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Abstract A systematic analysis of the junction condition,
relating the radial pressure with the heat flow in a shear-
free relativistic radiating star, is undertaken. This is a highly
nonlinear partial differential equation in general. We obtain
the Lie point symmetries that leave the boundary condition
invariant. Using a linear combination of the symmetries, we
transform the junction condition into ordinary differential
equations. We present several new exact solutions to the
junction condition. In each case we can identify the exact
solution with a Lie point generator. Some of the solutions
obtained satisfy the linear barotropic equation of state. As
a special case we regain the conformally flat models which
were found previously. Our analysis highlights the interplay
between Lie algebras, nonlinear differential equations and
application to relativistic astrophysics.

1 Introduction

Radiating stars in a general relativistic context have been
widely studied because of their importance in astrophysics.
The detailed physics of such models have been investigated
by Herrera et al. [1] with dissipation, by Di Prisco et al.
[2] with charge, and Herrera et al. [3] with viscous dissipa-
tion in casual thermodynamics in the streaming and diffusion
approximations. Particular models have been recently stud-
ied by Chan et al. [4] for an imperfect nonadiabatic distri-
bution, by Pinheiro and Chan [5] with charge, and Pinheiro
and Chan [6] for a collapsing body with an initial inhomoge-
neous density. Herrera and Santos [7] introduced the concept
of Euclidean stars in general relativity by requiring that the
areal radius and proper radius are equal. Exact models sat-
isfying this condition were generated by Govender et al. [8]
and Govinder and Govender [9]. Abebe et al. [10] showed
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that generalized Euclidean stars may be generated with an
equation of state. An interesting feature of their approach is
the application of Lie symmetries to produce models which
are expanding, accelerating and shearing. This indicates that
the Lie symmetry approach is helpful in solving the bound-
ary junction condition, and highlights its role in astrophysical
applications. We point out that in recent times Lie symmetry
generators have been particularly useful in generating mod-
els in spherically symmetric gravitational fields. Msomi et
al. [11,12] have considered applications with heat flow and
generated new classes of exact solutions. Kweyama et al.
[13,14] analysed Noether and Lie symmetries for charged
relativistic fluids and were able to solve the field equations
exactly.

The shear-free assumption in stellar models is often made
in the study of relativistic radiating stars. Kolassis et al. [15]
obtained the first exact solution with dissipation effects, satis-
fying the boundary conditions, for a shear-free radiating star
in geodesic motion. Thirukkanesh and Maharaj [16] gener-
ated exact solutions for the geodesic model by transforming
the junction condition into Bernoulli, Riccati, and conflu-
ent hypergeometric equations. This model was extended by
Govender and Thirukkanesh [17] to include a nonzero cos-
mological constant. Note that in these treatments fluid parti-
cles travel along geodesics and the Friedmann dust solution
in the absence of heat flow was regained in all cases. An
important point here is that these treatments were performed
under the condition of pressure isotropy and anisotropic pres-
sures are absent. Ivanov [18] considered a general shear-free
perfect fluid with heat flow that contains conformal flatness
and geodesic models as a special case. A conformally flat rel-
ativistic model with dissipation and inhomogeneity was first
proposed Herrera et al. [19]. This was integrated by Maharaj
and Govender [20] and Herrera et al. [21] to obtained classes
of exact solutions. Another class of conformally flat solu-
tions was generated by Misthry et al. [22] by transforming
the junction condition equation to an Abel equation. A further
conformal flat radiating model, generated by a Lie symmetry
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was obtained by Abebe et al. [23]. Other models of shear-free
radiating stars have been constructed by Tewari [24,25], Pant
et al. [26] and Pant and Tewari [27] which describe massive
radiating fluid spheres and generated horizon-free collapse.

The shear-free assumption is utilized often in the analy-
sis of self-gravitating spheres and when investigating grav-
itational collapse. This is largely due to the resulting sim-
plification of the field equations. In addition, shear-free and
the homogeneous expansion rate conditions are equivalent to
the homology conditions in the Newtonian limit. Therefore
the shear-free condition is well justified. However we need
to make the observation that the shear-free condition may be
unstable in the presence of anisotropic pressures and dissipa-
tive fluxes. The conditions under which an initially shear-free
fluid continues to remain shear-free in its subsequent evolu-
tion has been studied by Herrera et al. [28]. In that analysis
it was demonstrated that pressure anisotropy and dissipation
affect the propagation of time and the gravitating relativistic
fluid can become unstable.

