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Abstract We define a generalization of scalar fields with
non-canonical kinetic term which we call exotic k-essence
or, briefly, exotik. These fields are generated by the global
description of cosmological models with two interactive flu-
ids in the dark sector and under certain conditions they cor-
respond to usual k-essences. The formalism is applied to the
cases of constant potential and of inverse square potential
and also we develop the purely exotik version for the modi-
fied holographic Ricci type (MHR) of dark energy, where
the equations of state are not constant. With the kinetic
function F = 1 + mx and the inverse square potential
we recover, through the interaction term, the identification
between k-essences and quintessences of an exponential
potential, already known for Friedmann–Robertson–Walker
and Bianchi type I geometries. Worked examples are shown
that include the self-interacting MHR and also models with
crossing of the phantom divide line (PDL).

1 Introduction

The cosmological acceleration suggested by astrophysical
data [1,2] can be explained by very different models, among
which the simplest one is the �CDM [3,4]. A significant
number of them reject the possibility of interaction between
the modeler components of dark matter (DM) and dark
energy (DE), and perhaps for that reason, they fail to solve
the coincidence problem. On the other hand, there is no fun-
damental reason to assume an underlying symmetry which
would suppress the coupling. Whereas interactions between
DE and normal matter particles are heavily constrained by
observations (e.g. in the solar system and gravitational exper-
iments on Earth), this is not the case for DM particles. More-
over, the possibility of the DE–DM interaction is a phe-
nomenon consistent not only with recent Planck cosmolog-
ical data [5–11] but also it looks like theoretically possi-
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ble when coupled scalar fields are considered [12–20], with
many different types of interactions [21–33]. With respect
to DE, among the several candidates to play its role, such
as vacuum polarization, vector models, tachyons, Chaply-
gin gas, k-essences, Cardassian expansion, quasi-steady state
cosmology, and scalar-tensor models [34–60], the k-essence
cosmology has received a lot of attention [61–66]. It plays
both the roles of dark matter and of dark energy [67]. The k-
essence would explain the coincidence problem because the
transition between the tracker behavior during the radiation–
matter domination and a cosmological constant-like behav-
ior appears to arise for purely dynamical reasons without the
necessity of fine-tuning.

In this work we try to connect both issues, cosmolog-
ical systems of two interactive fluids on the one side and
unified models handled by a single field on the other side,
with the intention to use the results of both fields of study,
regarding them as different approaches to the same model.
The idea of describing a universe filled with two interac-
tive fluids with constant equations of state parameters ω1

and ω2, through a unified model driven by a single scalar
field, was first implemented in [68,69] and that produced
a new type of field, dubbed exotic quintessence. This field,
effected by an exponential potential, differed from the usual
quintessence because of the inclusion of the parameters ω1

and ω2 in the expressions of its evolution equation, its den-
sity of energy, and its pressure. For the values ω1 = 1 and
ω2 = −1, that is, when fluids are assumed to be stiff matter
and vacuum energy, the usual quintessence was recovered. A
special case of this field, when cold dark matter ω1 = 0 and
vacuum energy ω2 = −1 are considered, was used by Liddle
et al. in [70]. In this paper, we implemented the same idea
through a new scalar field φ with non-canonical kinetic term,
coming from a Lagrangian of the type L = −V (φ)F(x)
with x = −(φ̇)2 [66]. We nicknamed this new class of
non-canonical scalar ‘exotic k-essence’ or ‘exotik’, because
the new equations of motion that they fulfill are reduced to
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common k-essence under certain conditions. The connec-
tion with the work in [68,69] holds in the special case in
which the quintessence approach is reduced to a common
quintessence with exponential potential and the k-essence
approach is reduced to a common k-essence defined by the
kinetic function F(x) = 1+mx and is affected by an inverse
square potential. In that case both models are described by
the same scale factor and so they are geometrically equivalent
[71,72]. The mechanism of the generation of mathematical
expressions for the exotic field favors the role of one of the
two interacting fluids. However, either of the two fluids is also
able to perform the mathematical description. The defining
choice will depend on the particular interest of each model,
because the equations will include terms such as (1 + ω1)

−1

if the key field is the second or (1 + ω2)
−1 if the key field is

the first. In this paper we have in mind cosmological systems
in which the fluid 1 is never considered as the vacuum energy,
and therefore, the logical choice is to take the fluid 2 as a key
field generating factors (1 + ω1)

