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Abstract We present an investigation of the dependence of
searches for boosted Higgs bosons using jet substructure on
the perturbative and non-perturbative parameters of the Her-
wig++ Monte Carlo event generator. Values are presented for
a new tune of the parameters of the event generator, together
with the an estimate of the uncertainties based on varying
the parameters around the best-fit values.

1 Introduction

Monte Carlo simulations are an essential tool in the anal-
ysis of modern collider experiments. These event genera-
tors contain a large number of both perturbative and non-
perturbative parameters which are tuned to a wide range of
experimental data. While significant effort has been devoted
to the tuning of the parameters to produce a best fit there
has been much less effort understanding the uncertainties in
these results. Historically a best fit result, or at best a small
number of tunes, are produced and used to predict observ-
ables making it difficult to assess the uncertainty on any pre-
diction. The “Perugia” tunes [1, 2] have addressed this by
producing a range of tunes by varying specific parameters in
the PYTHIA [3] event generator to produce an uncertainty.

Here we make use of the Professor Monte Carlo tuning
system [4] to give an assessment of the uncertainty by vary-
ing all the parameters simultaneously about the best-fit val-
ues by diagonalizing the error matrix. This then allows us to
systematically estimate the uncertainty on any Monte Carlo
prediction from the tuning of the event generator. We will
illustrate this by considering the uncertainty on jet substruc-
ture searches for the Higgs boson at the LHC.

As the LHC takes increasing amounts of data the discov-
ery of the Higgs boson is likely in the near future. Once we
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have discovered the Higgs boson, most likely in the dipho-
ton channel, it will be vital to explore other channels and
determine if the properties of the observed Higgs boson are
consistent with the Standard Model. For many years it was
believed that it would be difficult, if not impossible, to ob-
serve the dominant h0 → b b̄ decay mode of a light Higgs
boson. However, in recent years the use of jet substructure
[5–20] offers the possibility of observing this mode. Jet sub-
structure for h0 → b b̄ as a Higgs boson search channel,
was first studied in Ref. [5] building on previous work of
a heavy Higgs boson decaying to W± bosons [16], high-
energy WW scattering [21] and SUSY decay chains [22],
and subsequently reexamined in Refs. [8, 15]. Recent stud-
ies at the LHC [23–25] have also shown this approach to be
promising.

The study in Ref. [5] was carried out using the (FOR-
TRAN) HERWIG 6.510 event generator [26, 27] together
with the simulation of the underlying event using JIMMY
4.31 [28]. In order to allow the inclusion of new theoretical
developments and improvements in non-perturbative mod-
elling a new simulation based on the same physics philos-
ophy Herwig++, currently version 2.6 [29, 30], is now pre-
ferred for the simulation of hadron–hadron collisions.

Herwig++ includes both an improved theoretical descrip-
tion of perturbative QCD radiation, in particular for radia-
tion from heavy quarks, such as bottom, together with im-
proved non-perturbative modeling, especially of multiple
parton–parton scattering and the underlying event. In FOR-
TRAN HERWIG a crude implementation of the dead-cone
effect [31] meant that there was no radiation from heavy
quarks for evolution scales below the quark mass, rather
than a smooth suppression of soft collinear radiation. In
Herwig++ an improved choice of evolution variable [32]
allows evolution down to zero transverse momentum for
radiation from heavy particles and reproduces the correct
soft limit. There have also been significant developments
of the multiple-parton scattering model of the underlying
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event [33, 34], including colour reconnections [35] and tun-
ing to LHC data [36].

The background to jet substructure searches for the Higgs
boson comes from QCD jets which mimic the decay of a
boosted heavy particle. Although Herwig++ has performed
well in some early studies of jet substructure [25, 37, 38],
it is important that we understand the uncertainties in our
modelling of the background jets which lie at the tail of the
jet mass distribution.

In addition we improve the simulation of Higgs boson
decay by implementing the next-to-leading-order (NLO)
corrections to Higgs boson decay to heavy quarks in the
POWHEG [39, 40] formalism.

In the next section we present our approach for the tun-
ing of the parameters, which effect QCD radiation and
hadronization, in Herwig++ together with the results of our
new tune. We then recap the key features of the Butterworth,
Davison, Rubin and Salam (BDRS) jet substructure tech-
nique of Ref. [5]. This is followed by our results using both
the leading and next-to-leading-order matrix elements in
Herwig++ with implementation of the next-to-leading-order
Higgs boson decays and our estimate on the uncertainties.