We analyse a shear-free radiating model, without assum-
ing conformal flatness and geodesic motion of fluid parti-
cles, in the presence of pressure anisotropy. We consider
the Einstein field equations and boundary conditions in the
context of Lie symmetries with the objective of producing
new models of relativistic radiating objects. This is the main
object of this paper. The case of shearing stellar models with
Lie symmetries has been considered in some earlier treat-
ments. Those treatments do not allow for vanishing shear
and our results cannot be regained from such investigations.
The absence of shear produces fundamentally a different set
of field equations to be integrated. The Lie generators are
generically different when the shear vanishes. In Sect. 2 we
briefly discuss the shear-free radiating star and present the
junction conditions. We show that the master equation is a
nonlinear partial differential equation in the metric functions.
In Sect. 3 we generate Lie symmetries for the master equa-
tion. Using the Lie point symmetries approach we transform
the boundary condition to ordinary differential equations. By
analyzing the resulting ordinary differential equations and
transforming in the original variables we present new exact
solutions in Sects. 4, 5 and 6. We link our solutions to spe-
cific Lie symmetry generators. In Sect. 7 we show that some
of our solutions satisfy a linear barotropic equation of state.
We make concluding remarks, discuss the causal heat trans-
port equation and summarize our solutions in tabular form in
Sect. 8.

2 The model

We consider the particular case of spherically symmetric,
shear-free radiating stellar models. The line element for the
interior for the spacetimes is given by

ds2 = −A2dt2 + B2
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (1)

where A and B are metric functions of t and r . The accelera-
tion and and expansion are nonzero but the fluid is shear-free.

The energy momentum tensor has the form

Tab = (μ + p⊥) uaub + p⊥gab + (p‖ − p⊥)χaχb

+ qaub + qbua, (2)

with heat flux and anisotropic stress. The fluid four-velocity
ua = 1

A δa0 is comoving, χa is an unit four-vector along the
radial direction (uaχa = 0), and the heat flow vector qa =
(0, q, 0, 0) is radially directed (uaqa = 0). The Einstein
field equations for the heat conducting spherically symmetric
anisotropic fluid (2) become
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q = − 2
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B
+ Br Bt

B2 + Ar

A
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B

)
, (3d)

for the line element (1). The Eq. (3) describe the gravita-
tional interactions in the interior of a shear-free spherically
symmetric star with heat flux and anisotropic pressures.

The boundary of a radiating star divides the spacetime
into interior and exterior regions. The interior spacetime (1)
has to match across the boundary of the star to the Vaidya
spacetime

ds2 = −
(

1 − 2m(v)

R

)
dv2 − 2dvdR

+R2
(

dθ2 + sin2 θdφ2
)

, (4)

which is the exterior. Here the quantitym(v) denotes the mass
of the star as measured by an observer at infinity. Matching
leads to the junction conditions

Adt =
[(

1 − 2m

R�

+ 2
dR�

dv

) 1
2

dv

]

�

, (5a)

(r B)� = R�, (5b)

m(v) =
[
r3

2

(
BB2

t

A2 − B2
r

B

)
− r2Br

]

�

, (5c)

(p‖)� = (Bq)�, (5d)
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where the hypersurface � defines the boundary of the radiat-
ing sphere. The particular junction condition (5d) should be
solved, together with the field Eq. (3), to obtain the potentials
A and B. This completes the model of a relativistic radiat-
ing star. The junction condition is a nonlinear differential
equation

2
Brt
AB2 + 2

Btt

A2B
− 2

At Bt

A3B
− 2

Br Bt

AB3 − 2
Ar Br
AB3

− 2
Ar Bt

A2B2 − B2
r

B4 + B2
t

A2B2 − 2
Ar

r AB2 − 2
Br
r B3 = 0,

(6)

valid at the boundary of shear-free radiating star. Equation
(6) is the master equation that governs the evolution of the
model.

