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Abstract We study the screening length Lmax of a mov-
ing quark–antiquark pair in a hot plasma, which lives in a
two sphere, S2, using the AdS/CFT correspondence in which
the corresponding background metric is the four-dimensional
Schwarzschild–AdS black hole. The geodesic of both ends of
the string at the boundary, interpreted as the quark–antiquark
pair, is given by a stationary motion in the equatorial plane
by which the separation length L of both ends of the string
is parallel to the angular velocity ω. The screening length
and total energy H of the quark–antiquark pair are com-
puted numerically and show that the plots are bounded from
below by some functions related to the momentum transfer
Pc of the drag force configuration. We compare the result
by computing the screening length in the reference frame of
the moving quark–antiquark pair, in which the background
metrics are “Boost-AdS” and Kerr–AdS black holes. Com-
paring both black holes, we argue that the mass parameters
MSch of the Schwarzschild–AdS black hole and MKerr of
the Kerr–AdS black hole are related at high temperature by
MKerr = MSch(1 − a2l2)3/2, where a is the angular momen-
tum parameter and l is the AdS curvature.

1 Introduction

One of the important signatures of the quark gluon plasma
(QGP) produced by heavy ion collision experiments at the
RHIC and the LHC is the suppression of J/ψ mesons, the
cc̄-pair, production. This phenomenon is understood qual-
itatively when the temperature of the QGP is larger than
the Hagedorn temperature such that the potential interac-
tion between quarks in the cc̄-pair would not be able to bind
them anymore and thus the J/ψ mesons will be dissociated
and screened inside the QGP [1]. The screening potential of
the cc̄-pair depends on a maximum value of the separation
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length L between the c and c̄ quarks, called the screening
length Lmax, the screening potential becoming flat beyond
this value.

In the string theory prescription of the AdS/CFT corre-
spondence, a heavy quark–antiquark pair, described by a
Wilson loop in the gauge theory, is defined as a fundamental
string which has both ends attached on the probe brane at
the boundary; different orientation of electric fields on both
ends of the string represents a source for the quark–antiquark
pair [2]. Evaluating the Wilson loop will tell us information
as regards the dependence of the screening potential on the
screening length. The procedure to evaluate the Wilson loop
goes by extremizing the corresponding gravity dual action,
as shown in [3,4] for the zero-temperature case and in [5,6]
for the finite-temperature case.

The screening length calculation of a moving quark–
antiquark pair in the four-dimensional N = 4 supersym-
metric Yang–Mills theory at finite-temperature was done
first in [7] using the AdS/CFT correspondence. It was then
generalized to arbitrary dimension of conformal and non-
conformal theories (CFT and non-CFT) in [8]. The calcula-
tions there were done in the reference frame of a moving
quark–antiquark pair, or explicitly by boosting the back-
ground metric in the direction of quark–antiquark pair’s
velocity. A different approach was done in [9] by going to
the reference frame of the plasma and furthermore they also
compared the total energy of the quak-antiquark pair in both
reference frames. It was found that the screening length is
scaled by some power of (1 − v2), where v is velocity of the
plasma, depending on the dimension of the black hole back-
grounds [8]. However, the computation of the scaling factor
is only valid in the ultra-relativistic limit and disagrees with
the numerical fitting found in [9]. For the case considered in
this article, both scaling factors may coincide in which the
background metric is the four-dimensional Schwarzschild–
AdS black hole.1

1 The screening length of a five dimensional Schwarzschild–AdS black
hole in Poincaré coordinates goes like Ls ∝ (1 − v2)1/4, as proposed

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3795-9&domain=pdf
mailto:ardian\protect _n\protect _a@um.edu.my
mailto:hasanak@um.edu.my
mailto:norhaslizay@um.edu.my


565 Page 2 of 13 Eur. Phys. J. C (2015) 75 :565

Most of the calculations about the screening length in
the literature were done for the case of non-rotating plasma.
However, in a more realistic scenario, the plasma might have
some angular momentum, such as the QGP produced by
heavy ion collisions at the RHIC and the LHC. It is natural to
think that the peripheral collisions of two nuclei would pro-
duce angular momentum to the plasma [10,11]. Although the
amount of angular momentum left to the resulting plasma is
small compared to the initial angular momentum of the two
nuclei, it is expected that the angular momentum fraction
increases when the collision energy is increased; as such, the
effect of the angular momentum would be significant. Phe-
nomenologically, the angular momentum might be present
in the form of rotation or shearing in the plasma [12,13].
Holographically, this can be realized by considering asymp-
totically AdS rotating black holes where the topology of the
event horizon is spherical or planar, respectively. In this arti-
cle, we consider a rotating plasma where the correspond-
ing black hole background is the four-dimensional Kerr–AdS
black hole, where the event horizon is a two sphere S2, which
is more advantageous for improving the chemical potential
calculation in the plasma compared to the case of a planar
event horizon [14].

The screening length calculation in the four-dimensional
Kerr–AdS black hole background is tedious because we
have written the metric in asymptotically “canonical” AdS
(AAdS) coordinates which is very complicated [15]. As we
have learned from the non-rotating case, we could also com-
pute the screening length by going to the reference frame
of the rotating black hole in which the background metric
would be the four-dimensional Schwarzschild–AdS black
hole. Therefore we will start from the screening length cal-
culation in the Schwarzschild–AdS black hole and then com-
pare it with the calculation in the Kerr–AdS black hole which
turns out to be a special case.

In more detail, we first compute the screening length of
a heavy quark–antiquark pair moving in the plasma whose
corresponding background metric is the four-dimensional
Schwarzschild–AdS black hole in the global coordinates. We
then compare it with the computation in the reference frame
of the moving quark–antiquark pair in which the plasma is
rotating; here, the background metric is a rotating black hole.
Unlike the Poincaré coordinate case, in general, the rotating
AdS black holes in global coordinates cannot be obtained
simply by a boosting procedure as described in [8]. However,
the solution for rotating black holes in the global coordinates,
by a different procedure, is available and it is known as a

Footnote 1 continued
in [7], while in [9] it was numerically fitted to Ls ∝ (1 − v2)1/3. In
the ultra-relativistic limit, it was computed in [8] that for CFT theories
Ls ∝ (1 − v2)1/d , where (d + 1) is the dimension of the black hole
background.