2 Tuning Herwig++

Any jet substructure analysis is sensitive to changes in
the simulation of initial- and final-state radiation, and
hadronization. In particular the non-perturbative nature of
the phenomenological hadronization model means there are
a number of parameters which are tuned to experimental
results. Herwig++ uses an improved angular-ordered parton
shower algorithm [29, 32] to describe perturbative QCD ra-
diation together with a cluster hadronization model [29, 41].

The Herwig++ cluster model is based on the concept of
preconfinement [42]. At the end of the parton-shower evo-
lution all gluons are non-perturbatively split into quark–
antiquark pairs. All the partons can then be formed into
colour-singlet clusters which are assumed to be hadron pre-
cursors and decay according to phase space into the ob-
served hadrons. There is a small fraction of heavy clus-
ters for which this is not a reasonable approximation which
are therefore first fissioned into lighter clusters. The main
advantage of this model, when coupled with the angular-
ordered parton shower is that it has fewer parameters than
the string model as implemented in the PYTHIA [3] event
generator yet still gives a reasonable description of collider
observables [43].

To tune Herwig++, and investigate the dependency of ob-
servables on the shower and hadronization parameters, the
Professor Monte Carlo tuning system [4] was used. Profes-
sor uses the Rivet analysis framework [58] and a number of

simulated event samples, with different Monte Carlo param-
eters, to parameterise the dependence of each observable1

used in the tuning on the parameters of the Monte Carlo
event generator. A heuristic chi-squared function

χ ′2(p) =
∑

O
wO

∑

b∈O

(f b(p) − Rb)
2

�2
b

, (1)

is constructed where p is the set of parameters being tuned,
O are the observables used each with weight wO , b are the
different bins in each observable distribution with associated
experimental measurement Rb , error �b and Monte Carlo
prediction f b(p). Weighting of those observables for which
a good description of the experimental result is important is
used in most cases. The parameterisation of the event gen-
erator response, f (p), is then used to minimize the χ ′2 and
find the optimum parameter values.

There are ten main free parameters which affect the
shower and hadronization in Herwig++. These are shown in
Table 1 along with their default values and allowed ranges.

The gluon mass, GluonMass, is required to allow the
non-perturbative decay of gluons into qq̄ pairs and con-
trols the energy release in this process. PSplitLight,
ClPowLight and ClMaxLight control the mass distri-
butions of the clusters produced during the fission of heavy
clusters. ClSmrLight controls the smearing of the direc-
tion of hadrons containing a (anti)quark from the perturba-
tive evolution about the direction of the (anti)quark. Al-
phaMZ is strong coupling at the Z0 boson mass and con-
trols the amount of QCD radiation in the parton shower,
while Qmin controls the infrared behaviour of the strong
coupling. pTmin is the minimum allowed transverse mo-
mentum in the parton shower and controls the amount of
radiation and the scale at which the perturbative evolution
terminates. PwtDIquark and PwtSquark are the proba-
bilities of selecting a diquark–antidiquark or ss̄ quark pair
from the vacuum during cluster splitting, and affect the pro-
duction of baryons and strange hadrons respectively.

Previous experience of tuning Herwig++ has found that
Qmin, GluonMass, ClSmrLight and ClPowLight to
be flat, and so it was chosen to fix these at their default val-
ues [29].

To determine the allowed variation of these parameters
Professor was used to tune the variables in Table 1 to the
observables and weights found in Appendix A in Tables 5,
6, 7 and 8. The dependence of χ ′2 on the various parameters,
about the minimum χ ′2 value, is then diagonalized.

The variation of the parameters along the eigenvectors in
parameter space obtained corresponding to a certain change,
�χ ′2, in χ ′2 can then be used to predict the uncertainty in
the Monte Carlo predictions for specific observables.

1Normally this is either an observation such as a multiplicity or a bin
in a measured distribution.
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Table 1 The ten parameters to
which the jet substructure is
most sensitive with their default
values, the allowed range of
these values in Herwig++, the
range scanned over and the new
optimum value found from
minimizing χ ′2