3 The master equation

We can use the Lie analysis of differential equations to find
a solution to the master equation (6). In a general relativistic
context, the Lie analysis has proved useful in cosmologi-
cal settings as shown by Msomi et al. [11,12], Kweyama et
al. [13,14] and Nyonyi et al. [29,30], and in astrophysical
applications as illustrated in the treatments by Abebe et al.
[10,31]. The general approach is described in these treat-
ments and we will not repeat details here. Essentially we
have to find infinitesimal Lie point generators that allow us
to reduce a partial differential equation to ordinary differ-
ential equations. This is made possible by the existence of
invariants associated with the Lie point symmetries of the
partial differential equation Eq. (6).

The process has been adapted over time and is now algo-
rithmic, and so can be implemented by different computer
software packages. Utilizing the program PROGRAM LIE
[32], we find that (6) admits the following Lie point symme-
tries:

G1 = −A f ′(t) ∂

∂A
+ f (t)

∂

∂t
, (7a)

G2 = A
∂

∂A
+ B

∂

∂B
, (7b)

G3 = A
∂

∂A
+ r

∂

∂r
, (7c)

where f (t) is an arbitrary function of t . These symmetries
generate invariants that can be used to reduce the partial dif-
ferential equation (6) into ordinary differential equations for
further analysis. Using the symmetries in (7) in turn, or tak-
ing any linear combination, may be helpful in reducing the
master equation into ordinary differential equations. Since
the symmetries do not have a nonzero Lie bracket relation-
ship we do not consider the optimal system in this paper. As
all combinations of these symmetries can be contained in a
general linear combination, we take

aG1 + bG2 + cG3 = [
c + b − a f ′(t)

]
A

∂

∂A
+ bB

∂

∂B

+ a f (t)
∂

∂t
+ cr

∂

∂r
, (8)

where a, b, and c are arbitrary constants. This combination
gives the invariants

x =
exp

(∫ t dt
a f (t)

)

r1/c
, (9a)

A = h(x)

f (t)
exp

(∫ t cdt

a f (t)
+

∫ t bdt

a f (t)

)
, (9b)

B = g(x)rb/c, (9c)

where a �= 0 and c �= 0. The quantities g(x) and h(x) are
arbitrary functions associated with the Lie symmetry gener-
ators and arise from integration.

Using the invariants (9) we can write (6) in the form

[
2a2gx2b+2c+1 (

(b + c)g − xg′)] h′h2

+2acxb+c+2g2g′h′h − 2c2x2g3g′h′

+
[
c2xg2

(
xg′2 − 2g

(
(b + c − 1)g′ − xg′′))]

h

−
[
2acgxb+c+1

(
g

(
xg′′ + g′) − xg′2)]

h2

+
[
a2x2(b+c) (

xg′−bg
) (

(b+2c)g−xg′)] h3 = 0, (10)

where primes denote differentiation with respect to to the
new variable x . Note that the partial differential equation (6)
has been reduced to the ordinary differential equation (10).
Equation (10) is difficult to solve in general. To demonstrate
an exact solution it is necessary to make assumptions on the
parameters and arbitrary functions.

To progress we make the assumption

g(x) = kh(x). (11)

Then Eq. (10) reduces to the form

2ckx2
[
ck − axb+c

]
hh′′

−x2
[
3a2x2(b+c) − 4ackxb+c + c2k2

]
h′2

−2x
[
c3k2 − 2a2bx2(b+c) − acxb+c

(
2axb+c − k

)

+(b − 1)c2k2
]
hh′ − a2b[b + 2c]x2(b+c)h2 = 0. (12)

Equation (12) is a nonlinear second order differential equa-
tion. We can reduce (12) to first order if we let

y = h′

h
. (13)
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Then the transformation (13) enables us to write (12) in the
form

y′ +
(

3axb+c

2ck
+ 1

2

)
y2 +

[
2a2bx2(b+c) + acxb+c

×
(

2axb+c − k
)

+ (1 − b)c2k2 − c3k2
]

×
[
ckx

(
ck − axb+c

)]−1
y

+a2b(b + 2c)x2(b+c−1)