Kerr–AdS black hole. For the particular case in this article,
the boosting procedure is doable and we can obtain a black
hole solution called a “Boost-AdS” black hole. We will com-
pare the screening length computed using both black holes
by finding a relation between their parameters.

In the Poincaré coordinate case, we can compute the
screening length for arbitrary angle between the separation
length of the quark–antiquark pair and its velocity direction,
or the hot wind plasma direction [16]. Unfortunately, the sit-
uation is quite restricted in the global coordinate case. The
main reason is that the geodesic of heavy quarks at the bound-
ary must follow the great circle solutions. If we want to keep
the screening length to be fixed, then both the quark and the
antiquark must stay on the same great circle plane for sta-
tionary motion. Therefore the only possible angle is when
the separation length of a quark–antiquark pair is parallel
to its angular velocity direction. Furthermore, using SO(3)

symmetry, we can rotate an arbitrary great circle plane to
the equatorial plane. This turns out to be an advantage in the
screening length calculation of the Kerr–AdS black hole in
which the explicit expression of the background metric in the
AAdS coordinates is simple.

In Sect. 2, we will compute the separation length of the
heavy quark–antiquark pair in the reference frame of the
plasma. We plot numerically the separation length, for vari-
ous fixed angular velocities ω, as a function of the momentum
transfer of angular coordinate φ along the string πσ

φ ∝ P .
We also compute the total energy H as a function the sep-
aration length. In Sect. 3, we proceed with the computation
in the reference frame of the moving quark–antiquark pair.
Unlike in the Poincaré case, we have more than one back-
ground metrics which are the “Boost-AdS” black hole and
Kerr–AdS black hole. We will try to compare the results by
finding relations between the parameters of these black holes.
Therefore we can plot numerically the screening length as a
function of the angular velocity parameter for these black
holes using the aforementioned relations. Section 4 contains
a discussion and the conclusion of the results from the pre-
vious sections.

2 Screening length in plasma reference frame

In the reference fame of the plasma, the background metric is
static and is given by the four-dimensional Schwarzschild–
AdS black hole in the global coordinates as follows:

ds2 = −r2h(r)dt2 + 1

r2h(r)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
,

h(r) = l2 + 1

r2 − 2MSch

r3 , TSch = 1

4π

(
1

rH
+ 3rHl2

)
, (1)

where rH ≤ r < ∞, 0 ≤ θ ≤ π , and 0 ≤ φ < 2π .
Here, l is the curvature radius of the AdS space, MSch is pro-

123



Eur. Phys. J. C (2015) 75 :565 Page 3 of 13 565

portional to the mass of the Schwarzschild–AdS black hole,
TSch is the Hawking temperature, and rH is the event horizon
defined as the most positive real root of h(r); h(rH) = 0.
This Schwarzschild–AdS black hole has a minimum tem-
perature and two branches of high temperature region. We
choose the branch where rHl > 1/

√
3, or MSchl > 2

3
√

3
,

which is favored thermodynamically [17]. In this metric, the
corresponding plasma lives in the boundary of AdS4, that is,
the three-dimensional Einstein’s static universe, in which the
spatial manifold is a two sphere, S2.

The classical solution of a string is obtained by solving the
equation of motion derived from the Nambu–Goto action,

S = −T0

∫
dσ 2

√− det gαβ,

gαβ ≡ Gμν∂α Xμ∂β Xν, T0 = 1

2πα′ , (2)

where σα ≡ (τ, σ ) is the worldsheet coordinates, Xμ(σα)

are the spacetime coordinates where the string worldsheet
is embedded, and Gμν is the background metric (1). The
equation of motion derived from the action (2) is simply
written as

∇α Pα
μ = 0, Pα

μ ≡ πα
μ√−g

, πα
μ ≡ δS

δ∂α Xμ
, (3)

where πα
μ is the canonical worldsheet momentum, and g =

det gαβ .
In deriving the equation of motion, we choose a gauge

τ = t while the gauge for σ will be determined later for con-
venience. As explained in the Introduction, we will consider
solutions of (3) in the equatorial plane, θ = π/2. Taking the
ansatz

φ(σα) ≡ ωτ + φ(σ), (4)

r(σα) ≡ r(σ ), (5)

for a moving quark–antiquark pair with a constant angular
velocity, the equations of motion are given by

φ′2(r4h)′+r ′2
(

1− ω2

h

)′
−2r ′√−g

∂

∂σ

[
r ′(h − ω2)

h
√−g

]
= 0,

(6)

∂σ πσ
φ ≡ ∂

∂σ

[
r4h√−g

φ′
]

= 0, (7)

where πσ
φ is constant and ′ ≡ ∂

∂σ
. There are two ways to

define the gauge for σ . The first one is σ = φ, which is
actually nice in the quark–antiquark configuration, since r(φ)

will be a single valued function. However, the equation of
motion given by Eq. (6) is not simple. The other choice of
gauge is σ = r in which the equation of motion is given by

Eq. (7). This equation has an additional reflection symmetry
in φ. It implies that if φ(r) is a solution then −φ(r) is also
a solution. In the quark–antiquark configuration, in which
the string takes a ∪-shape in the r–φ plane, φ(r) is a double
valued function which consists of two solutions of (7) related
by the reflection symmetry. The advantage of using the gauge
σ = r is that Eq. (7) is rather simpler than Eq. (6). Another
advantage is that there is a conserved momentum transfer
πσ

φ , which can be useful in the discussion of the physical
properties of the string configuration. For those reasons, we
are going to use the gauge σ = r from now on.2

For the quark–antiquark pair, following [9], we take a solu-
tion of (7) which satisfies the conditions

