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Abstract We consider here a robust study of stellar dynam-
ics for white dwarf stars with polytropic matter in the weak-
field approximation using the Lane-Emden equation from
the brane-world scenario. We also derive an analytical solu-
tion to the nonlocal energy density and show the behavior and
sensitivity of these stars to the presence of extra dimensions.
Similarly, we analyze stability and compactness, in order to
show whether it is possible to agree with the conventional
wisdom of white dwarfs dynamics. Our results predict an
average value of the brane tension of (1) > 84.818 MeV*,
with a standard deviation o ~ 82.021 MeV*, which comes
from a sample of dwarf stars, being weaker than other astro-
physical observations but remaining higher than cosmologi-
cal results provided by nucleosynthesis among others.

1 Introduction

Stellar astrophysics has been a cornerstone to demonstration
of the predictive capabilities of the General Theory of Rela-
tivity (GR), describing high energy astrophysical phenomena
such as white dwarfs and neutron stars, with unprecedented
success [1-3]. One of the most important results in this vein is
the Lane—-Emden (LE) equation [4,5], which is a Newtonian
approach to GR, under the assumption that the dwarf star is
formed by polytropic matter; we remark that these types of
stars are excellent high energy laboratories with which it is
possible to test the phenomena described by GR and even to
corroborate or refute our most plausible extensions [6—12].
Moreover, brane-world theory (for a good review see
[13,14]) has been one of the most captivating extensions to
GR, due to its theoretical predictions and its ability to solve
fundamental phenomena such as the hierarchy problem,
among others [15—17]. It is worth mentioning that the brane-
world models have a very long tradition in the specialized
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literature and their properties have been extensively studied
under diverse circumstances, ranging from the cosmological
scenarios [18-25] to the study of astrophysical models [6].

Following the conventional wisdom, it is possible to
extend the classical astrophysics for polytropic stellar sys-
tems with the brane-worlds frame work. In this vein, many
authors have been given the task of showing the different stel-
lar behavior, studying stability, collapse [6—12] or the stellar
dynamics in general [6—12].

With a view of this scenario, this paper is devoted to a study
of the modifications of LE equation caused by the brane in
the cases of a star with polytropic matter, it being our main
goal to produce observational verifications in these systems.
It is important to remark that here we have one of the most
suitable signatures is the sensitivity of these kinds of stars to
the corrections provided by brane theory, producing a new
dynamics in energy density (or pressure) and in the effective
mass; as well as the implementation of a new range of exclu-
sion, where the star is dynamically unstable. From this new
range, it is possible to propose a bound to the brane tension in
order to avoid an unstable stellar configuration among other
pathologies.

Before starting, we would like to mention here some
experimental constraints on brane-world models, most of
them concerning the so-called brane tension A, which appears
explicitly as a free parameter in the corrections of the gravita-
tional equations mentioned above. As a first example we have
the measurements on the deviations from Newton’s law of
the gravitational interaction at small distances. It is reported
that no deviation is observed for distances / = 0.1 mm,
which then implies a lower limit on the brane tension in the
model Randall-Sundrum II (RSII): A > 1 Tev* [26,27]; it
is important to mention that these limits do not apply to the
two-branes case of the model Randall-Sundrum I (RSI) (see
[14] for details). Astrophysical studies related with gravita-
tional waves and stellar stability constrain the brane tension
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as A > 5 x 108 MeV* [6-12,28,29], whereas the existence
of black hole X-ray binaries suggests that / < 107> mm
[14,30,31]. Finally, from cosmological observations, the
requirement of successful nucleosynthesis provides the lower
limit A > 1 MeV#, which is amuch weaker limit as compared
to other experiments (other cosmological tests can be found
in [18-25,32,33]).