−1 that do not falsely make
the physical magnitudes in consideration diverge. The next
step is giving to the key fluid (from now on fluid 2, playing the
role of dark energy) a functional form that describes the spe-
cific description is intended to work. This stage is where any
ansatz, supported by specific physical models or described as
combinations of physical quantities, appears. For example,
the ansatz taking linear combinations of density of energy
and pressure is formally equivalent to the expression used for
the dark energy fluid in modified holographic Ricci (MHR)
type models (if ρ

(MHR)
2 = 2(Ḣ + 3AH2/2)/(A − B), then

ρ
(MHR)
2 = (1 + A)/(A − B)ρ + 1/(A − B)p) [73]. The

last step corresponds to the expression of the above pro-
cess in terms of known elements, that is, the expressions of
the energy density and the pressure of a common k-essence,
ρ = V (F − 2xFx ) and p = −V F . The various possible
exotik descriptions (each described by a particular ansatz)
are obtained by solving the equation of evolution for the
key fluid affected by an interaction Q. Conversely, we can
discover new types of interactions associated with known k-
essences solving the same equation of evolution written in
terms of the known F and V.

Our paper is organized as follows. In Sect. 2 we con-
sider the general interacting two-fluid cosmological model
and introduce the definition of exotic k-essence. In Sect. 3 we
gain deeper insight into the subject analyzing the representa-
tion with constant potential and with square inverse potential
and also giving the first integrals in both cases. In Sect. 4
we establish the equation which connects the exotik with
an arbitrary interaction. In Sects. 5 and 6 we show worked
examples for constant potential (including the modified holo-
graphic Ricci DE [74,75]), and for the square inverse poten-
tial (including the ratification of the equivalence between the
linear k-essence F = 1 + mx and the quintessence with
exponential potential), respectively.

2 Exotik

We consider a model consisting of two perfect fluids with
an energy-momentum tensor Tik = T (1)

ik + T (2)
ik . Here

T (n)
ik = (ρn + pn)uiuk + pngik , where ρn and pn are the

energy density and the equilibrium pressure of fluid n and
ui is the four-velocity. Assuming that the two fluids interact
in a spatially flat homogeneous and isotropic Friedmann–
Robertson–Walker (FRW) cosmological model, the Einstein
equations reduce to

3H2 = ρ1 + ρ2, (1)

ρ̇1 + ρ̇2 + 3H [(1 + ω1)ρ1 + (1 + ω2)ρ2] = 0, (2)

where H = ȧ/a and a stand for the Hubble expansion
rate and the scale factor, respectively, and where we con-
sider constant equations of state ωi = (pi/ρi ) for i = 1, 2.
The whole equation of conservation (2) shows the interac-
tion between both fluid components allowing the mutual
exchange of energy and momentum. Then we assume an
overall perfect fluid description with an effective equation of
state, ω = p/ρ = −2Ḣ/3H2 − 1, where p = p1 + p2 and
ρ = ρ1 + ρ2. The dot means a derivative with respect to the
cosmological time and from Eqs. (1) and (2) we get

− 2Ḣ = (1 + ω1)ρ1 + (1 + ω2)ρ2 = (1 + ω)ρ. (3)

As was done with an exotic canonical scalar field in [68,
69], we propose that the interactive system as a whole be
represented by an exotic field φ (labeled by the potential
function V (φ) and the kinetic function F(x), x = −φ̇2,
through the relationship

(1 + ω1)ρ1 + (1 + ω2)ρ2 = −2V (φ)xFx (x),

Fx = dF(x)

dx
. (4)

The global density of energy ρ and the global pressure
p = ωρ are

ρ = 1

(1 + ω1)

[
− 2V (φ)xFx (x) + �ρ2

]
, (5)

p = −2V (φ)xFx (x)
ω1

(1 + ω1)
− �

(1 + ω1)
ρ2, (6)

where ω1 �= −1, � = ω1 − ω2, and the field φ satisfies the
conservation equation

[Fx + xFxx ] φ̈ + 3

2

(
1 + ω1

)
HFx φ̇

− V ′

2V
xFx + �

4

ρ̇2

V φ̇
= 0 (7)

for Fxx = dFx/dx .
Equations (5)–(7) define the exotik field, a generalization

of the k-essence field.