φ(r → ∞) = L/2, φ′(rp) = ∞, (8)

where L is defined to be a dimensionless separation length of
the quark–antiquark pair, and rp is the turning point at which
the string reaches a minimum value in r , with rp > rH. Using
reflection symmetry, φ → −φ, we can get the other solution
and set the turning point in the middle such that φ(rp) = 0. In
the holographic prescription, the quark/antiquark is located
at the boundary φ(r → ∞) = ±L/2. This could be
the source of the divergence in the calculation of the total
energy of the string. However, we will see later that this
divergence can be removed by subtracting the energy of
each quark and antiquark of the corresponding string con-
figuration. In our definition above, the separation length
is finite although the string length, given by the formula

Lstring = 2
∫ ∞

rp
dr

√
1

r2h
+ r2φ′2, is infinite. Since the length

of a string is not of interest here, we do not have to put a
UV cut-off to regularize the results. We carefully choose the
values of the parameters so that the computed L is smaller
than the range of the coordinate φ since the coordinate φ is
periodic with length 2π , −π ≤ φ < π . Throughout this
paper, all numerical calculations will be expressed in terms
of dimensionless quantities in which the conversion is carried
out using the AdS curvature l, which has dimension [length],
e.g. the angular velocity ω, with dimension [length]−1, in
dimensionless form is written as ω/ l.

Solutions to Eq. (7) are given by

φ′ = ± P

r2h

√
h − ω2

r4h − P2 , (9)

where now ′ ≡ ∂
∂r , and P ∝ πσ

φ is a constant denoting
the amount of φ-component of momentum transfer on the
string. In our convention P > 0. The positive sign in (9)

2 The gauge can be taken before or after deriving the equations of
motion. In the latter case, there are still two equations, which can be
proved to be equivalent.
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(a) (b)

Fig. 1 Two different configurations determined by the sign in P . The
positive and negative sign solutions are shown by diagrams b and a,
respectively

corresponds to the configuration in which the energy flows
from the boundary down to r = rp, while the negative sign
is the opposite. At P = 0, it would correspond to a straight
string configuration. The quark–antiquark pair can be built
out of these two solutions, corresponding to configurations
(a) and (b) as shown in Fig. 1. The negative sign solution
may seem to be unphysical according to the drag force anal-
ysis [18,19]. However, this is not the case here, since the
energy transferred is not coming from the horizon, but from
the turning point rp > rh . It is necessary to take these two
configurations in order for the string of the quark–antiquark
pair to join up at r = rp such that the energy transfer,
dE
dt ≡ −πσ

t = −T0 Pω, is coming from one end of the string
at the boundary down to the turning point and then back again
to the other end of the string at the boundary. The energy flow
is in the opposite direction of the angular velocity as depicted
in Fig. 1. Unlike the perpendicular case in [9], the constant
force, d pφ

dt = πσ
φ = −T0 P , is non-vanishing by the non-zero

force at the turning point since the string is parallel to the
φ-axis. In more detail, the double valued function φ in our
setup is defined as follows:

dφ

dr
=

⎧⎪⎨
⎪⎩

P
r2h

√
h−ω2

r4h−P2 , 0 ≤ φ ≤ L/2,

− P
r2h

√
h−ω2

r4h−P2 , −L/2 ≤ φ ≤ 0,

(10)

where the radius r takes values rp ≤ r < ∞.
We solve Eq. (9) for a positive sign and the other solution

can be obtained by changing P → −P . At r = rp, we must
have r4

ph(rp) − P2 = 0, which implies that h(rp) > 0, or
rp > rH. There is a critical radius rc defined by h(rc) = ω2,
which also implies rc > rH for ω �= 0. Solving Eq. (9) in
terms of the integral formula, for rp > rc, the integral in
coordinate r is bounded from below at r = rp and thus the
string configuration for the quark–antiquark pair is formed.
On the other hand, if rp < rc the integral is also bounded
from below at r = rc. However, this solution requires P = 0
at r = rc, since the string there is perpendicular to the φ-axis,

Fig. 2 The picture on the left shows the string configuration of a single
quark at critical momentum transfer P2 = P2

c = ω2r4
c . Increasing the

P2 > ω2r4
c , the string configuration turns into the quark–antiquark pair

as shown by the picture on the right

which is a similar situation to the one considered in [9], and
so the physical configuration is given by a straight string.
We may ignore the configuration for rp = rc, in which the
condition (8) could not be satisfied, which is physically sim-
ilar to the drag force configuration; a moving curved string.
Therefore the string configuration for the quark–antiquark
pair requires rp > rc or equivalently P2 > P2

c = ω2r4
c .

Notice that rc equals rSch, derived in the drag force computa-
tion [20,21], in which the constant πσ

φ is proportional to Pc

because both are given by the same formula, (7), at rp = rc.
So, for some fixed angular velocity, the string configuration
is characterized by the amount of momentum transfer on the
string, with P2 ≥ P2

c . At P2 = P2
c , the string tends to repre-

sent a single quark and if we increase the momentum transfer
P then it is starting to form the quark–antiquark pair. Figure
2 shows the schematic pictures of the string configuration
describing the quark–antiquark pair and the drag force of a
single quark/antiquark.

From Eq. (9), we obtain an integral formula3:

∫ L/2

0
dφ = L

2
=

∫ ∞

rp

dr
P

r2h

√
h − ω2

r4h − P2 . (11)

The integral above is very difficult to solve analytically
and so we are going to plot the integral numerically. The
numerical solution of the separation length for various values
of ω/ l is shown in Fig. 3.