We divide this paper in the following sections: Sect. 2
is dedicated to showing the equations of motion for a stel-
lar structure, showing the modified Tolman—Oppenheimer—
Volkoff (TOV) equation and the respective conservation
equations; considering always the regularity of the functions
and maintaining a Schwarzschild stellar exterior [6—12]. In
Sect. 3 we derive the LE and mass equations, based on a set
of minimal assumptions which are in concordance with the
current studies of stellar dynamics. Also, an analytical form
of the nonlocal energy density is derived which essentially is
a function of the polytropic constant and the interior central
energy density of the star. In Sect. 4 the initial conditions
are imposed and we generate numerical solutions to the LE
and mass equations for the case with a polytropic index of
n = 3, related with white dwarf stars. Finally in Sect. 5 we
give some conclusions and make important remarks.

Henceforth we will use units in which i = ¢ = 1, unless
explicitly stated otherwise.

2 Equations of motion

Let us start by writing the equations of motion for stellar sta-
bility in a brane embedded in a five-dimensional bulk accord-
ing to the RSII model [16]. Following an appropriate compu-
tation (for details see [14,34]), it is possible to demonstrate
that the modified four-dimensional Einstein equations can be
written as

G;w +E;w + A(4)g;w = K(24)T;w + Ké)nuv +K(25)F;ws (1)

where k) and «(s) are, respectively, the four- and five-
dimensional coupling constants, which are related in the form
K(24) =81Gy = K?S))\/6, where A is defined as the brane
tension, and Gy is the Newton constant. For purposes of
simplicity, we will not consider bulk matter, which trans-
lates into F,, = 0, and discard the presence of the four-
dimensional cosmological constant, A4y = 0, as we do not
expect it to have an important effect at astrophysical scales
(for a recent discussion as regards the cosmological constant
see [35]). Additionally, we will neglect any nonlocal energy
flux, which is allowed by the static spherically symmetric
solutions we will study below [6—12].

The energy-momentum tensor, the quadratic energy-
momentum tensor, and the Wey] (traceless) contribution have
the explicit forms

@ Springer

Ty = puyuy + phyy, (2a)
1
I, = Ep [puuuv + (p + QP)h;w] ) (2b)
4
K h
v = —% [Z/{uuuv + Prury + =2 U — 73)} . (20
K@ 3

Here, p and p are, respectively, the pressure and energy
density of the stellar matter of interest, ¢ is the nonlocal
energy density, and P is the nonlocal anisotropic stress.
Also, uy is the four-velocity (which also satisfies the con-
dition g,,u*u” = —1), r, is an unit radial vector, and
huy = guv + uyuu, is the projection operator orthogonal
touy.

Spherical symmetry indicates that the metric can be writ-
ten

ds? = —B(r)di® + A(r)dr? + r?(d6? +sin’ 0dg?).  (3)
If we define the reduced Weyl functions V = 6U{/ K?4), and

N =4P/ Ké‘), then the equations of motion for a relativistic
star in the brane are

M = d7r? pegy, (4a)
GnN 4npeffr3+/\/l
o INIE Pelt? TV 4b
) 1—2GNM/r(p+'O)’ (4b)
2G N 4T pei 1> + M
"4 3N = — 2V +3
V' + 3N 3 1—2GNM/r(V+N)
9
N =3+ )0, (40)

where a prime indicates a derivative with respecttor, A(r) =
[1 —2GyM(r)/r]~", and the effective energy density and
pressure, respectively, are given by

0 1%
Peffzp(l‘i‘ﬁ)‘f‘xv (5a)
2
o Py P Y N
petf—p(l+k)+2)h+3)h+)\. (5b)

Even though we will not consider exterior solutions, we must
anyway take into account the information provided by the
Israel-Darmois (ID) matching condition, which for the case
of our study can be written as [6—12]

(3/2)p*(R)+ V™ (R)+3N"(R) = VT (R)+3NF(R), (6)

where the superscript —(+) denotes the interior (exterior)
values of the different quantities at the surface of the star,
and we also assumed that p(r > R) = 0.

