.5564 −1.7690

a16 2.486 2.095 0.989

a17 15.362 15.294 15.313

a18 0.085 0.084 0.091

a19 6.23 6.36 4.68

a20 11.68 11.67 11.65

a21 −0.029 −0.042 −0.086

a22 20.1 14.8 10.0

a23 14.19 14.18 14.15

given in Table 2. In the following, we restrict our analysis to
the model BSk21.

We proceed to solve the system of brane TOV equations
for different initial values of the central pressure pc in order
to determine the mass–radius relation for such neutron stars.
We consider first the case of a dark EoS with w = 0. The
results are presented in Figs. 3 and 4, where the stable mass–
radius configurations, i.e. those that verify the stability cri-
teria and obey the causality limit vs,eff ≤ 1, are given. The
shaded grey areas correspond to the observational constraints
of Eqs. (36) and (37), where the dark grey band is the mass
range of the pulsar PSR J0348+0432 [39]. In the plots, the
small circles denote the maximum mass Mmax (in units of
the solar mass M
) obtained by imposing the stability crite-
rion alone, while the diamond markers indicate the maximum
star mass at which the EoS subluminality bound vs,eff ≤ 1
is violated. As λ increases, this bound approaches the usual
GR causality constraint vs ≤ 1, so that for larger values of
λ the stability condition is more restrictive than the causality
bound.

As can be seen from the top panel of Fig. 3, the maxi-
mum mass and the corresponding star radius decrease as λ

decreases, so that requiring agreement with observational
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Fig. 3 Top plot Mass–radius relation for the NS BSk21 EoS. The
curves are given for different values of the brane tensionλ (in MeV/fm3),
assuming a vanishing dark pressure in the star interior (w = 0). Bottom
plot The mass of the star versus the central energy density ρc (in units
of the nuclear saturation density ρ0)

constraints leads to a lower bound on the brane tension,
λ � 8 × 102 MeV/fm3. The star radii lie in the range 8–
13 km. Furthermore, from the bottom panel of Fig. 4, we
conclude that ρc � 9ρ0. We also notice that the mass–radius
curves bend clockwise for some negative values of w (see
e.g. the curves w = −0.6 and w = −0.51 in the top panel of
Fig. 4). In these cases, the maximum star mass is restricted
by the speed-of-sound condition vs,eff ≤ 1, since the stabil-
ity condition is violated at much higher values of M and R.
For comparison, we have also indicated with crosses (×) the
mass–radius configuration at which the GR causality condi-
tion vs ≤ 1 is violated in such cases.

In Fig. 5, the maximum star mass is given as a function of
the brane tension (top panel) and the dark EoS parameter w

(bottom panel). From the figure we conclude that the maxi-
mum star mass predicted for this type of EoS is compatible
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Fig. 4 Top plot Mass–radius relation for the NS BSk21 EoS. The
curves are given for different values of the dark EoS parameter w and
λ = 6 × 103 MeV/fm3. Bottom plot The mass of the star versus the
central energy density ρc (in units of ρ0)

with observations provided that λ � 6 × 102 MeV/fm3. For
w � −0.1, the value of Mmax remains practically constant
with the variation of w, depending only on the value of λ. A
similar behaviour is observed for w � −0.5. However, for
−0.3 < w < −0.1, the maximum mass is quite sensitive to
w, as it becomes evident in the bottom panel of Fig. 5.

4.2 Quark stars

It has been conjectured that strange-quark matter could be the
true ground state of strongly interacting matter at zero pres-
sure and temperature [43]. If this possibility actually exists, it
would open the window for the existence of compact stellar
objects totally composed of SQM [44]. To describe the EoS
inside such stars, we consider the simple phenomenologi-
cal parametrisation given in Ref. [25]. It consists of a power
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Fig. 5 Top plot Maximum neutron star mass as a function of the brane
tension for different values of the dark EoS parameter w. Bottom plot
Maximum star mass as a function of the dark EoS parameter w for
different values of the brane tension

series expansion in the quark chemical potential μ,

ρ = 9

4π2 a4μ
4 − 3

4π2 a2μ
2 + B,

p = 3

4π2 a4μ
4 − 3

4π2 a2μ
2 − B. (39)