123



Eur. Phys. J. C (2016) 76 :42 Page 3 of 8 42

So many classes of exotiks exist as functional forms we
adopted for ρ2. The ansatz

ρ2(x) = V [αF − 2xβFx ] , (8)

with constants α and β, can be thought of as the general
linear combination of the density of energy and pressure of
a common k-essence1

On the other hand, a similar expression arises naturally
in modified holographic Ricci (MHR) dark energy models
[73,76–79] if we think that the global model is driven by a
k-essence.2

This proposal allows us to understand the reason of the
name ‘exotik’ for this k field as follows. The application of
(8) to Eqs. (5)–(7) transforms them into

ρ = V

(1 + ω1)

(
α�F − 2x [1 + β�] Fx

)
, (9a)

p = V

(1 + ω1)

(
− α�F − 2x [ω1 − β�] Fx

)
, (9b)

and

[(2 + (2β − α)�) Fx + 2(1 + β�)xFxx ] φ̈

+ 3(1 + ω1)HFx φ̇ + V ′

2V
[α�F − 2(1 + β�)xFx ] = 0.

(9c)

In this context, our exotik representation of the interacting
system results in a habitual k-essence when α = (1+ω1)/�

and β = ω1/� for arbitrary pairs of fluids. This motivates
the name of exotik or exotic k-essence, for the general case
where the two independent parameters α and β cannot be
considered superfluous or included into either the function F
or the potential V. Note that these very particular identifica-
tions for α and β imply that ω1 and ω2 are constant and so
it is not a recommended option when we are using a MHR
fluid as DE.3 Because in these holographic models always it
is verified that ω2 = (A−ω1 − 1)ρ1/ρ2 + B − 1, a constant
ratio of dark densities of energy arises, a condition not neces-
sarily true for general interactions. In the general statement
and from Eq. (9), the global equation of state ω reads

ω = −αF − 2(β − ω1/�)xFx
αF − 2(β + 1/�)xFx

. (10)

1 ρk = V (F − 2x Fx ) and pk = −V F .
2 In the latter approach ρMHR

2 (x) = 2[Ḣ + 3AH2/2]/(A− B) and so
the constants are related by A = α/(α − β) and B = (α − 1)/(α − β).
Note that as ρMHR

2 (x) = [−1 − ωMHR + A]ρ/(A − B), if A > B, A
represents the maximum possible value of the overall equation of state
(ωMHR ≤ A − 1) and therefore A ≤ 2.
3 Instead of (5)–(7), the correct equations for the case of the MHR fluid
as DE are ρMHR = 1

A [−2V (φ)x Fx + (A − B)ρ2] ,

pMHR = −2V xFx
A−1
A − (A−B)

A ρ2,

[Fx + x Fxx ] φ̈ + 3
2 AHFx φ̇ − V ′

2V xFx + (A−B)
4

ρ̇2
V φ̇

= 0.

3 Potentials and asymptotic behaviors

The evolution equation (9c) allows us to find the functional
form of the exotik field once the potential and the kinetic
function are given. The choice of the potential is subject
to the type of comparison in which we are interested. For
example, the constant potential is needed to contrast with
purely k-essences and the inverse square potential is used to
collate with quintessences with exponential potentials. We
have:

– V = V0 In the constant case, Eq. (9c) has the first integral

φ̇2+(2β−α)�F1+�β
x = m0

a3(1+ω1)
(11)

with m0 being a constant of integration. In turn, this
expression leads to see a novel feature of the equation
of state (10) of these models,

ω = − (β� − ω1) + CaνFFσ−1
x

(β� + 1) + CaνFFσ−1
x

, (12)

with the definitions C = α�/2m2/(2−(α−2β)�)
0 , ν =

6(1+ω1)/(2−(α−2β)�) and σ = 2(1+β�)/(2−(α−
2β)�) for graphical economy. It is well known that the
usual k-essences whose kinetic functions have a root [67]
drive models with a dust behavior at the epoch around t0
where F(x(t0)) = 0. These unified dark energy models
are included here, independently of the pair of fluids in the
interaction, when β = ω1/�. Actually, even if the kinetic
functions have no roots, the same behavior is observed if
aνFFσ−1

x � 1 when ν > 0. But our purely exotiks let us
go further and include the stages of radiative dominance
at early times, properly choosing the representation with
β� = (3ω1 − 1)/4. For ν > 0 all these models show
an accelerated behavior (ω → −1) when a → ∞, pro-
viding the appropriate behavior for our actual expanding
universe.