A desirable property we want in our solutions is a
Schwarzschild exterior, which can easily be accomplished
under the boundary conditions V*(R) = 0 = N T(R), as
for them the simplest solution that arises from Eq. (4c) is the
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trivial one: V(r > R) = 0 = M (r > R). Thus, for the pur-
poses of this paper, we will refer hereafter to the restricted
ID matching condition given by

(3/2)p*(R) + V™ (R) + 3N (R) = 0. (7

Just for completeness, we note that the exterior solutions
of the metric functions are given by the well-known expres-
sions Br) = A~'(r) =1 —2GyM/r.

Finally, an important feature is that the only interior solu-
tion of the nonlocal anisotropic stress under the conditions
of a Schwarzschild exterior, and for a non-constant density
with p(R) = 0, which are the conditions we expect to have
in realistic stars, is the trivial one: N'(r) = 0 (see [6-12] for
details). This implies that Eq. (7) can be written

—(3/2)p*(R) = V™ (R), ®)

with the aim of maintaining a Schwarzschild exterior.

3 The modified Lane-Emden equation

In principle, we should just numerically evolve Eq. (4), but as
we have to deal with weak gravity we find it more appropriate
to evolve the weak-field limit of such system of equations,
which by the way provides important technical simplifica-
tions that let us to have more physical insight. In order to
get a star as real as possible and find the LE equation in the
case of brane stars, we start imposing the following minimal
conditions:

(a) The radius R is fixed, with p(r) = 0 for r > R [6-12].

(b) The pressure vanishes at the surface and in the exterior
of the star, and the p(r) = 0 forr > R [6-12].

(c) The star is described by the polytropic equation p =
KpU+M/" \where n is the polytropic index with n > 0.

(d) The pressureis negligible compared with the energy den-
sity p < p.

(e) We assume the relation 47Tr3peff <« M between the
effective variables.

(f) The gravitational potential in terms of the effective mass
is negligible, 2Gy M /r < 1.

Conditions (a) and (b) are conventional wisdom, being
physically reasonable assumptions for stellar configurations;
both conditions are not imposed in the dynamical equations,
however, we expect that they are satisfied in order to obtain a
real star. For instance, in the case of condition (c) we propose
a polytropic equation, which is the most similar component
to a real star, condition (d) is necessary for the Newtonian
approach, conditions (e) and (f) are similarly necessary for

the Newtonian approach but also important to make the com-
parison between the terms which generate the effective pres-
sure and effective mass.

To begin with, we observe that under conditions (c)—(f)
and from Eq. (4b) we have

r’p' = —GyMop, ©)

differentiating we find

d (r*dp

—— | =—-4nG . 10
i (p dr) 7T G N peft (10)
Considering the following change of variables [4,5]:

Kn+D\"? .
=—— 0)=m/ng, 11

r (4nGN> p(0) ¢ (11a)
p=pO8", p=Kp@O)"D"eH, (11b)

and substituting in Eq. (10), it is possible to write the LE
equation modified by the presence of branes,

1 d do _ -
240"+ 5O +V(6),) =0,

ZXTAMNT: (12)

where V(0),, = 2V(0),/p(0)2, 5 = p(0)/2x. In addition,
from Eq. (4a) and the renaming of variables (11), we obtain
the dimensionless mass equation:

dM

Yt pn o =cp2n ) —
dc 0" —pB" +V(O)n) =0, (13)
or in quadrature
_ &R &R _
M =/ 6"d¢ +;3/ 0> +V(0),)dt, (14)
0 0

where M = G3/* p(0)~C=m/20 M/ ((47) 3K (n1))32.Tt
is straightforward to see that the non-brane limit is recovered
when p — 0, in Eqgs. (12)-(14). The opposite case is the
brane domination terms limit, when p > 1, leading to the
following equations of motion:

14,29, 5107 +V(0),] =0 (152)
Zacta "’ S :
% — plO*" +V(6),] = 0. (15b)

Now, it is necessary to find the explicit functional form of
the nonlocal energy density from the conservation equation
(4c), and with the help of conditions (d)—(f) we have