Besides the bag parameter B, this parametrisation contains
two additional parameters, a4 and a2, which are indepen-
dent of μ and are related to the QCD and strange-quark
mass (and color superconductivity) corrections, respectively.
Note that for three-flavour quark matter consisting of free
massless quarks one has a4 = 1 and a2 = 0. In this case,
Eqs. (39) coincide with the well-known MIT bag model
EoS, i.e. ρ(p) = 3p + 4B [45]. In our numerical cal-
culations, however, we consider the more realistic values
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Fig. 6 Top plot Mass–radius relation for a quark star, using the phe-
nomenological EoS in Eq. (39). The curves are given for different values
of the brane tension λ (in MeV/fm3), assuming a vanishing dark pres-
sure in the star interior (w = 0). Bottom plot The mass of the quark star
versus the central energy density ρc (in units of ρ0)

a4 = 0.7 and a2 = (180 MeV)2 [25]. Furthermore, we take
B = 60 MeV/fm3.4

We follow the same procedure as before, i.e. we inte-
grate the brane-modified TOV equations for different initial
values of the central pressure pc and determine the mass–
radius relation for the corresponding quark star configura-
tion. Our results are presented in Figs. 6 and 7. As shown
in the top panel of Fig. 6, the maximum mass and the cor-
responding star radius decrease as λ decreases and agree-
ment with observational constraints imposes the lower bound
λ � 4×103 MeV/fm3, for w = 0. The allowed star radii are

4 Assuming massless quarks and neglecting the strong coupling con-
stant, the hypothesis that three-flavour quark matter has an energy per
baryon lower than that of ordinary nuclei holds for 59 MeV/fm3 � B �
92 MeV/fm3.
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Fig. 7 Top plot Mass–radius relation for a quark star, using the phe-
nomenological EoS in Eq. (39). The curves are given for different values
of the dark EoS parameter w and λ = 6 × 103 MeV/fm3. Bottom plot
The mass of the quark star versus the central energy density ρc (in units
of ρ0)

in the range 8–10 km. Moreover, from the bottom panel of
the figure, we conclude that the central energy density for the
maximum mass configurations is bounded by ρc � 11ρ0.

In Fig. 7, we present the mass–radius relation for the case
of λ = 6×103 MeV/fm3 and different values of w. We notice
that for certain negative values of w the mass–radius curves
bend clockwise, reaching the maximum mass at relatively
high central densities, ρc ∼ 40ρ0, bounded by the require-
ment of subluminality of the EoS. Although such density val-
ues are higher than the maximum central density of typical
bare strange stars, they are below the critical density required
for the formation of a stable charm-quark star. We recall that
a c-quark can be created via the weak reaction u+d → c+d.
Since the charm-quark mass is mc � 1.275 GeV [46], the
production of a quark c requires ρ ≥ ρcri t,c = 9m4

c/(4π2) �
1.4 × 1017 g/cm3 � 5.2 × 102ρ0. Based on the stability
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Fig. 8 Top plot Maximum quark star mass as a function of the brane
tension for different values of the dark EoS parameter w. Bottom plot
Maximum star mass as a function of the dark EoS parameter w for
different values of the brane tension

analysis, it has been found in the context of GR that charm-
quark stars are unstable against radial oscillations [47]. In
the mass–radius plane, such an instability is manifested in
the inwardly spiralling behaviour of the curves, and it is also
confirmed through the calculation of the star oscillation fre-
quencies [47].