Parameter Default value Allowed range Scanned range Optimum value

Qmin 0.935 ≥ 0 0.500–2.500 Fixed at default

GluonMass 0.95 0–1 0.75–1.00 Fixed at default

ClSmrLight 0.78 0–2 0.30–3.00 Fixed at default

ClPowLight 1.28 0–10 0.50–4.00 Fixed at default

pTmin 1.00 ≥ 0 0.50–1.50 0.88

AlphaMZ 0.12 ≥ 0 0.10–0.12 0.11

ClMaxLight 3.25 0–10 3.00–4.20 3.60

PSplitLight 1.20 0–10 1.00–2.00 0.90

PwtDIquark 0.49 0–10 0.10–0.50 0.33

PwtSquark 0.68 0–10 0.50–0.80 0.64

In theory, if the χ ′2 measure for the parameterised gen-
erator response is actually distributed as a true χ2, then a
change in the goodness of fit of one will correspond to a one
sigma deviation from the minima, i.e. the best tune. In prac-
tice, even the best tune does not fit the data ideally and nor is
the χ ′2 measure actually distributed according to a true χ2

distribution. This means that one cannot just use Professor to
vary the parameters about the minima to a given deviation in
the χ ′2 measure without using some subjective opinion on
the quality of the results.

We simulated one thousand event samples with different
randomly selected values of the parameters we were tuning.
Six hundred of these were used to interpolate the generator
response. All the event samples were used to select two hun-
dred samples randomly two hundred times in order to assess
the systematics of the interpolation and tuning procedure.
A cubic interpolation of the generator response was used as
this has been shown to give a good description of the Monte
Carlo behaviour in the region of best generator response [4].
The parameters were varied between values shown in Ta-
ble 1. The quality of the interpolation was checked by com-
paring the χ ′2/Ndf, where Ndf is the number of observable
bins used in the tune, in the allowed parameter range on a
parameter by parameter basis for the observables by com-
paring the interpolation response with actual generator re-
sponse at the simulated parameter values. Bad regions were
removed and the interpolation repeated leaving a volume in
the 5-dimensional parameter space where the interpolation
worked well.

Figure 1 shows the χ ′2/Ndf distributions for two hun-
dred tunes based on two hundred randomly selected event
samples points for the cubic interpolation. The spread of
these values gives an idea of the systematics of the tuning
process showing that we have obtained a good fit for our
parameterisation of the generator response.

The line indicates the tune which is based on a cubic in-
terpolation from six hundred event samples. It is this inter-
polation which was used to vary χ ′2 about the minimum to

assess the uncertainty on the measured distributions. Dur-
ing the tune it was discovered that PSplitLight was rel-
atively insensitive to the observables used in the tune. As
such, PSplitLight was fixed at the default value of 1.20
during the tune and subsequent χ ′2 variation.

Professor was used to vary χ ′2 about the minimum value,
as described above, determining the allowed range for the
parameters. As five parameters were eventually varied, there
are 10 new sample points—one for each of the parameters
and one “+” and one “−” along each eigenvector direction
in parameter space.

We follow the example set by the parton distribution
function (PDF) fitting groups in determining how much to
allow χ ′2 to vary. Our situation is different to the PDF fitters
in that we are using leading-order calculations with leading-
log accuracy in the parton shower, where they fit to next-to-
leading order calculations which gives better overall agree-
ment with the observables used. Generally, PDF groups fit
to fully inclusive variables, where as we have fitted to more
exclusive processes and by nature, these are more model de-
pendent, in particular hadronization.

In Refs. [45, 46] these issues are explored in terms of
PDFs and the allowed variation is related to a tolerance pa-
rameter T , where

�χ ′2
global ≤ T 2. (2)

A tolerance parameter of T ≈ 10 to 15 is generally chosen
for the PDF groups, where they are fitting to around 1300
data points. As our fit is likley to have a higher χ2 than their
fit due to the aforementioned reasons, and that we fit to a
greater number of parameters, we will have a higher toler-
ance parameter.

In our fit, we have 1665 degrees-of-freedom and we
examined various changes in χ ′2, whilst considering the
effects of the precision data from LEP. A variation of
�χ ′2/Ndf = 5, equivalent to T ≈ 90, seems, subjectively
to keep the LEP data within reasonable limits while a vari-
ation of �χ ′2/Ndf = 10, i.e. T ≈ 130 is too large. Any-
thing less T ≈ 40 had very little variation and was therefore
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Fig. 1 The χ ′2/Ndf distributions for the parameters that were varied from their default values whilst determining the error tune. The scatter of the
results gives a representation of the systematics of tuning procedure

Table 2 The five directions
corresponding to the error tune
for a �χ ′2/Ndf = 5 and the
values the parameters take in
each direction

Parameter Direction

1 2 3 4 5

+ − + − + − + − + −

pTmin 0.88 0.88 0.88 0.88 0.84 0.93 0.87 0.90 0.89 0.87

AlphaMZ 0.11 0.11 0.10 0.12 0.12 0.11 0.12 0.11 0.12 0.11

ClMaxLight 3.61 3.61 3.61 3.61 3.60 3.62 3.66 3.55 3.54 3.67

PwtDIquark 0.46 0.23 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

PwtSquark 0.64 0.64 0.64 0.64 0.64 0.64 0.62 0.67 0.51 0.78

deemed inappropriate. The values for both �χ ′2/Ndf = 5
and �χ ′2/Ndf = 10 are shown in are shown in Tables 2
and 3 respectively.