– V = V0/φ
2

For the inverse square case V = V0/φ
2, Eq. (9c) can be

rewritten in terms of the global equation of state ω as

φ̇u
(

1 + ω

φ̇u

).

+
(

3H(1+ω)− 2φ̇

φ

)(
λ−1−ω

)
= 0,

(13)

where u = α�/(1 + β�) and λ = (1 + ω1)/(1 + β�).
This difficult equation has a first integral when we are
dealing with common k-essence and more generally, ask-
ing u = 1, which is equivalent to having a single free
parameter in (8). This first integral can be written in three
different ways:
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(1 + ω)

φ̇
φ = 2

3H

(
1 + m1

a3λH

)
, (14a)

φ̇Fx = φ

V0

(
H + m1

a3λ

)
, (14b)

−V0 Ḣ Fx =
(
H + m1

a3λ

)2

, (14c)

with m1 a positive constant of integration.
For the case u = 1 is λ = (1 + ω1)/(α�) and Eq. (9a)
gives the simple relation V F = (λ − 1 − ω)ρ, which
allows one to see that ω = λ − 1 whenever F vanishes.
Using (14b), the global EoS (10) is written as

ω = −
V0V FFxa6λ − 2(λ − 1)

(
m1 + a3λH

)2

V0V FFxa6λ + 2

(
m1 + a3λH

)2 . (15)

From (15) it follows that when F has a root, the global
EoS is ω = λ − 1 whatever the sign of λ be. For times
outside those cases, when F(x) is monotone and non-
zero, and considering that in the cases of interest λ > 0,
the asymptotic behaviors are: ω = λ − 1 at early times
(a → 0) and 1 + ω = 2/(3Fx ) at late times (a � 1).
The latter behavior generates a necessary condition to be
satisfied by possible kinetic functions when the phantom
regime is excluded. In that case, from (10) and λ > 0,
the only admissible kinetic functions are the monotonous
increasing F.

The intention behind the attitude of not fixing α and β is that
the representation may still be used in the modified holo-
graphic case where these constants shape the upper limit of
the value of the global barotropic index. Also, as we will
show in the next section, some of them do not allow for an
adequate representation, while others facilitate the resolution
of the problem.

4 The interactions

The above results are quite general and apply to any kinetic
function F(x), but the particular choice of the function will
be determined by the interaction Q amending the evolution of
both fluids. We define the interaction Q, through the partition
of the global conservation equation (2), as

ρ̇1 + 3H(1 + ω1)ρ1 = −3HQ, (16a)

ρ̇2 + 3H(1 + ω2)ρ2 = 3HQ. (16b)

Then Eqs. (8), (9c), and (16b) let us write the equation
that must be fulfilled by the kinetic function F(x) once the
interaction Q(V, F) and the potential V are fixed. We have

3H

[(
Q/V − (1 + ω2)(αF − 2xFxβ)

)
(2M − N�)

+ 2(1 + ω1)NxFx

]
= 2α

V̇

V

(
MF − xF2

x

)
, (17)

with M = Fx + xFxx and N = (α − 2β)Fx − 2xFxxβ.
The expression Q(V, F) means that the interaction, often
expressed as a function of ρ and its derivatives, should be
given using Eqs. (1), (2), (8), and (9).4

The extremely complex equation (17) is made simple in
several important cases as those where V = V0, constant.

5 Purely exotiks

Equation (17) for V = V0 is reduced to(
Q/V0 − (1 + ω2)(αF − 2xFxβ)

)
(2M − N�)

+ 2(1 + ω1)NxFx = 0, (18)

which is a highly nonlinear equation for F.
However, the change of variables ζ = ∫

ρx/(2xFxV0)dx
and ρ(x) = V0

(
α�F − 2x [1 + β�] Fx

)
/(1 + ω1) lets us

obtain the more simple differential equation for ρ,

ρ′′ + (2 + ω1 + ω2)ρ
′ + (1 + ω1)(1 + ω2)ρ = Q� (19)

with ρ′ = dρ/dζ and ρ′′ = d2ρ/dζ 2. This is the already
known source equation for the energy density described in
[80].