Finally, in Fig. 8, the maximum star mass is presented as
a function of the brane tension (top panel) and the dark EoS
parameter w (bottom panel). We see that the maximum star
mass predicted for the quark model is compatible with obser-
vations provided that λ � 103 MeV/fm3. As in the case of
pure neutron stars, for w � −0.1, the value of Mmax remains
essentially constant with the variation of w, and depends only
on the value of λ. The same conclusion holds for w � −0.5.
In the range −0.3 < w < −0.1, however, the maximum
mass is quite sensitive to the value of w, as seen in the bot-
tom panel of Fig. 8.
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Fig. 9 Top plot Mass–radius relation for the hybrid EoS. The curves
are given for different values of the brane tension λ (in MeV/fm3),
assuming a vanishing dark pressure in the star interior (w = 0). Bottom
plot The mass of the star versus the central energy density ρc (in units
of the nuclear saturation density ρ0)

4.3 Hybrid stars

The maximum values of the central energy densities ρc,
obtained from EoS of purely hadronic matter, are typically
in the range 5ρ0–10ρ0. At such densities, one expects quark
degrees of freedom to play a relevant role inside compact
stars. It is then natural to consider the possibility of the for-
mation of hybrid compact objects, i.e. stars that contain a core
of quark matter with a crustal of nuclear matter. We describe
a hybrid star using the following combined EoS. For densi-
ties ρ � 4ρ0, the EoS is modelled by Eq. (38), while for the
core of the hybrid star, corresponding to densities ρ > 4ρ0,
we use the simple phenomenological parametrisation given
in Eq. (39).

We determine the mass–radius relation of the hybrid star
by the integration of the brane-modified TOV equations for

R [km]

0

0.5

1

1.5

2

2.5

3

M
/M

observational range
PSR J0348+0432
HS (GR)
λ = 6× 103, w = 0
w = 1
w = −1
w = −0.6
w = −0.5

0 2 4 6 8 10 12 14 16 18 20

5 10 15 20 25 30 35 40

ρc/ρ0

0

0.5

1

1.5

2

2.5

3

M
/M

HS (GR)
λ = 6× 103, w = 0
w = 1
w = −1
w = −0.6
w = −0.5

Fig. 10 Top plot Mass–radius relation for the hybrid EoS. The curves
are given for different values of the dark EoS parameter w and λ =
6 × 103 MeV/fm3. Bottom plot The mass of the star versus the central
energy density ρc (in units of ρ0)

different initial values of the central pressure pc. Our results
are presented in Figs. 9 and 10. From the top plot of Fig. 9, we
conclude that the maximum mass and the corresponding star
radius decrease as λ decreases. Furthermore, it is seen that
for λ � 8×102 MeV/fm3, and taking w = 0, the masses and
radii obtained are in agreement with the observational con-
straints. The maximum mass M ∼ 1.98M
 is obtained for
GR (i.e. in the limit λ → ∞), and this value is consistent with
the observational range of the pulsar PSR J0348+0432 [39].
This is to be compared with the maximum mass of 2.29M

attained with the NS BSk21 EoS (see Fig. 3). The central
energy densities are ρc � 6.5ρ0 (bottom panel of Fig. 9).
The allowed star radii are in the range 8–13 km, similar to
those obtained for pure neutron stars.

In Fig. 10, we present the mass–radius relation for the case
of λ = 6 × 103 MeV/fm3 and different values of the dark

123



337 Page 12 of 14 Eur. Phys. J. C (2016) 76 :337

103 104 105 106

λ [MeV/fm3]

0

0.5

1

1.5

2

2.5

3
M

m
a
x
/M

HS, w = 0
w = 5
w = −1
w = −0.7
w = −0.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
w

0

0.5

1

1.5

2

2.5

3

M
m

a
x
/M

HS, λ = 5× 102

λ = 103

λ = 5× 103

λ = 104

λ = 5× 104

Fig. 11 Top plot Maximum hybrid star mass as a function of the brane
tension for different values of the dark EoS parameter w. Bottom plot
Maximum star mass as a function of the dark EoS parameter w for
different values of the brane tension

EoS parameter w. As in the case of quark stars, we notice that
the clockwise bending of the mass–radius curves persists for
certain negative values of w, reaching the maximum mass at
relatively high central densities, ρc ∼ 45ρ0, as depicted in
the bottom plot of Fig. 10.