The Professor tune was then compared with the internal
Herwig++ tuning procedure [29] as not all analyses that are
in the internal Herwig++ tuning system are available in Rivet

and subsequently accessible to Professor. Looking at Fig. 4
it is found that PSplitLight at a value of 0.90 is favoured
and gives a significant reduction in the χ ′2/Ndf. It was there-
fore decided to use the values obtained from minimisation
procedure, but using the value of 0.90 for PSplitLight
to maintain a good overall description of the data. The new
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Table 3 The five directions
corresponding to the error tune
for a �χ ′2/Ndf = 10 and the
values the parameters take in
each direction

Parameter Direction

1 2 3 4 5

+ − + − + − + − + −

pTmin 0.88 0.88 0.88 0.88 0.82 0.95 0.86 0.90 0.89 0.87

AlphaMZ 0.11 0.11 0.10 0.12 0.12 0.10 0.12 0.10 0.12 0.11

ClMaxLight 3.61 3.61 3.61 3.61 3.59 3.63 3.68 3.52 3.52 3.70

PwtDIquark 0.51 0.19 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

PwtSquark 0.64 0.64 0.64 0.64 0.65 0.64 0.61 0.68 0.46 0.84

Fig. 2 Results from the DELPHI [44] analysis of out-of-plane pT with-respect-to the thrust axis and 1-thrust showing the new tune and the
envelopes corresponding to a change in �χ ′2/Ndf = 5

Fig. 3 Results from the DELPHI [44] analysis of out of plane pT with-respect-to the thrust axis and 1-thrust showing the new tune and the
envelopes corresponding to a change in �χ ′2/Ndf = 10

minima for the QCD parameters are summarized in the Ta-
ble 1. Examples of the new tune and the uncertainty band
are shown in Figs. 2 and 3 for the out-of-plane transverse
momentum and thrust measured by DELPHI [44].

These error tune values can now be used to predict the
uncertainty from the tuning of the shower parameters on any
observable. In the next section we will present an example
of using these tunes to estimate the uncertainty on the pre-
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Fig. 4 A scan of PSplitLight using the internal Herwig++ tuning
system with the other parameters fixed at their new tuned value. From
the total χ ′2/Ndf we see that a value of 0.90 for PSplitLight is
favoured at the new tuned parameters driven by the multiplicities

dictions for searches for the Higgs boson using the BDRS
jet substructure method.

3 Jet substructure boosted Higgs

The analysis of Ref. [5] uses a number of different channels
for the production of the Higgs boson decaying to bb̄ in as-
sociation with an electroweak gauge boson, i.e. the produc-
tion of h0Z0 and h0W±. Reference [5] uses the fact that the
Higgs boson predominantly decays to b b̄ in a jet substruc-
ture analysis to extract the signal of a boosted Higgs bo-
son above the various backgrounds. Their study found that
the Cambridge-Aachen algorithm [47, 48] with radius pa-
rameter R = 1.2 gave the best results when combined with
their jet substructure technique. For our study, we used the
Cambridge-Aachen algorithm as implemented in the Fast-
Jet package [49]. Three different event selection criteria are
used:

(a) a lepton pair with 80 GeV < ml+l− < 100 GeV and
pT > pmin

T to select events for Z0 → �+�−;
(b) missing transverse momentum /pT > pmin

T to select
events with Z0 → νν̄;

(c) missing transverse momentum /pT > 30 GeV and a lep-
ton with pT > 30 GeV consistent with the presence of a
W boson with pT > pmin

T to select events with W → �ν;

where pmin
T = 200 GeV.

In addition the presence of a hard jet with pTj
> pmin

T

with substructure is required. The substructure analysis of
Ref. [5] proceeds with the hard jet j with some radius Rj , a
mass mj and in a mass-drop algorithm:

1. the two subjets which were merged to form the jet, or-
dered such that the mass of the first jet mj1 is greater
than that of the second jet mj2 , are obtained;

2. if mj1 < μmj and

y = min(p2
Tj1

, p2
Tj2

)

m2
j

�R2
j1,j2

> ycut, (3)

where �R2
j1,j2

= (yj1 − yj2)
2 + (φj1 − φj2)

2, and pTj1,2 ,
ηj1,2 , φj1,2 are the transverse momenta, rapidities and az-
imuthal angles of jets 1 and 2, respectively, then j is in
the heavy particle region. If the jet is not in the heavy
particle region the procedure is repeated using the first
jet.