As one can see, we produce a similar profile of the sep-
aration length as in the Poincaré case of [9], except that the
momentum transfer is bounded from below at P2 = P2

c ≡
ω2r4

c , for each ω. The lower bound of the momentum transfer,
for each ω, is given by the dashed black line in Fig. 3. In this
line, the quark–antiquark pair cannot be formed and the string
becomes a moving quark or we have the drag force configura-
tion. Therefore our plots in general do not start from P = 0,
which is different from the plots produced in [9], but instead

3 Our calculation here is on the same footing as in [7,16,22] for the
parallel case, θ = 0.
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Fig. 3 Plots of the dimensionless separation length for various ω/ l =
0, 0.25, 0.45, 0.75, 0.95, with fixed MSchl = 10, as functions of Pl
where the corresponding colors are black, blue, green, brown, and red.
The dashed black line is the plot of lower bound momentum transfer,
for each ω, obtained by substituting ω2 = P2/r4

p into Eq. (11)

we start from P = Pc. Similar to the perpendicular case, the
separation length in Fig. 3 consists of two regions separated
by the maximum value Lmax, called the screening length, at
the point P = Pmax. For Pc < P < Pmax, the string config-
uration is metastable, while for P ≥ Pmax it is mostly stable
and it depends on the total energy of the quark–antiquark pair
which we will compute in the next section; a detailed discus-
sion as regards this subject can be found in [7,9]. We exclude
P = Pc as a string configuration of the quark–antiquark pair
since the string geometry is not bounded from below at rp

but instead it can be continued down to rH and thus the inte-
gral (11) should be taken from r = rH to r → ∞. However,
the separation length in this case will be infinite because the
integrand in (11) is divergent near r → rH. Therefore this
supports our statement above that the string configuration of
quark–antiquark pair, at this value of momentum transfer,
is dissociated into a single quark and antiquark due to an
infinitely large separation length.

2.1 Drag force

As we mentioned previously, the amount of momentum trans-
fer is proportional to the constant P and the total force is given
by

d pφ

dt
= −T0 P, P > 0. (12)

This denotes the amount of drag force experienced by the
quark–antiquark pair moving in the plasma. The amount of
momentum transfer P , with fixed separation length L , is
actually dependent on the angular velocity ω as we can infer
from Fig. 3. The negative sign shows that this drag force tends
to decrease the angular momentum, or the angular velocity,

of the quark–antiquark pair. To have the quark–antiquark pair
move with a constant angular velocity, and a fixed separation
length, we must supply an external force at the boundary that
would overcome the drag force. To see this, notice that the
equations of motion (6) and (7) are subject to the boundary
terms

δSbd =
∫

dτ [πσ
φ δφ + πσ

r δr ]
∣∣∣
Lstring/2

σ=−Lstring/2.
(13)

For an open string, where both ends are fixed at the bound-
ary r → ∞, we have δr(

±Lstring
2 ) = 0. In the case when

the separation length is fixed, δφ(
Lstring

2 ) = δφ(− Lstring
2 ), the

boundary term is non-zero, δSbd ∝ −T0 P , and so we need
to impose an external force at the boundary to overcome this
non-zero boundary term.

2.2 Total energy

In this section, we are going to compute the total energy H
of the quark–antiquark pair. The bounded energy density of
the quark–antiquark pair is given by [19]

Hbound = 2T0
r4h2 − P2ω2

r2h
√

(h − ω2)(r4h − P2)
, (14)

where r takes a value in rp ≤ r < ∞. The bounded energy
density is linearly divergent near the boundary. As usual,
we must subtract it with the unbounded energy density of
independent quark and antiquark moving with a constant ω,
see [20],

Hunbound = 2T0
r4h2 − P2

c ω2

r2h
√

(h − ω2)(r4h − P2
c )

. (15)

Here, r can takes value in rH ≤ r < ∞. This unbounded
energy will cancel the divergence of the bounded energy at
the boundary with a cost of producing a new divergence at
the horizon. As explained in [9], and also in [19], this source
of divergence is coming from the unbounded energy density
because there is an infinite amount of energy flowing down
from boundary, supplied by the external force, to the horizon
in order to keep the quark and antiquark move with a con-
stant ω. Furthermore, this also produces some ambiguity in
removing this divergence at the horizon.

Following [9], as a resolution, we need to compute the
bounded and unbounded energy density in the rest frame of
the quark–antiquark pair, or the moving string. This can be
done, using a symmetry of the three-dimensional Einstein’s
static universe, by the following boost transformation:

t → γ
(

t − ω

l2 φ
)
, φ → γ (φ − ωt), γ = (1 − ω2l−2)−1/2,

(16)
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Fig. 4 Plots of the total energy for the quark–antiquark pair as a func-
tion of L for various ω/ l, with fixed MSchl = 10. The metastable
configuration is the red line, while the stable configuration is the blue

line. The dashed black line is the saturated energy; all possible energies
inside the area bordered by this line and the vertical axis are forbidden
for the quark–antiquark pair

where γ is the boost factor. The resulting effective three-
dimensional “Boost-AdS” black hole is

ds2 = −r2h(r)γ 2
(

dt − ω

l2 dφ
)2 + 1

r2h(r)
dr2

+ r2γ 2 (dφ − ωdt)2 , (17)

where the Hawking temperature is now TBoost = TSch/γ .
One can check that by applying this transformation to the
four-dimensional Schwarzschild–AdS black hole, the result-
ing metric still satisfies the Einstein equation with a negative
cosmological constant; Rμν = −3l2gμν . A more general
boost factor should also depend on the θ -coordinate and it is
given by γ = (1 − ω2l−2 sin2 θ)−1/2. Unfortunately, apply-
ing the same boost transformation (17), using this general
boost factor for the four-dimensional Schwarzschild–AdS
black hole does not give us a solution to the Einstein’s equa-
tion with a negative cosmological constant.

Taking the same gauge as before, τ = t and σ = r , the
solutions for φ(r) are given by

φ′ = ± Pγ

r2h

√
h − ω2

r4h − P2 , (18)

where P is again the same φ-component of momentum trans-
fer defined in the previous static black hole case. One can
immediately see from (18) that the separation length is scaled
by γ compared to the static case and hence the screening
length as well; LBoost = γ LSch. In this “Boost-AdS” black
hole, the bounded energy density can be simply written as

Hbound = 2γ T0r2

√
h − ω2

r4h − P2 , P2 > ω2r4
c , (19)

and so the corresponding unbounded energy density is
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Hunbound = 2γ T0r2

√
h − ω2

r4h − P2
c

, P2
c = ω2r4

c . (20)

As we can see, the cancellation of the divergence, at the
boundary, in the bounded energy by the unbounded energy
is done without producing a divergence at the horizon. So,
we can define the total energy of the quark–antiquark pair as
follows:

H =
∫ ∞

rp

dr Hbound −
∫ ∞

rH

dr Hunbound. (21)

Rewriting the total energy as a function of L , instead of P ,
by using Eq. (11), we plot numerically the total energy for
various values of ω as shown in Fig. 4. In the plots (a)–(c) of
Fig. 4, the separation length of the stable configuration (blue
line) does not reach its screening length, at the tip of the
curve. This behavior of the total energy is similar to the one
in [9], except that here the separation length of the metastable
configuration (red line) for each value of ω is bounded from
below by the dashed black line. This dashed black line is
defined by the saturated energy with the following function:

Hsat = −
∫ rc

rH

dr Hunbound. (22)

3 Screening length in quark–antiquark reference frame

A different way of computing the screening length holo-
graphically is by going to the reference frame of the mov-
ing quark–antiquark pair. In this case, the plasma will be
seen as it is rotating with angular velocity proportional to
the angular velocity of the quark–antiquark pair. This cor-
responds to the configuration of a static string under the
background metric of a rotating black hole. In the Poincaré
coordinate case, this metric is obtained by boosting the static
metric as described in [23]. However, this procedure can-
not be done in the global coordinate case in general, as we
explained previously. Fortunately, the corresponding rotat-
ing black hole, known as the Kerr–AdS black hole, is avail-
able in [24,25]. The procedure to construct the rotating met-
ric from the static metric in the global coordinate case was
first done in [26] for the three-dimensional Schwarzschild–
AdS black hole, and one obtained the well-known BTZ
black hole, using the Newman–Janis procedure [27]. Unfor-
tunately, we have not found an application of this to the four-
dimensional Schwarzschild–AdS black hole in the literature
so far. A different procedure for constructing the rotating
metric in the global coordinate case for arbitrary dimensions
was given in [28]. As mentioned in the previous section,
the string is rotating in the equatorial plane of the four-
dimensional Schwarzschild–AdS black hole. Switching the

reference frame to the moving string, the string would still
stay in the equatorial plane of the rotating black hole. There-
fore the rotating black hole could also be the “Boost-AdS”
black hole. For this reason, we will consider the “Boost-AdS”
black hole and the Kerr–AdS black hole in the screening
length calculation and later we will compare their results.

3.1 Kerr–AdS black hole in Boyer–Linquist coordinates

There are many coordinate representations of the Kerr–AdS
black holes [28]. The simplest one is using the Boyer–
Linquist coordinate system. We identify the equatorial plane
of the Kerr–AdS black hole and the “Boost-AdS” black hole
by means of taking the θ coordinates of both black holes
to be θ = π/2. The four-dimensional Kerr–AdS black hole
metric in the Boyer–Linquist coordinates at the equator can
be written as [24,25]

ds2 = −�r

r2

(
dt − a

�
dφ̃

)2 + r2

�r
dr2

+ 1

r2

(
adt − r2 + a2

�
dφ̃

)2

,

�r = (r2 + a2)(1 + l2r2) − 2MKerrr, � = 1 − a2l2,

(23)

where a is the angular momentum parameter of the black
hole. The Hawking temperature is written as

TKerr = rK (3l2r2
K + 1 + a2l2 − a2r−2

K )

4π(r2
K + a2)

, (24)

where the event horizon rK is the largest positive root of �r .
Using the gauge, τ = t and σ = r , the solutions for φ̃(r) are
now given by4

φ̃′ = ± P�2

�r

√
�r − a2

�r − P2�2 , (25)

where we have used the same constant P for the definition
of the momentum transfer. Obviously, the momentum trans-
fer here has a different formula compared to the one in the
“Boost-AdS” black hole case and it can be extracted from Eq.
(25). Unfortunately, the resulting metric (23) is not asymp-
totically AdS3 near the boundary which is different from the
“Boost-AdS” black hole. This might give a different CFT the-
ory, or plasma, at the boundary in the context of the AdS/CFT
correspondence. Therefore we need to use a more adequate
coordinate system as we will discuss in the next section.

4 There is no a priori relation between the φ̃-coordinate and the φ-
coordinate of the Schwarzschild–AdS black hole.
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3.2 Kerr–AdS black hole in asymptotically-AdS
coordinates

Another representation of the Kerr–AdS metric is by using
the AAdS (asymptotically-AdS) coordinate system. The
Kerr–AdS metric in an AAdS coordinate system is asymp-
totically AdS3 near the boundary, Y → ∞, and thus it is pre-
ferred by the AdS/CFT correspondence prescription [29,30].
In general, to get the full geometry in the AAdS coordinate
system is quite involved. However, it is still possible to write
down the Kerr–AdS metric for particular cases, such as at
the equator. The four-dimensional Kerr–AdS metric in the
AAdS coordinates at the equator can be obtained by using
the following coordinate transformation [15,25]:

�Y 2 = r2 + a2, � = φ̃ − al2t. (26)

The resulting metric is given by

ds2 = − �Y

�2(�Y 2 − a2)
(dt − ad�)2 + �2Y 2

�Y
dY 2

+ 1

�Y 2 − a2 (a(1 + l2Y 2)dt − Y 2d�)2,

�Y = Y 2�2(1 + l2Y 2) − 2MKerr

√
�Y 2 − a2,

� = 1 − a2l2. (27)

The Hawking temperature is rewritten as

TKerr = Y 2
K + 3l2Y 4

K − a2(2 + 5l2Y 2
K + 3l4Y 4

K )

4πY 2
K

√
Y 2

K − a2(1 + l2Y 2
K )

, (28)

where the even horizon YK is the largest positive root of �Y .
Using a gauge, τ = t and σ = Y , the solutions for �(Y ) is
given by

�′ = ± P�2

�Y

√
Y

�Y 2 − a2

√
�Y − a2�2(1 + l2Y 2)2

�Y − P2�2 . (29)

Here, again we use the same constant momentum transfer P
whose explicit formula can be extracted from Eq. (29).