– Examples Q → F

– �CDM
The trivial case Q = 0, ω1 = 0 and ω2 = −1, which
corresponds to the �CDM model can be represented
by the kinetic function F(x) = F0 + F1(−x)

α
2β with

F0 and F1, two constants of integration. Using the first
integral (−x)1+β−α/2F1+β

x = m0/a3 we recover the
known expression ρ = ρ01/a3 + ρ02 with ρ01 =
2V0m0(−2β)β(F1α)−β and ρ02 = αV0F0. This case
shows that, in general, a purely k-essence will not
be a correct interpretation of that interaction because
it leads to a constant density of energy. Therefore, in
principle, we must consider the two parameters α and
β not fixed.

– CDM and MHRDE
This is a very interesting case because, although the
dark energy EoS ω2 is not a constant, the option
for the density of dark energy ρMHR

2 = (2Ḣ +
3AH2)/(A − B) = (A − γ )ρ/(A − B) relates

4 The following expressions are useful to express the interactions. We
have ρ = V

(1+ω1)

(
α�F − 2x (1 + β�) Fx

)
, ρ′ = ρ̇

3H = 2x FxV,

ρ1 = − (1+ω2)ρ+ρ′
�

, ρ2 = (1+ω1)ρ+ρ′
�

, ρ′′ = 2V
3H

(
(x Fx ). + x Fx

V̇
V

)
.
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ω1 and ω2 with A and B through the expression
ω1ρ1 + ω2ρ2 = Aρ1 + Bρ2. Taking ω1 = 0 we
define the modified interaction QM through

ρ̇2 + 3HBρ2 = 3HQM = 3H(Q + (1 − A)ρ1)

(20)

and so Eq. (18) changes to
(
QM − B

(AF − 2xFx (A − 1))

(A − B)

)

× (2M − N (A − B)) + 2xFxV0AN = 0. (21)

The expression of ρMHR
2 shows that there is perfect

agreement with the ansatz (8) for α = A/(A − B)

and β = (A − 1)/(A − B) and so the exotik func-
tion is a common k-essence. We apply this to the null
interaction Q = 0, which is equivalent to replac-
ing QM = Q + (1 − A)ρ1 in (21). The solution is
F(x) = (F0 + F1

√−x)B/(B−1) and lets us write the
densities of energy ρMHR = b1a−3 + b2a−3B and
ρMHR

2 = ((A − 1)/(A − B))b1a−3 + b2a−3B . So,
the purely exotik includes the modified holographic
Ricci DE model with cold dark matter, where it can
be seen that, even when Q is null, the dark energy
component is far from remaining independent of the
CDM. This is a consequence of the “holography” of
the model introduced into the expression of ρMHR

2
[76–79]. In other words, the MHR fluid is always a
self-interacting component.

– Q = τρ′/�
Halfway between choosing none or both parame-
ters, sometimes to set just one makes it easier to
reach the goal. Selecting which and how to fix it,
it is evident through the process of solving the equa-
tions. For example, in the case of an interaction pro-
portional to ρ′, Q = τρ′/� it is highly advisable
to set β = −1/�. Then we obtain the first inte-
gral (−x)−α�/2 = m0a−3(1+ω1) and the appropriate
exotik

F(x) = F1(−x)
−α�

2(1+ω1)
n+ + F2(−x)

−α�
2(1+ω1)

n−
, (22)

with

2n± = ω1 + ω2 + 2

− τ ±
√

(ω1+ω2+2−τ)2−4(1+ω1)(1+ω2).

(23)

The corresponding global density of energy

ρ = ρ01a
−3n+ + ρ02a

−3n−

and global EoS

ω = −1 + n+F1 + n−F2a3(n+−n−)

F1 + F2a3(n+−n−)

show that the global behavior is determined by the
relationship between the strength of the coupling τ

and the EoS of the considered fluids. As (n+ − n−)

is always positive, the asymptotic values are ω →
n+ − 1 at early times and ω → n− − 1 at late times.
The demeanor of the model is like a quintessence or
phantom according to whether τ < ω1 + ω2 + 2 or
τ > ω1 +ω2 +2, but there is no crossing of the phan-
tom divide line (PDL). The option τ = ω1 + ω2 + 2
is only admissible in the case of a cosmological con-
stant (ω2 = −1) and there, the effect of this interac-
tion is to freeze the overall density of energy. Could
this interaction be a mechanism to freeze the densi-
ties of elementary particles in the primordial times,
assuming the existence of a cosmological constant?

It is important to note that α and β determine the rep-
resentation and we must work within it. However, the
results of the corresponding models do not depend on
these parameters. This should be clear in the next section
where we go from F to Q, which is expressed through the
magnitudes given by the particular representation. The
effects are studied within the representation but they not
depend on it.