This algorithm requires that j1,2 are b-tagged and takes
μ = 0.67 and ycut = 0.09. A uniform b-tagging efficiency
of 60 % was used with a uniform mistagging probability
of 2 %. The heavy jet selected by this procedure is consid-
ered to be the Higgs boson candidate jet. Finally, there is
a filtering procedure on the Higgs boson candidate jet, j .
The jet, j , is resolved on a finer scale by setting a new ra-
dius Rfilt = min(0.3,Rbb̄/2), where from the previous mass-
drop condition, Rbb̄ = �R2

j1,j2
. The three hardest subjects

of this filtering process are taken to be the Higgs boson
decay products, where the two hardest are required to be
b-tagged.

All three analyses require that:

• after the reconstruction of the vector boson, there are
no additional leptons with pseudorapidity |η| < 2.5 and
pT > 30 GeV;

• other than the Higgs boson candidate, there are no ad-
ditional b-tagged jets with pseudorapidity |η| < 2.5 and
pT > 50 GeV.

In addition, due to top contamination, criterion (c) re-
quires that other than the Higgs boson candidate, there are
no additional jets with |η| < 3 and pT > 30 GeV. For all
events, the candidate Higgs boson jet should have pT >

pmin
T . The analyses were implemented using the Rivet sys-

tem [58].
The plots shown in Fig. 5 use the leading-order matrix

elements for the production and decay of Higgs boson but
the W , Z and top [50] have matrix element corrections for
their decays. The plots shown in Fig. 6 have leading-order
t t̄ production, leading-order vector boson plus jet produc-
tion (with the same matrix element corrections as the LO
matrix elements) but the NLO vector boson pair produc-
tion [51] and NLO vector and Higgs boson associated pro-
duction [52]. In addition we have implemented the correc-
tions to the decay h0 → b b̄ in the POWHEG scheme, as de-
scribed in Appendix B. The signal significances are outlined
in Table 4.
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Fig. 5 Results for the
reconstructed Higgs boson mass
distribution using leading-order
matrix elements. A SM Higgs
boson was assumed with a mass
of 115 GeV. In addition to the
full result the contribution from
top quark pair production (t t̄ ),
the production of W± (W + Jet)
and Z0 (Z + Jet) bosons in
association with a hard jet,
vector boson pair
production (VV) and the
production of a vector boson in
association with the Higgs
boson (V + Higgs), are shown

Fig. 6 Results for the
reconstructed Higgs boson mass
distribution using leading-order
matrix elements for top quark
pair production (t t̄ ), and the
production of W± (W + Jet)
and Z0 (Z + Jet) bosons in
association with a hard jet. The
next-to-leading-order
corrections are included for
vector boson pair
production (VV) and the
production of a vector boson in
association with the Higgs
boson (V + Higgs) as well as in
the decay of the Higgs boson,
h0 → b b̄. A SM Higgs boson
was assumed with a mass of
115 GeV

The uncertainties due to the Monte Carlo simulation are
shown as bands in Figs. 7 and 8. As there are correlations be-
tween the different processes the uncertainty is determined

for the sum of all processes. Whilst it would be possible to
show the envelope for the individual processes, this would
not offer any information on the envelope for the sum of the
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Fig. 7 Results for the
reconstructed Higgs boson mass
distribution using leading-order
matrix elements. A SM Higgs
boson was assumed with a mass
of 115 GeV. The envelope
shows the uncertainty from the
Monte Carlo simulation

Fig. 8 Results for the
reconstructed Higgs boson mass
distribution using leading-order
matrix elements for top quark
pair production, and the
production of W± and Z0

bosons in association with a
hard jet. The
next-to-leading-order
corrections are included for
vector boson pair production
and the production of a vector
boson in association with the
Higgs boson as well as in the
decay of the Higgs boson,
h0 → b b̄. A SM Higgs boson
was assumed with a mass of
115 GeV. The envelope shows
the uncertainty from the Monte
Carlo simulation
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Table 4 The significance of the different processes for the leading-
and next-to-leading-order matrix elements. The significance is calcu-
lated using all masses in the range 112–120 GeV

Significance

Process Order S√
B

Herwig++ default

S√
B

Herwig++ tune

Z0 → l+l− LO 1.17 1.24+0.36
−0.11

NLO 1.57 1.96+0.29
−0.30

Z0 → ν ν̄ LO 2.18 2.89+0.19
−0.60

NLO 2.95 4.04+0.25
−0.90

W → l ν LO 1.88 2.32+0.15
−0.27

NLO 2.63 3.20+0.29
−0.36

Total LO 2.98 3.71+0.29
−0.53

NLO 4.09 5.20+0.43
−0.81

processes which is the result of interest. In addition the un-
certainty on the significance is shown in Table 4.