2ck
(
axb+c − ck

) = 0. (14)

Observe that (14) is a Riccati equation in the variable y.
Riccati equations can be transformed to second order linear
equations. We let

u(x) = exp

[∫ x (
3axb+c

2ck
+ 1

2

)
y(x)dx

]
. (15)

Note that in Eq. (15) the term
(

3axb+c

2ck + 1
2

)
is the coefficient

of the quantity y2 in (14). Using (15) Eq. (14) is transformed
to

u′′ + γ (x)u′ + ζ(x)u = 0, (16)

where

γ (x) =
[
6a3bx3(b+c) + a2cx2(b+c)

(
6axb+c + (5b − 3)k

)

−c3k2
(

6axb+c + (b − 1)k
)

+ac2kxb+c
(

5axb+c + (2 − 6b)k
)

− c4k3
]

×
[
ckx

(
−3a2x2(b+c)+2ackxb+c+c2k2
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,

(17a)

ζ(x) = a2b(b + 2c)x2(b+c−1)
(
3axb+c + ck

)

4c2k2
(
axb+c − ck

) . (17b)

Therefore we have the remarkable feature that the second
order nonlinear equation (12) has been transformed to the
linear equation (16) via the transformations (13) and (15).

Particular choices of the constants a, b, and c allow us
to integrate (10), (12) or (16) and obtain potentials for the
gravitational field. There are several classes that arise which
we consider in turn.

4 Class I

In this class we make the restrictions that a �= 0 and c �= 0.
These conditions arise so that the invariants (9) exist.

4.1 Case I(a): b = 0

If we set b = 0 then the coefficient of the linear term in u in
(16) disappears. In this case we have

u′′ +
[
3a2x2c (

2axc − k
) + c2k2 (

k − 6axc
)

+ ackxc
(
5axc + 2k

) − c3k3
] [

kx
(
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)]−1
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which is a separable equation. This can easily be integrated
to give

u(x) = d exp

(
2axc
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6a2x2c − 10ackxc + 3c2k2

)
+ m̃,

(19)

where d and m̃ are constants. Then Eq. (15) yields
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(
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)
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( 2axc

ck
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,

(20)

where m = m̃
d is a new constant.

Hence we obtain the potentials

A = n
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×
[
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(
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∫ t cdt

a f (t)

)
, (21a)

B = k f (t)

exp
(∫ t cdt

a f (t)

) A, (21b)

where x = exp
(∫ t dt

a f (t)

)
r−1/c andn is an arbitrary constant

of integration. We believe that this solution is not contained
in the literature.

It is possible to evaluate the integral containing x in (21a)
when m = 0. In this case

A = ñ
(

6a2x2c − 10ackxc + 3c2k2
)2/3

×
exp

(∫ t cdt
a f (t)

)

f (t)

(
7 − 3

√
7ckx−c

a + 5
√

7
3
√

7ckx−c

a − 5
√

7 + 7

) 4√
7

×
(

7 − 6
√

7axc
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√
7

6
√

7axc
ck − 5

√
7 + 7

) 10
3
√

7

, (22)
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and ñ is a new constant. For this special case the explicit
dependence on the variable x is fully specified; there is free-
dom only in the variable t .

4.2 Case I(b): b = −c

If we set b = −c then Eq. (16) becomes

x2u′′ + xu′ + a2(3a + ck)

4k2(ck − a)
u = 0, (23)

which is a simpler form. It is interesting to note that this case
produces the Euler equation (23). We can integrate (23) to
obtain

u(x) = c̃1 cosh

(
a
√

3a + ck

2k
√
a − ck

log(x)

)

+c̃2 sinh

(
a
√

3a + ck

2k
√
a − ck

log(x)

)
, (24)

where c̃1 and c̃2 are arbitrary constants of integration. Then
from (15) we obtain

y(x) = ac
√

3a + ck√
a − ck

c1x
a
√

3a+ck
k
√
a−ck − c2

x (3axc + ck)

(
c1x

a
√

3a+ck
k
√
a−ck + c2

) ,

(25)

where c1 = c̃1 + c̃2 and c2 = c̃1 − c̃2.
Hence we have the potentials

A = 1

f (t)

⎛
⎝m

[
r−1/c exp

(∫ t dt

a f (t)

)] a
√

3a+ck
2k

√
a−ck

+n

[
r−1/c exp

(∫ t dt

a f (t)

)]− a
√

3a+ck
2k

√
a−ck

⎞
⎠ 2ck

3a+ck , (26a)

B = k
f (t)

r
A, (26b)

where m = c1c
3a+ck

2ck
3 and n = c2c

3a+ck
2ck

3 are constants. This is
another new solution to the master equation.