– Examples F → Q

– An interesting example in the representation of com-
mon k-essence corresponds to the Chimento function
FCh(x) = 1

V0(2n−1)

[
2nn0

√−x − (−x)n
]
, n �= 0

and n �= 1/2. Using (18) we obtain the associated
interaction QCh

QCh� = (1 + ω1)(1 + ω2)ρ + (ω1 + ω2 + 1)ρ′

+ 1

2n

ρ′2

ρ
. (24)

FCh has a root at xr = −(2nn0)
2/(2n−1) and an

extreme at xex = −n2/(2n−1)
0 . Equation (12), now

with σ = 1, shows that the cosmological model
driven by QCh has an era with dust-like behavior
around a3

root = m1/(1+ω1)
0 /nn0 and a cosmological

constant behavior at late times, regardless of the duet
of fluids considered. The corresponding total density
of energy is easily expressible from (9a) and (11) as

ρCh = V0

{
n0 + (2n − 1)m1/(1+ω1)

0

na3

} 2n
2n−1

.

Moreover, writing (12) as

ω = − v(v − 1)(1 + (2n − 1)v)
1

2n−1

2n2n
2(n−1)
2n−1

0 + v(v − 1)(1 + (2n − 1)v)
1

2n−1

,

with v = (a/aroot )3 it can be seen that these models
present dust-like behavior at early times. Also, they
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look as a �CDM model with no interaction at all for
n >> 1, in which case the dust-like behavior at the
root of F coincides with the dust-like behavior at the
epoch a << 1.

– Another interesting example arises, again in the com-
mon k-essence representation, by α = (1 + ω1)/�

and β = ω1/�, when we are really dealing with a
Chaplygin gas, through the kinetic function F(x) =√

1 + x . From (18) we can express the interaction as

Q� = ρ′′( (1 − ω1)ρ + ρ′

2ρ + ρ′
)

+ (1 + ω2)ρ
′

+ (1 + ω1)(1 + ω2)ρ, (25)

and the corresponding density of energy ρ is obtained
directly from (9a) and (11), as

ρ = V0

√
1 + 4m2/(1+ω1)

0

a6 .

6 Exotiks with inverse square potential

For the cases with an inverse square potential V = V0/φ
2

the expression (17) can be written as(
Q − (1 + ω2)ρ2

)
(2M − N�) + 2(1 + ω1)NxFxV

= −2αV
(
MF − xF2

x

)√
2(1 + ω)

3FxV0
. (26)

– F(x) = 1 + mx
As a first example we get the interaction term in the gen-
eral representation (with α and β free) for the simplest
kinetic function that supports a non-constant equation of
state, F(x) = 1 +mx , with m constant. In this case (26)
is written as

Q = (1 + ω2)ρ2 + ρ′
2. (27)

The usual k-essence version (α = (1 + ω1)/�, β =
ω1/�) of (27) allows us to show, through the interaction
term, that the models driven by k-essence with inverse
square potential and kinetic function F(x) = 1 + mx ,
and those dominated by a quintessence ϕ with expo-
nential potential U (ϕ) = U0exp((−√

2/mV0ϕ) share
the geometry. This result was obtained in FRW [71] and
also in Bianchi I cosmologies [72]. To test this feature,
we must consider that the exotic quintessence used in
[68,69] becomes a usual one when ω1 = 1 and ω2 = −1
and so it is the scalar representation of two fluids with
the interaction Q = −ρ2

√
2(1 + ω)/(3mV0). Replac-

ing the corresponding values of the equations of state
at the usual k-essence version of (27) we find the same

equivalence because the interaction terms in both mod-
els agree. Moreover, note that Eq. (27) vanishes identi-
cally by the source equation [80] so that it is not pos-
sible to solve the system using that method. But here,
using F = 1 + mx in (14c) we obtain the equation
mV0 Ḣ + H2 + 2m1Ha−3 + m2

1a
−6 = 0 whose solu-

tions for the factor of scale and the k-essence field have
already been given in [71].