4 Conclusions

Monte Carlo simulations are an essential tool in the analysis
of modern collider experiments. While significant effort has
been devoted to the tuning of the parameters to produce a
best fit there has been much less effort understanding the
uncertainties in these results. In this paper we have produced
a set of tunes which can be used to assess this uncertainty
using the Herwig++ Monte Carlo event generator.

We then used these tunes to assess the uncertainties on
the mass-drop analysis of Ref. [5] using Herwig++ with both
leading- and next-to-leading-order matrix elements includ-
ing a POWHEG simulation of the decay h0 → bb̄.

We find that while the jet substructure technique has sig-
nificant potential as a Higgs boson discovery channel, we
need to be confident of our tunes to investigate this with
Monte Carlo simulations.

The error tunes and procedure here can now be used in
other analyses where the uncertainty due to the Monte Carlo
simulation is important.
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Appendix A: Observables and weights used to tune
Herwig++

The weights and observables used in the Professor tuning
system are outlined in Tables 5, 6, 7 and 8.

Table 5 Observables used in the tuning and associated weights for
observables taken from [53]

Observable Weight

K∗±(892) spectrum 1.0

ρ spectrum 1.0

ω(782) spectrum 1.0

Ξ− spectrum 1.0

K∗0(892) spectrum 1.0

φ spectrum 1.0

Σ±(1385) spectrum 1.0

γ spectrum 1.0

K± spectrum 1.0

Observable Weight

Λ0 spectrum 1.0

π0 spectrum 1.0

p spectrum 1.0

η′ spectrum 1.0

Ξ0(1530) spectrum 1.0

π± spectrum 1.0

η spectrum 1.0

K0 spectrum 1.0

Table 6 Observables used in the tuning and associated weights for
observables taken from [44]

Observable Weight

Sphericity, S 1.0

Energy-energy correlation, EEC 1.0

Aplanarity, A 2.0

Mean out-of-plane p⊥ in GeV w.r.t. thrust axes vs. xp 1.0

Mean charged multiplicity 150.0

Mean p⊥ in GeV vs. xp 1.0

Planarity, P 1.0

Thrust major, M 1.0

Oblateness = M − m 1.0

Out-of-plane p⊥ in GeV w.r.t. sphericity axes 1.0

D parameter 1.0

1 − Thrust 1.0

Out-of-plane p⊥ in GeV w.r.t. thrust axes 1.0

Log of scaled momentum, log(1/xp) 1.0

In-plane p⊥ in GeV w.r.t. sphericity axes 1.0

In-plane p⊥ in GeV w.r.t. thrust axes 1.0

Thrust minor, m 2.0

C parameter 1.0

Scaled momentum, xp = |p|/|pbeam| 1.0
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Table 7 Multiplicities used in
the tuning and associated
weights for observables taken
from [59]