2V + 4Gy MY = =3(p + p)rip, (16)

@ Springer
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differentiating and rearranging with the use of Egs. (11) we
obtain in general the following first order differential equa-
tion:

d]_/” 5 2n—1 Xn 2
—_ = =—6n|07" — 9" 17
do XnVn n |: + 4+ 1) > )

whose solution can be computed through the following inte-
gral:

_n — _6 ne 02}1—1 Xn 02}1
¥, = —6nexp(x >/[ T
X exp(—xn0)do + Cexp(x,6), (18)

where we have also introduced the dimensionless quantities,
sn = 4(n + 1)Kp(0)!/" for n # 0, C is an integration con-
stant and V, is a function of #, which in turn is a function of
r. The solution of the previous differential equation, without
loss of generality, can be written as

D(@), = 6n rQ2n+1, xné)}

2n 4(n+1)
+ Ciexp(xnt), (19)

exp(xn0) {F(Zn, xn0) +

forn > 1/2, I'(x, y) being the incomplete gamma function.
Also we have

['Q2(1 —n), xa0)
2(1—n)
Xn

V(0), = 6nexp(xn0) { I'@2n+1, x.0) }

A+ D
+ Coexp(xnt), (20)

for 0 < n < 1/2. In both cases, C; and C, are integration
constants associated with the initial condition. Notice that, in
principle, the modified LE equation does not accept solutions
for n = 0, due to the divergence of the nonlocal energy
density V,; this would imply an unstable and non-compact
stellar configuration to be a prediction of this model.

Particularly, low energy stars like dwarf stars can be mod-
eled in this context and now we are in a position to determine
how the brane effects provide the interior of a star with extra
dynamics. It is important to mention that white dwarfs can be
modeled by the polytropic index n = 3, and neutron stars by
polytropes with an index in the range n = 0.5-1. However,
in the case of neutron stars the weak-field approximation is
not sufficient to make a general description of these stars; it
is necessary to add the corrections provided by GR with the
full modified TOV equation.

4 Numerical solutions for dwarf stars

Let us start studying a dwarf star using the modified LE equa-
tion; we observe from Eq. (12) that the free parameters are

@ Springer

p and yj,, related with the central energy density of the star,
the brane tension, and the polytropic constant.

Our analysis shows that the central energy density and the
polytropic constant are redundant, because in particular they
depend on the characteristics of each star; then we fix by hand
the values of yx,, where are encoded by both parameters. In
this case, we board the region x3 = 10, due to the orders of
magnitude being greater, causing divergences which imply
non-compact configurations. This results in the dependence
K = 5p(0)~'/3/8. Therefore, we only explore the limit case,
when the minimal requirements (a)—(f) are fulfilled.

4.1 Physical initial conditions
Some physical initial conditions for the star are important; for

this reason we start showing the equations of kinetic energy
density and pressure of electrons of the dwarf star [4,5]:

e BT /kF[(k2 +mHV2 _ i kdk 1)
@2n)® Jo ¢ ‘ ’
8 kr k2
= k*dk, 22
P= 30y /0 &2+ m2)12 @2

where the momenta are between k and k + dk, kr being the
maximum momentum and m, being related with the electron
mass. From Eqgs. (21) and (22), we obtain for the dwarf stars
with index n = 3 the following conditions:

1 322\
1272 \myp ’

1 372 43
K=—" ,
1272 \myu

where u is the number of nucleons per electron and my is
the nucleon mass [4,5].

(23a)

e=3p, p=

(23b)

4.2 Results of the numerical solutions

To begin with, we show the numerical solutions implemented
for dwarf stars showing the behavior of energy density and
mass profiles in Fig. 1, top and bottom. We implement the
usual initial conditions: 6(0) = 1, d6(0)/d¢ = 0 and
M(O) = 0, for n = 3, as in the textbook case [4,5] and
1_)(0) = 0 considering an inward integration.