– F(x) = √−x + x
The simplified Chimento function F(x) = √−x + x ,
formerly used for constant potential and now for inverse
square potential, shows the power of this interpretation
in usual k-essence representation to resolve the evolution
of systems with two arbitrary fluids controlled by a non-
linear interaction. From (26) this function leads to the
highly nonlinear interaction

Qν� = (ω2 − 1)(ω1 + 1)ρ + (ω2 − 1)ρ′

+ (2ρ + ρ′)(ω1 − ν) + (2ρ + ρ′)2

ρ
, (28)

with ν = (3V0)
−1/2 a positive constant. The general solu-

tion for the total density of energy in interactive systems
with this interaction is ρ = (ρ01a−3 + ρ02a−3ν)2. Since
this kinetic function transforms Eq. (9a) into 3H2 =
ρ = −xV = V0φ̇

2/φ2, the exotik field is φ = φ0a3ν ,
φ0 = φ(a = 1). The corresponding global EoS, ω =
−1 − ρ′/ρ, can be written as

ω = 1 − 1

νφ0(ρ01a3(ν−1) + ρ02)
, (29)

and this shows that the global system interpolates
between a stiff fluid and a fluid with ωasym = 1 −
1/νφ0ρ02 in either direction, depending on whether ν is
less than or greater than 1. The interesting case is ν < 1,
with stiff behavior at early times, which even admits the
crossing of the phantom divide line, at late times.

7 Conclusions

We have described cosmological systems composed by two
interactive fluids in the dark sector, with constant equations
of state ω1 and ω2, by means of unified models that are
controlled by non-canonical versions of a scalar field. The
description produces a generalization of k-essence field we
have called exotic k-essence or exotik. There are many kinds
of exotiks according to the expression proposed for the fluid
representing the dark energy ρ2. The ansatz used here is a lin-
ear combination of the density of energy and the pressure of
usual k-essences, parameterized by the constant values α and
β. Then the different representations or exotiks are labeled
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by the particular choice of the potential V and by those
parameters, noting that the exotik description is reduced to
a common k-essence when α = (1 + ω1)/(ω1 − ω2) and
β = ω1/(ω1 − ω2). The derivation of the equations for
the exotik field requires that the equations of state are con-
stant, which is not the case in the modified holographic Ricci
model. However, there is a simple relationship between the
two EoS and the constants A and B in the DE expression
ρMHR

2 and so the overall description can be applied according
to the process indicated at the footnotes in the end of bibliog-
raphy. The choice of the constant V = V0 simplifies the evo-
lution equation for the exotik field and its first integral is use-
ful to observe novel features compared to the usual k-essence.
In the latter case it is proven that the kinetic functions that
have a root F(x(t0)) = 0 have a dust behavior in the epoch
around t0 and the same happens when aνFFσ−1

x << 1,
that is, at early times, for α� > 0. The exotik includes
these cases but also allows us to include the time of radi-
ation domination. Choosing the appropriate representation
β = (3ω1 − 1)/4(ω1 − ω2) and 2α(ω1 − ω2) < 3(1 + ω1)

the model interpolates between the radiation-like era at early
times and ω → −1 at late times. The choice V = V0φ

−2 is
also an interesting representation because, even discarding
solutions with a stationary global EoS, there are first inte-
grals for the evolution equation of common k-essence and
more generally for representations with α� = 1 + β�, that
is, with only one free parameter. The ability to model the
cosmological behavior at early times still exists in this more
complicated case although here the realistic models should
be applied with strictly increasing kinetic functions if we
want to avoid the phantom regime. Having chosen the rep-
resentation, α and β, the particular kinetic function F or
the interaction Q are defined as the solution of Eq. (17) for
a given potential. For V = V0 we have shown the “self-
interaction” of the modified holographic Ricci dark energy
models and have found the exotik kinetic function in the
case Q = τρ′/� where we have found that the phantom
or non-phantom regime depends on the strength of the cou-
pling constant τ not allowing the crossing of the phantom
divide line. Also we have found the interaction associated
with the Chimento function and the one associated with a
purely Chaplying gas. Interestingly, the two complex inter-
actions have an easy resolution from the point of view of the
exotik representation. For V = V0φ

−2, we have found that
the observed equivalence (in FRW and in Bianchi I back-
grounds) between usual k-essence with F(x) = 1 + mx
and the usual quintessences with exponential potential is still
observed at the level of associated interactions. Finally, we
found the interaction Qν corresponding to a simplification
of the Chimento function, for which we express the exotik
field and the global EoS as functions of the factor of scale,
showing that for ν < 1 the models admit the crossing of the
PDL, at late times. These exotik representations allow one to

work with all the results of k-essence unified models giving
them an interactive justification inside the dark sector.
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