4.3 Subclass I(c): b = −c, k = −3a/c

Note that in (26), k �= −3a/c. With the values b = −c and
k = −3a/c the transformation (15) leads to an inconsistency.
This means that we have to integrate (12) or (14) for this case.
If we set k = −3a/c and b = −c, then Eq. (12) becomes

24x2hh′′ − 24x2h′2 + 24xhh′ + c2h2 = 0, (27)

which is greatly simplified. Now (27) can be integrated to
give

h(x) = nxm

exp
[
c2

48 log2(x)
] , (28)

where m and n are constants of integration.
Hence we get the metric functions

A = n

f (t)

[
r−1/c exp

(∫ t dt
a f (t)

)]m

exp
(
c2

48 log2
[
r−1/c exp

(∫ t dt
a f (t)

)]) , (29a)

B = −3a

c

f (t)

r
A. (29b)

This is also another new solution to the master equation (6).

4.4 Case I(d): b = −2c

If we set b = −2c then the coefficient of the linear term in u
in (16) disappears as in Case I(a). Then we obtain

u′′ −
[(

x−c−1
(

6a3 + a2(5c + 3)kxc − 2ac(3c + 1)k2x2c

− c2(c + 1)k3x3c
))] [

k
(

3a2 − 2ackxc

− c2k2x2c
)]−1

u′ = 0, (30)

which is separable. This can be easily integrated to give

u(x)=dk exp

(
2ax−c

ck

)

×
(

3c2k2

a
+6ax−2c − 10ckx−c

)
+m̃, (31)

where the constants d and m̃ result from the integration. Then
Eq. (15) yields

y(x) =
[

8ac exp

(
2ax−c

ck

) (
ckxc − a

)]

×
[
x

(
exp

(
2ax−c

ck

) [
6a2 + 3c2k2x2c

−10ackxc
] + mx2c

)]−1
, (32)

where m = m̃
d is a constant.

Hence we can generate the potentials

A = n

f (t)
exp

(∫ x [
8ac exp

(
2ax−c

ck

) (
ckxc − a

)]

×
[
x

(
exp

(
2ax−c

ck

)[
6a2 + 3c2k2x2c − 10ackxc

]

+mx2c
) ]−1

dx −
∫ t cdt

a f (t)

)
, (33a)
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B = k f (t)

exp
(∫ t cdt

a f (t)

) A, (33b)

where x = exp
(∫ t dt

a f (t)

)
r−1/c and n is new arbitrary con-

stant. This is a new model.
This class of solution contains a previously found model.

To show this we set

a = c = k = 1 and f (t) = t. (34)

Then solution (33) becomes

A = B

= d exp

(∫ t/r

1

8 exp (2z) (z−1)

exp (2z)
(
6z2−10z+3

)+m
dz

)
, (35)

which is a self-similar solution for the master equation. It has
been obtained previously by Abebe et al. [23] when analyzing
a conformally flat radiating star.

5 Class II

In this class we set a = 0. Then the invariants (9) do not
exist. For this category of solution we then have to consider
the symmetry

bG2 + cG3 = (c + b) A
∂

∂A
+ bB

∂

∂B
+ cr

∂

∂r
, (36)

from (8). The invariants associated with (36) are

A = h(t)r (b+c)/c, (37a)

B = g(t)rb/c, and (37b)

t. (37c)

The invariants (37) reduce the master equation (6) to

2c2gg′h′ − c2
(

2gg′′ + g′2) h + 2c(b + c)g′h2

+
(

3b2 + 6bc + 2c2
)
h3 = 0. (38)