Observable Weight

Mean ρ0(770) multiplicity 10.0

Mean �++(1232) multiplicity 10.0

Mean K∗+(892) multiplicity 10.0

Mean Σ0 multiplicity 10.0

Mean Λ0
b multiplicity 10.0

Mean K+ multiplicity 10.0

Mean Ξ0(1530) multiplicity 10.0

Mean Λ(1520) multiplicity 10.0

Mean D∗+
s (2112) multiplicity 10.0

Mean Σ−(1385) multiplicity 10.0

Mean f1(1420) multiplicity 10.0

Mean φ(1020) multiplicity 10.0

Mean K∗0
2 (1430) multiplicity 10.0

Mean Ω− multiplicity 10.0

Mean Σ±(1385) multiplicity 10.0

Mean ψ(2S) multiplicity 10.0

Mean D∗+(2010) multiplicity 10.0

Mean B∗ multiplicity 10.0

Mean π0 multiplicity 10.0

Mean η multiplicity 10.0

Mean a+
0 (980) multiplicity 10.0

Mean D+
s1 multiplicity 10.0

Mean ρ+(770) multiplicity 10.0

Mean Ξ− multiplicity 10.0

Mean ω(782) multiplicity 10.0

Mean Υ (1S) multiplicity 10.0

Observable Weight

Mean χc1(3510) multiplicity 10.0

Mean D+ multiplicity 10.0

Mean Σ+ multiplicity 10.0

Mean f1(1285) multiplicity 10.0

Mean f2(1270) multiplicity 10.0

Mean J/ψ(1S) multiplicity 10.0

Mean B+
u multiplicity 10.0

Mean B∗∗ multiplicity 10.0

Mean Λ+
c multiplicity 10.0

Mean D0 multiplicity 10.0

Mean f ′
2(1525) multiplicity 10.0

Mean Σ± multiplicity 10.0

Mean D+
s2 multiplicity 10.0

Mean K∗0(892) multiplicity 10.0

Mean Σ− multiplicity 10.0

Mean π+ multiplicity 10.0

Mean f0(980) multiplicity 10.0

Mean Σ+(1385) multiplicity 10.0

Mean D+s multiplicity 10.0

Mean p multiplicity 10.0

Mean B0
s multiplicity 10.0

Mean K0 multiplicity 10.0

Mean B+,B0
d multiplicity 10.0

Mean Λ multiplicity 10.0

Mean η′(958) multiplicity 10.0

Table 8 Observables used in the tuning and associated weights for
observables taken from [60]

Observable Weight

b quark fragmentation function f (xweak
B ) 7.0

Mean of b quark fragmentation function f (xweak
B ) 3.0

Appendix B: Simulation of h0 → bb̄ using the
POWHEG method

The NLO differential decay rate in the POWHEG [39] ap-
proach is

dσ = B̄(Φm)dΦB

[
�NLO

R

(
pmin

T

)

+ �NLO
R

(
pmin

T

)R(Φm,Φ1)

B(Φm)
dΦ1

]
, (4)

where

B̄(Φm) = B(Φm) + V (Φm)

+
∫ (

R(Φm,Φ1) −
∑

i

Di(Φm,Φ1)

)
dΦ1. (5)

Here B(Φm) is the leading-order Born differential decay
rate, V (Φm) the regularized virtual contribution,
Di(Φm,Φ1) the counter terms regularizing the real emission
and R(Φm,Φ1) the real emission contribution. The leading-
order process has m outgoing partons, with associated phase
space Φm. The virtual and Born contributions depend only
on this m-body phase space. The real emission phase space,
Φm+1, is factorised into the m-body phase space and the
phase space, Φ1, describing the radiation of an extra par-
ton.

The Sudakov form factor in the POWHEG method is

�NLO
R = exp

[
−

∫
dΦ1

R(Φm,Φ1)

B(Φm)
θ
(
kT (Φm,Φ1) − pT

)]
,

(6)
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Fig. 9 The two real-emission processes contributing to the NLO decay rate

where kT (Φm,Φ1) is the transverse momentum of the emit-
ted parton.

In order to implement the decay of the Higgs boson in
the POWHEG scheme in Herwig++ we need to generate the
Born configuration according to Eq. (5) and the subsequent
hardest emission according to Eq. (6). The generation of the
truncated and vetoed parton showers from these configura-
tions then proceeds as described in Refs. [29, 52, 54, 55].

The virtual contribution for h0 → bb̄ was calculated in
Ref. [56]. The corresponding real emission contribution, see
Fig. 9, is

|MR|2 = |M2|2 CF8παs

M2
H (1 − 4μ2)

×
[

2 + 1 − xq

1 − xq̄

+ (8μ4 − 6μ2 + 1)

(1 − xq)(1 − xq̄)

− 2
(
1 − 4μ2) 1

1 − xq

− 2μ2(1 − 4μ2) 1

(1 − xq)2

+ (xq ↔ xq̄)

]
, (7)

where M2 is the leading-order matrix element, CF = 4
3 , mq

is the mass of the bottom quark, MH is the mass of the Higgs
boson, μ = mq

MH
and xi = 2Ei

MH
. We use the Catani–Seymour

subtraction scheme [57] where the counter terms are

Di = CF
8παS

s
|M2|2 1

1 − xj

×
{

2(1 − 2μ2)

2 − xi − xj

−
√

1 − 4μ2

x2
j − 4μ2

xj − 2μ2

1 − 2μ2

×
[

2 + xi − 1

xj − 2μ2
+ 2μ2

1 − xj

]}
, (8)

where for Di , i is the emitting parton and j is the spectator
parton. In practice, as the counter terms can become negative

in some regions, we use

R(Φm,Φ1) −
∑

i

Di(Φm,Φ1)

=
∑

i

[
R(Φm,Φ1)|Di(Φm,Φ1)|∑

j |Dj(Φm,Φ1)| − Di(Φm,Φ1)

]
. (9)

We have also regulated singularities in the virtual term
V (Φm) with the integrated counter terms from the Catani–
Seymour subtraction scheme allowing us to generate the
Born configuration according to B̄(Φm).