In these AAdS coordinates, the metric (27) has a confor-
mal boundary metric,

ds̄2 = −dt2 + 1

l2 dΦ2, (30)

with conformal factor Y 2l2. On the other hand, the Boyer–
Linquist coordinates of the metric (23) have a conformal
boundary metric

ds̄′2 = −dt2 + 2
a

�
dtdφ̃ + 1

�l2 dφ̃2, (31)

with the conformal factor r2l2. Both conformal boundary
metrics are related by a coordinate transformation,

� = φ̃ − al2t (32)

such that

ds̄′2 = 1

�
ds̄2. (33)

It shows that if the CFT theory in (30) is in a thermal equi-
librium at T0, then it is related, by Tolman’s redshifting
law [31], to the CFT theory in (31) with a thermal equi-
librium T (a) = �1/2T0. Furthermore, if we consider the full
four-dimensional metric, then the temperature of the CFT
theory at the boundary of (23) will depend spatially on the θ -
coordinate in which it could give different thermodynamical
properties of the CFT theory. For more details of this issue,
we refer the reader to [15].

3.3 Plots of screening length

Now, we are going to compute numerically and plot the
screening length for all background metrics: (17), (23), and
(27), as functions of ω, or a. Since we only want to compute
the screening length, or the maximum of separation length
which is supposed to be the same in any coordinate repre-
sentations, it is tempting to expect the plot of the Kerr–AdS
black hole in AAdS coordinates to be similar to the plot of the
“Boost-AdS” black hole. The main reason is that both met-
rics are asymptotically AdS3 near the boundary besides that
their full four-dimensional metrics are also solutions to the
four-dimensional Einstein’s equation, with a negative cos-
mological constant. To make a suitable comparison of the
plots, we need to find relations between all the black hole
parameters: the AdS curvature l, the string angular velocity
ω, the black hole angular velocity a, and the black hole mass
parameters (MSch and MKerr).

We can immediately see that both metrics have the same
cosmological constant, which is given by � = −3l2, and
thus all the black holes share the same AdS curvature l. The
angular velocity ω in the metric (17) is bounded from above
at the boundary by l2 ≥ ω2, while a is also bounded by
a2l2 ≤ 1. So, it is natural to identify ω2 = a2l4. The remain-
ing parameters that need to be related are the mass param-
eters. There is no clear relation between the mass param-
eter of the Schwarzschild–AdS black hole, MSch, and the
mass parameter of the Kerr–AdS black hole MKerr. One
may naively identify MSch = MKerr and try to see if this
could gives a similar physical picture, or if the plots are
relatively similar. As we can see from the “naive” plots in
Fig. 5, the screening lengths of the Kerr–AdS black holes in
Boyer–Linquist and AAdS coordinates are much closer to
the screening length of the Schwarzschild–AdS black hole,
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Fig. 5 Plots of the screening length as a function of al, with fixed
MSch = MKerr = 30/ l, for different black holes: Schwarzschild–AdS
(black), “Boost-AdS” (red), Boyer–Linquist (blue), and asymptotically-
AdS (green)

rather than to the screening length of the “Boost-AdS” black
hole. Therefore it is unlikely that MSch = MKerr, since we
expect that computation of the screening length under all
metrics (“Boost-AdS”, Boyer–Linquist, and asymptotically-
AdS) in the rest frame of the string must give relatively sim-
ilar plots.

Normally, we would expect the mass parameter of a rotat-
ing black hole in the rest frame of the static string to be
related to the mass parameter of a static black hole, in which
the string is rotating, by some power of the boost factor

γ = 1√
1 − ω2

l2

≡ 1√
1 − a2l2

. (34)

Recall that in the Schwarzschild–AdS black hole the space-
time is static, while in the Kerr–AdS black hole the spacetime
is stationary. In the rest frame of a Schwarzschild–AdS black
hole, the mass of the black hole is in its rest mass. Switching
the reference frame to a moving string, the black hole will be
rotating around the string, and thus the mass of the black hole
now is in its relativistic mass. Therefore we may identify the
mass parameter MSch in the “Boost-AdS” black hole to be
related to the relativistic mass of the black hole in the view
of the static string.

On the other hand, based on the plots in Fig. 5, we could
guess that the mass parameter MKerr of the Kerr–AdS black
hole is related to the rest mass of the black hole. It is natu-
ral to expect the usual relativistic effect such that the mass
parameters are related by MSch = γ MKerr in which the plots
are shown in Fig. 6. One can see that the plots of the Kerr–
AdS black hole, in Boyer–Linquist and asymptotically-AdS
coordinate systems, bend a little bit towards the expected
“Boost-AdS” black hole, though they are still much closer to
the Schwarzschild–AdS black hole.

0.2 0.4 0.6 0.8 1.0
a l
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Fig. 6 Taking MSch = γ MKerr , we plot the screening length for dif-
ferent black holes: Schwarzschild–AdS (black), “Boost-AdS” (red),
Boyer–Linquist (blue), and asymptotically-AdS (green)

Using the fact that both “Boost-AdS” black hole and Kerr–
AdS black hole, in an asymptotically-AdS coordinate sys-
tem, are asymptotic to AdS3, we may expect that their string
equations of motion should be the same near the boundary, or
equivalently, the quark–antiquark pair motion. As such, the
formula of the separation length of both coordinate systems
near the boundary should also be the same. Now, suppose
that Y is very large, l2Y 2 
 1, such that 1 + l2Y 2 ≈ l2Y 2.
Equation (29) now becomes

�′ ≈ P�−1/2

l2Y 4 − 2MKerr�−3/2Y

×
√

l2Y 4 − 2MKerr�−3/2Y − a2l4Y 4

l2Y 4 − 2MKerr�−3/2Y − P2 . (35)

Taking the same condition for large r in Eq. (18), l2r2 
 1,
we obtain the separation length formula for the “Boost-AdS”
black hole as follows:

φ′ ≈ Pγ

l2r4 − 2MSchr

√
l2r4 − 2MSchr − a2l4r4

l2r4 − 2MSchr − P2 . (36)

Here, we have identified ω2 = a2l4. Near the boundary, we
can identify r = Y and compare both formulas (35) and (36).
It turns out that both separation lengths can be equal if we
identify