In Fig. 11, the maximum star mass is plotted as a func-
tion of λ (top panel) and w (bottom panel). We see that the
maximum star mass predicted for the hybrid star model is
compatible with observations provided λ � 103 MeV/fm3.
The behaviour of the maximum mass with w is similar to the
one obtained for pure neutron and quark stars. For w � −0.5
and w � −0.1, the value of Mmax remains essentially con-
stant with the variation of w, depending only on the value
of λ. Yet, the maximum mass is very sensible to the varia-
tion of w in the range −0.3 < w < −0.1 (as in the case of
pure neutron stars). This is clearly seen in the bottom plot of
Fig. 11.

5 Conclusions

In this paper we have studied compact stars in the RS type-
II braneworld. We have analysed the braneworld corrections
to the different constraints for star masses and radii, consid-
ering compactness, causality and finite pressure at the core.
We have solved the brane-modified TOV equations for dif-
ferent EoS that describe pure neutron stars, quarks stars and
hybrid stars. We have then confront our results with recent
astrophysical observations.

To study the compactness limits and the effects of the
brane corrections, we have solved the TOV equations assum-
ing a star interior withP = U = 0 and a uniform star density.
We have shown that the brane corrections are significant for
λ � 104 MeV/fm3 and lead to a less compact star, when
compared to the general relativity case. A λ-dependent limit
was derived from the requirement of finiteness of pressure in
the star core. The well-known compactness limits of general
relativity are recovered in the limit λ → ∞.

Significant deviations from the causality limit of general
relativity are obtained when λ � 104 MeV/fm3 in the case
of P = 0 and U �= 0, i.e. for a dark EoS with w = 0. In the
latter case, the minimum radius is well approximated by a
straight line whose slope varies with the brane tension. The
constraints were obtained considering two different condi-
tions for the speed of sound in dense matter, namely, vs ≤ 1
and vs ≤ 1/

√
3. We have also derived an effective speed of

sound that includes corrections due to local and non-local
braneworld effects. The causality condition vs,eff ≤ 1 was
then imposed on the different EoS in order to find stable
stellar configurations.

The mass–radius relations were computed by solving the
TOV equations for three different matter EoS, imposing the
stability and causality criteria. The study was first done for
w = 0 and different values of the brane tension. In all the
three EoS cases, the maximum mass and the corresponding
star radius decrease as λ decreases. Furthermore, the central
energy density ρc required to achieve the maximum mass
configuration is always less than that of GR: ρc � 9ρ0 (NS),
ρc � 11ρ0 (QS) and ρc � 6.5ρ0 (HS). The star radii lie in the
ranges 8–13 km for neutron and hybrid stars, and 8–10 km
for quark stars.

The mass–radius relation was studied as a function of w

for the three types of compact stars and a given a value of
the brane tension. As it turns out, the mass–radius curves
exhibit in general a standard behaviour, i.e. they bend coun-
terclockwise and the maximum mass is determined by the
stability criteria. However, we have found that, in all three
types of compact stars, the curves can bend clockwise for
certain negative values of w, reaching the maximum mass at
relatively high central densities for quark and hybrid stars:
ρc ∼ 40ρ0 (QS) and ρc ∼ 45ρ0 (HS). In such cases, the
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maximum allowed mass is determined by the sound speed
condition vs,eff ≤ 1.

Finally, the maximum star masses as functions of λ and w

were studied for the three families of stars. Requiring agree-
ment with observational constraints, a lower bound on the
brane tension, λ � 103 MeV/fm3, is obtained for all three
types of stars. The dependence of the maximum mass on w

are similar for the three EoS, namely, the maximum mass
remains practically constant for w � −0.5 and w � −0.1,
with the star mass being controlled by the brane tension
λ. A remarkable feature in all EoS cases is the fact that,
in the narrow range −0.3 < w < −0.1, the maximum
star mass strongly depends on the value of the w parame-
ter.
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