We start showing the non-brane case as a benchmark,
adding first only the quadratic part of the energy-momentum
tensor. Under this assumption, we predict a lower energy
density compared with the non-brane case (see Fig. 1, top).
Clearly, the stellar configuration is more massive for a simi-
lar radius to the previous case (see Fig. 1, bottom). Also, we
present the compactness plot (see Fig. 2), which shows the
different behaviors with different values of the brane terms. It
is obvious how we have a most compact configuration when
the presence of the quadratic terms predicted by branes plays
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an important role. Clearly, this is an incomplete analysis due
to lack of Weyl terms, however, in the following, we took on
the task of presenting the nonlocal terms.

When we rurn on the Weyl terms, these cause higher
energy densities and smaller masses in comparison with the
case of non-branes, while we increase the presence of extra
terms; the effects are accentuated, causing a non-compact
configuration, i.e., conditions (a) and (b) are not fulfilled.
In this sense, one may note that p = 0.016 is the higher
bound to a stable stellar configuration; we notice that when
we exceed this bound we have an unstable star, implying a
non-real stellar structure (see Fig. 1, top and bottom, and
Fig. 2).

Considering a stable star configuration which meets the
minimal condition (a)—(g), it is possible to find the brane
tension bound as A = 29.585 p(0), where p(0) corresponds
to the central energy density of the dwarf star. With the aim
of comparing with astrophysical data, in Table 1 we show
ten dwarf stars collected by the catalogs reported in Refs.
[36-38], mainly emphasizing the values of mass, radius,
and central density; then for the samples of Table 1 and
under the assumption that the observed white dwarfs must
belong to a family of equilibrium configuration without an
anomalous behavior, the average value of the brane tension
must be (A) > 84.818 MeV*, with a standard deviation
o ~ 82.021 MeV*, showing too much dispersion in the
set of the sample. This is attributed to the marked differences
between the dwarf stars. In addition, notice how our results
are weaker than other astrophysical data [6—12]; however, it
remains above the levels provided by cosmological bounds
like nucleosynthesis [18-25,32,33].

5 Conclusions and remarks

The presented analysis of a weak field maintaining the brane
terms, conducted by using the LE equation, shows the new
behavior of the density, the mass, and the compactness of
stars with polytropic matter. The research developed in this
paper shows how dwarf stars are sensitive to the Weyl terms,
causing a non-compact configuration under particular con-
ditions, implying a non-real star. It should be mentioned that
only the existence of quadratic terms in the energy momen-
tum tensor shows a less dense and more massive star com-
pared to the non-brane case. In general, when we turn on
also the Weyl contributions, the star’s model rather suggests
a behavior of higher energy density and lower mass, beyond
standard GR, which is discussed in 4.2. Significantly, there
is a physical limit to the parameters p and ¥, (see Figs.
1, 2) such that one meets the minimum requirements for a
stable star, which in this case must be A = 29.585 p(0)

14
— rowev, =0, x3=10
— Nowev.p=03
12 --- NowEYL. p=0.6
— wevt. p=0.0109
1.0 — wev. p=0.0139
et 5=0.017
s 0.8 — wev. p=0.0171
=
2
< 06
04
02
0.0
0 1 2 3 4 5
— nowevt, p=0, ¥3=10
5 — NoweyL. p=0.3
5 ~-- NoweyL, p=0.6
— weve, p=0.0109
5.0 [| — wevp=0.0130
. — wevL, p=0.0169
- wevL p=0.017
‘E 15 L wep=0017t | e

Fig. 1 Numerical solution of Egs. (12)—(14) for white dwarfs with
polytropic index n = 3. Here we show the energy density (fop) and
effective mass (bottom) of the white dwarf stars. Notice the sensitivity
to the term p, when we furn on the Weyl terms. When Weyl terms are
dominant, the stellar configuration is unstable, causing conditions (a)
and (b) not to be fulfilled. See the text for more details