MKerr = MSch(1 − a2l2)3/2. (37)

We cheat a little bit on the conditions for large r and Y in the
computation of separation length formula above. Since we
want to keep the mass parameters in the separation formula
for large r and Y , it is a necessary condition to take the
mass parameters also very large such that 2MSch/r 
 1
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Fig. 7 Plots of screening length, with fixed MSch = �−3/2 MKerr =
30/ l, for different black holes: Schwarzschild–AdS (black), “Boost-
AdS” (red), Boyer–Linquist (blue), and asymptotically-AdS (green)

and 2MKerr/Y 
 �3/2. This means that we are considering
the plasma at very high temperature. Using the relation (37),
we obtain the numerical plots shown in Fig. 7 in which the
plots of the Kerr–AdS black hole, in Boyer–Linquist and
asymptotically-AdS coordinates, are now much closer to the
plot of the “Boost-AdS” black hole, which is in accordance
with the physical picture as we expected before.

The mass relation (37) is a bit puzzling, since it was
obtained near the boundary of both “Boost-AdS” black hole
and Kerr–AdS black hole, in AAdS coordinates. A priori
there is no relation between the radial coordinate of the
“Boost-AdS” black hole and the radial coordinate of the
Kerr–AdS black hole, in AAdS coordinates, near the bound-
ary. One may ask if the mass relation (37) could also lead to
the same other physical quantities of both black holes. One
of the important physical quantities is the Hawking temper-
ature, which is interpreted as temperature of the plasma at
the boundary in the AdS/CFT correspondence prescription.
Since the Killing vector of the metric (27) is k = ∂t +�K ∂�,
where �K = a(1 + l2Y 2

K )Y −2
K is the angular velocity of the

black hole relative to the rotating observer at the boundary,
the Hawking temperature of the Kerr–AdS black hole can be
rewritten as

TKerr =
�(1 + 2l2Y 2

K )

√
�Y 2

K − a2 − MKerr

2π�Y 2
K

. (38)

The mass parameter of the Kerr–AdS black hole is related
to the event horizon by the equation Y 2

K �2(1 + l2Y 2
K ) −

2MKerr

√
�Y 2

K − a2 = 0. Using the mass relation (37), that
equation can be simplified to

l2 + 1

Y 2
K

− 2MSch

Y 3
K

√
1 − a2

�Y 2
K

= 0. (39)

Now, recall that the event horizon of the Kerr–AdS black
hole in the Boyer–Linquist coordinates is related to the event
horizon of the Kerr–AdS black hole in the AAdS coordinates
by rK =

√
�Y 2

K − a2. At very high Hawking temperature, it

gives the condition �Y 2
K 
 a2, and thus the above equation

can be approximated to

l2 + 1

Y 2
K

− 2MSch

Y 3
K

≈ 0. (40)

This is the same equation for the event horizon in the
Schwarzschild–AdS, or “Boost-AdS”, black hole by taking
both event horizons of the Schwarzschild–AdS black hole
and the Kerr–AdS black hole in AAdS coordinates to be
equal, YK = rH. Furthermore, substituting the above equa-
tion into the Hawking temperature formula of the Kerr–AdS
black hole at the high temperature will give us

TKerr = �1/2 1 + 3l2Y 2
K

4πYK
, (41)

which is equal to the Hawking temperature of the “Boost-
AdS” black hole upon identifyingω2 = a2l4. This means that
in both CFT theories of the Schwarzschild–AdS black hole
and the Kerr–AdS black hole in AAdS coordinates indeed
have the same temperature and hence this supports the mass
relation (37).

4 Conclusion and discussion

We have computed the separation length as a function of
momentum transfer and plotted it for various values of angu-
lar velocity. In the plots of Fig. 3, for each fixed ω, there is a
lower bound in the momentum transfer, which is given by the
drag force momentum transfer, Pc = ωr2

c . At this value of
the momentum transfer, the drag force configuration is pre-
ferred, while below this value there is no physical solution
for the string configuration of the quark–antiquark pair. The
appearance of this lower bound implies that not all separa-
tion lengths below its screening length are double valued, for
each fixed ω �= 0. Moreover, the separation length can be
divided into two regions identified by Pc < P < Pmax and
P ≥ Pmax, in which the latter is favored due to its Coulomb
potential [7].

An interesting black dashed line shown in Fig. 3 is the plot
of the bounded momentum transfer, P = Pc. The profile of
this plot is mimicking the profile of the separation length
with its maximum “separation length” being L = 0.104309,
at Pc = 3.98557, which coincides with the lower bound
momentum transfer of the plot ω/ l ≈ 0.5. We have no phys-
ical intuition about these values and why it is so, but if we
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Fig. 8 The plot of total energy, for fixed ω = 0.5, in which the quark–
antiquark pair reaches its screening length at the tip of the plot

plot the normalized energy of quark–antiquark pair at angu-
lar momentum ω = 0.5, as shown in Fig. 8, the separation
length in the stable region is just about reaching its maxi-
mum value, or the screening length. Therefore we may say
that this is the minimum angular velocity at which the stable
quark–antiquark pair could reach its screening length.

Our result and analysis here can be extended to the
Poincaré coordinate case, in which the angle between the
separation length of the quark–antiquark pair and its velocity,
or the plasma wind, can be arbitrary. In [8,16], this angle is
parametrized by the variable θ , which can take any value from
θ = 0 (parallel) to θ = π/2 (perpendicular). One can try to
compare the plots of the separation length between the paral-
lel and the perpendicular motion of the quark–antiquark pair,
and ask if the perpendicular plot can be obtained from the par-
allel plot by shifting vertically all plots, for each fixed ω, so
that the plot of bounded momentum transfer coincides with
the horizontal axis, at L = 0. The full parallel plot, includ-
ing lines below the plot of bounded momentum transfer, was
computed in [22] for the five-dimensional Schwarzschild–
AdS black hole in the Poincaré coordinate case. The lines
below the plot of bounded momentum transfer, in [22], are
related to the deformation of the plot of bounded momentum
transfer for θ > 0. To understand this intuitively, we can
assume that there is a continuous deformation of separation
length in terms of θ , still keeping the profile the same, for
fixed velocity. We may then consider the plot of bounded
momentum transfer in the perpendicular plot to be the point
at the origin such that all plots have a lower bound in the
momentum transfer at P = 0. We would expect to see a slow
deformation of the plot of bounded momentum transfer from
a point, at the origin, in the perpendicular plot to the dashed
black line in the parallel plot. Decreasing θ , the plots of the
separation lengths will be shifted up from its correspond-
ing perpendicular plots. As a result, the screening length
for each fixed velocity at any value of θ is always bigger