The hardest emission for each leg is generated according
to

�NLO
i R = exp

[
− M2

H

16π2(1 − 4μ2)
1
2

×
∫

dx1 dx2 dφ
R(Φm+1)

B(Φm)

|Di |∑
j |Dj |

× θ
(
kT (Φm,Φ1) − pT

)]
. (10)

However this form is not suitable for the generation of the
hardest emission. Instead we perform a Jacobian transfor-
mation and use the transverse momentum, pT , rapidity, y,
and azimuthal angle, φ, of the radiated gluon to define the
phase space Φ1.

The momenta of the Higgs boson decay products are

p1 = MH

2

(
x1;−x⊥ cos(φ),−x⊥ sin(φ),

±
√

x2
1 − x2⊥ − 4μ2

)
, (11a)

p2 = MH

2

(
x2;0,0,−

√
x2

2 − 4μ2
)
, (11b)

p3 = MH

2

(
x3;x⊥ cos(φ), x⊥ sin(φ),±

√
x2

3 − x2⊥
)
, (11c)

where partons 1,2,3 are the radiating bottom quark, spec-
tator antibottom quark and radiated gluon, respectively. The
energy fractions xi = 2Ei

MH
and x⊥ = 2pT

MH
. Using the conser-

vation of momentum in the z-direction and x1 + x2 + x3 = 2
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gives

x2⊥ = (2 − x1 − x2)
2 − (−2 + 2x1 + 2x2 − x2x1 − x2

2)2

x2
2 − 4μ2

.

(12)

Together with the definition, x3 = x⊥ coshy, we obtain the
Jacobian

∣∣∣∣
∂x1∂x2

∂pT ∂y

∣∣∣∣ = x⊥
MH

x⊥(x2
2 − 4μ2)

3
2

(x1x2 − 2μ2(x1 + x2) + x2
2 − x2)

, (13)

for the transformation of the radiation variables.
We can then generate the additional radiation according

to Eq. (10) using the veto algorithm [3]. To achieve this we
use an overestimate of the integrand in the Sudakov form
factor, f (pT ) = c

pT
, where c is a suitable constant. We first

generate an emission according to

�over
R (pT ) = exp

[
−

∫ pmax
T

pT

∫ ymax

ymin

dpT dy
c

pT

]
, (14)

using this overestimate, where ymax = cosh−1( MH

2pmin
T

), ymin =
− ymax, pmax

T is the maximum possible transverse momen-
tum of the gluon and pmin

T is a parameter set in the model,
taken to be 1 GeV.

The trial value of the transverse momentum is obtained
by solving R = �over

R , where R is a random number in
[0,1], i.e.

pT = pmax
T R

1
c(ymax−ymin) . (15)

Once the trial pT has been generated, y and φ are also gen-
erated uniformly between [ymin, ymax] and [0,2π], respec-
tively. The energy fractions of the partons are obtained using
the definition x3 = x⊥ coshy,

x1 = 1

2(x3 − 1) − x2⊥
2

{
3x3 − 2 + x2⊥

2
x3 − x2⊥ − x2

3

±
√(

x2
3 − x2⊥

)(
(x3 − 1)

(
4μ2 + x3 − 1

) − μ2x2⊥
)}

(16)

and x2 using energy conservation. As there are two solu-
tions for x1 both solutions must be kept and used to cal-
culate the weight for a particular trial pT . The signs of the
z-components of the momenta are fixed by the sign of the
rapidity and momentum conservation. Any momentum con-
figurations outside of the physically allowed phase space are
rejected and a new set of variables generated. The momen-
tum configuration is accepted with a probability given by the
ratio of the true integrand to the overestimated value. If the
configuration is rejected, the procedure continues with pmax

T

set to the rejected pT until the trial value of pT is accepted

or falls below the minimum allowed value, pmin
T . This pro-

cedure generates the radiation variables correctly as shown
in Ref. [3].

This procedure is used to generate a trial emission from
both the bottom and antibottom. The hardest potential emis-
sion is then selected which correctly generates events ac-
cording to Eq. (10) using this competition algorithm.
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