— Nowev, p=0, ¥3=10
14+ ¢ N — NowevL p=0.3
- NowevL, p=0.6
12 — weyL, p=0.0109
— wev, p=0.0139
10 — weni. p=0.0169
- wevL p=0.017
— weyL, p=0.0171
s
6
4
2
0
0 1 2 3 4 5 6 7

Fig. 2 Numerical solution of Egs. (12)—(14) for white dwarfs with
polytropic index n = 3. Here we show the compactness M /¢ in the
presence of Weyl terms and without. The presence of both terms gener-
ates a less compactness stellar configuration with a maximum displaced
in comparison with the other cases. Notice how p = 0.0169 is the con-
striction for the plots. See the text for more details
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Table 1 From left to right the columns read: name of the star, mass in solar units M, radius in Rg, density as p(0) = 3M /47 R? in MeV*, and
brane tension in MeV* deduced from the constraint mentioned above; using a catalog of several white dwarfs reported in [36-38]

White Dwarf Mass (M) Radius (Re) p(0) (MeV*) A (MeV*)
Sirius B 1.034 0.0084 10.5993 313.588
Procyon B 0.604 0.0096 4.1478 122.715
40 Eri B 0.501 0.0136 1.21009 35.801
EG 50 0.50 0.0104 2.70063 79.900
GD 140 0.79 0.0085 7.81565 231.232
CD-38 10980 0.74 0.01245 2.3298 68.928
W485A 0.59 0.0150 1.06212 31.423
G154-B5B 0.46 0.0129 1.3006 38.4793
LP 347-6 0.56 0.0124 1.7827 52.7426
G181-B5B 0.54 0.0125 1.6781 49.6479
WD1550+130 0.535 0.0211 0.3456 10.2266
Stein 2051B 0.48 0.0111 2.13023 63.0229
G107-70AB 0.65 0.0127 1.926 56.9807
L.268-92 0.70 0.0149 1.28438 37.9984
G156-64 0.59 0.0110 2.69047 79.5976

See the text for more details

and K = 5/(8p(0)!/3). Taking astrophysical data of a
sample of white dwarfs, it is possible to establish an aver-
age bound of the brane tension as shown in the previous
section: (A) = 84.818 MeV*, with a standard deviation
o ~ 82.021 MeV* and the average of the polytropic con-
stant must be constrained as (K) =~ 0.508 MeV~—%/3 with a
standard deviation o ~ 0.142; MeV~%/3. It is important to
remark how the previous values are necessary to fulfill the
minimal requirements to obtain a stable star; i.e. a real stellar
configuration.

It is important to clarify that nonlocal terms caused by
Weyl terms are gravitons that escape to the fifth dimension,
causing stars not to have a compact configuration as they
begin to dominate. An excess of Weyl terms is the cause that
it does not satisfy the conditions (a) and (b), as we show.
In fact, the Weyl terms eventually generate a divergence for
a given radius. However, we can use this disadvantage to
quantify the minimum value required for the brane tension,
which is shown in our conclusions.

In addition, it is worth mentioning that modifications to
the LE equation prohibit the case n = 0 (at least for the case
where C; # 0 or C; # 0), for a stable stellar configuration
unlike that predicted by the non-brane limit. This is due to
the divergence in the x, term in the central energy density,
causing conditions (a) and (b) not to be fulfilled.

Despite the fact that we are treating a weak gravitational
limit and the brane effects are not accentuated strongly in
the dynamics, it is possible to extract relevant information as
regards the constraint of the brane tension, establishing an
exclusion limit of the theory, taking as a premise the stability
of the dwarf star. Strong evidence of branes can be found
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in the direct observation of the compactness of a dwarf star,
when comparing the predictions of GR and branes, bearing
in mind the technical challenges of this endeavor due to the
subtle brane effects.

Finally, we suggest that studies of neutron stars can give
us better constraints, and even evidence of the existence of
extra dynamics which comes from brane theories. In the case
of neutron stars, part of the machinery has been studied in
Refs. [6-12], still as the most general way to treat this type
of stars in a strong gravitational field. However, this is work
that will be presented elsewhere.
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