than the corresponding screening length in the perpendicular
plot, except for the zero velocity plot, which is unchanged.
Indeed, it was shown in [16] that, for fixed velocity, the paral-
lel plot has a higher screening length than the perpendicular
plot. However, there are no corresponding lines below the
plot of bounded momentum transfer in the global coordinate
case because there is no physical configuration of the quark–
antiquark pair as discussed in Sect. 2, and also there is no
perpendicular plot in this case.

The existence of bounded momentum transfer is a bit puz-
zling. One could ask if there is a continuous transformation
from the quark–antiquark configuration to the drag force con-
figuration. As one can see from Fig. 3, close to the Pc, the
whole separation length is below its screening length. How-
ever, at P = Pc, there is a sudden jump in the distance
between the quark and the antiquark of the pair. Each of
them is considered to be in the drag force configuration, in
which the separation length is infinite, as shown in Fig. 2, and
followed by the discussion before Sect. 2.1. Fortunately, we
could simply avoid this problem since this possible continu-
ous transformation only happens in the metastable region of
the plots in Fig. 3, which is not physical.

Unlike the perpendicular case, there is a drag force expe-
rienced by the quark–antiquark pair as discussed in Sect. 2.1.
As shown in Fig. 3, we would expect the drag force in the
metastable region to be similar to the one derived in [20] at
least in the non-relativistic limit. This is likely to be true for
the metastable region, but not for the stable region, because
the tip of the string configuration is closer to the horizon com-
pared to the stable region, and hence it still feels the presence
of the black hole or plasma. Another reason is that the string
configuration in the metastable region is also close to the drag
force configuration for P � Pc. Therefore it is expected that
P ≈ γ pφ , where γ is a constant. In the stable region, the
plots in the non-relativistic limit are very dense, and thus the
momentum transfer, though very large, may not depend on
the angular velocity. Therefore it cannot be interpreted as a
drag force.

We also computed the bounded energy density of the
quark–antiquark pair. The bounded energy density is diver-
gent at the boundary. This divergence can be removed by
subtracting the individual quark and antiquark energy densi-
ties. However, it introduces a new divergence at the horizon
and to resolve this problem we need to go to the reference
frame of the moving quark–antiquark pair in which the back-
ground metric is a “Boost-AdS” black hole. We also found
that the separation length, in the metastable region of the
plots in Fig. 4, is bounded from below, which is given by a
dashed line.

The necessity of going to the reference frame of the quark–
antiquark pair, using the boost transformation (17), produced
a “Boost-AdS” black hole. However, there is another well-
known stationary solution of the AdS black hole, called a
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Kerr–AdS black hole. A priori there is no relation between
the parameters of Kerr–AdS black hole and “Boost-AdS”
black hole. In Sect. 3, we argued that yet some of these
parameters are related. In particular, we computed the screen-
ing length of the static quark–antiquark pair under these
black holes and compared with the previous calculation
of the Schwarzschild–AdS black hole. We concluded that
MKerr = MSch(1 − a2l2)3/2 is more suitable with our phys-
ical picture especially for a very high temperature plasma.
In fact, at very high temperature, �Y 2 
 a2 is satisfied for
any Y within the range of the radial coordinate in AAdS
coordinates 0 < YK ≤ Y < ∞. Using this, the metric of a
“Boost-AdS” black hole (17) is equal to the metric of a Kerr–
AdS black hole (27), provided that we identify the two radius
coordinates to be the same, and that we use all relations of the
black hole parameters given previously. This means that the
equilibrium rotating plasma of the CFT theory is effectively
the same at the equator of both metrics: “Boost-AdS” black
hole (17) or the Kerr–AdS black hole (27). However, this is
only valid at the equator and one could ask whether this is
also valid in general for arbitrary θ -coordinate.

Recall that transforming the four-dimensional
Schwarzschild–AdS black hole, using the transformation
(16), gives a metric that is still the solution of the four-
dimensional Einstein equation with a negative cosmologi-
cal constant, with the Hawking temperature equal to TBoost.
It would be interesting to study the thermodynamical prop-
erties of this metric compared to the Kerr–AdS black hole.
If all thermodynamical properties are equal, then it is bet-
ter to work in the “Boost-AdS” black hole metric rather
than working in the full AAdS coordinates of the Kerr–
AdS black hole, which is very complicated. If not, we would
expect that there might be some coordinate transformation
that depends on the θ -coordinate, which is also a symme-
try of the three-dimensional Einstein universe. Applying this
to the Schwarzschild–AdS black hole might give a metric
that could still be a solution of the four-dimensional Einstein
equation with a negative cosmological constant. The thermo-
dynamical properties of this metric might be comparable to
the Kerr–AdS black hole, although the metric might not be
simple.

In the literature, we have not found so far the relation
between the mass parameter of the Schwarzschild–AdS black
hole, MSch, and the mass parameter of the Kerr–AdS black
hole, MKerr. A general procedure for constructing the metric
of Kerr–AdS black holes in [28] is by adding the AdS metric
with an additional term, scaled with the mass parameter of the
Kerr–AdS black hole, in the Kerr–Schild form. In that sense
the mass parameter is added by hand, and thus it has no clear
direct connection with the mass parameter of Schwarzschild–
AdS black hole. It would be interesting to construct the Kerr–
AdS black hole directly from the Schwarzschild–AdS black
hole, e.g. by following the Newman–Janis procedure [27],

and then verify if the mass relation obtained in this article is
satisfied.
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