Here the primes stand for the derivatives with respect to the
independent variable t . Equation (38) is an Abel differential
equation in h. It is not possible to integrate it in general.
Particular solutions do exist as we now demonstrate. We set

b =
(

±
√

3

3
− 1

)
c, (39)

to simplify the Abel equation. Then (38) becomes

6gg′h′ − 3
(

2gg′′ + g′2) h ± 2
√

3g′h2 = 0. (40)

The advantage of (40) is that it is a Bernoulli equation in h.
It is interesting to note that it can be integrated even when
the function g is unspecified. We integrate (40) to obtain

h(t) = ±
√

3

2

g′√g√
g + d

, (41)

where d is a constant of integration.
Hence the potentials functions become

A = ±
√

3

2

g′√g√
g + d

r±
√

3
3 , (42a)

B = gr±
√

3
3 −1, (42b)

which is a new exact solution for the shear-free model.
Other exact solutions to (38) exist but they may not be

realistic. For example, (38) can be integrated to yield exact
solutions if we assume c = −b and g(t) = kh(t). Unfor-
tunately the model then become unphysical as the heat flux
vanishes when g(t) = kh(t) and both the tangential pressure
and the energy density vanish when c = −b.

6 Class III

In this class we set c = 0. Consequently the invariants (9) are
not defined. Therefore in this case we consider the symmetry

aG1 + bG2 = (b − a f ′(t))A ∂

∂A
+ B

∂

∂B
+ a f (t)

∂

∂t
, (43)

from (8). Note that the invariants arising from (43) are given
by

A = h(r)
exp

(∫ bdt
a f (t)

)

f (t)
, (44a)

B = g(r) exp

(∫
bdt

a f (t)

)
, and (44b)

r. (44c)

Using the invariants (44) the master equation (6) is reduced
to give

2a2g
(
rg′ + g

)
hh′ + 2abrg3h′ + a2g′ (rg′ + 2g

)
h2

− b2rg4 = 0, (45)

where the primes denote derivatives with respect to the inde-
pendent variable r . Equation (45) is highly nonlinear and
cannot be easily integrated in general. We assume that

g(r) = kh(r), (46)
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so that (45) becomes

(
h′

h

)2

+ 2

3

(
bk

a
+ 2

r

)
h′

h
− b2k2

3a2 = 0. (47)

We observe that (47) may be treated as a quadratic equation
in the quantity h′

h ; this gives

h′

h
=

±2
√
a2

(
a2 + abkr + b2k2r2

) − 2a2 − abkr

3a2r
. (48)

The two roots in (48) can be integrated to yield two different
classes of solutions

h(r) = d

r4/3

((
α(r) + 2a2 + abkr

)2

(
α(r) + 2abkr + a2

)
)1/3

× exp

(−α(r) − abkr

3a2

)
, (49a)

h(r) = d

(
α(r) + 2abkr + a2

(
α(r) + 2a2 + abkr

)2

)1/3

× exp

(
α(r) − abkr

3a2

)
, (49b)

where α(r) = 2a
√
a2 + abkr + b2k2r2 and d is an arbitrary

constant of integration.
Hence we have

A = d

r4/3 f (t)

((
α(r) + 2a2 + abkr

)2

(
α(r) + 2abkr + a2

)
)1/3

× exp

(∫
bdt

a f (t)
− α(r)

3a2 − bkr

3a

)
, (50a)

B = k f (t)A, (50b)

and

A = d

f (t)

(
α(r) + 2abkr + a2

(
α(r) + 2a2 + abkr

)2

)1/3

× exp

(∫
bdt

a f (t)
+ α(r)

3a2 − bkr

3a

)
, (51a)

B = k f (t)A, (51b)

which are two classes of solution to the master equation.
This category of solutions reduces to known models. We

can show this by setting

f (t) = 1 and b = d = k = 1. (52)

Then the solutions (50) and (51) become

A = B

= r−4/3 exp

(
t

a
− α(r)

3a
− r

3a

)

×
(

(α(r) + 2a + r)2

(α(r) + a + 2r)

)1/3

, (53a)

A = B

= exp

(
t

a
− r

3a
+ α(r)

3a

)

×
(

α(r) + a + 2r

(α(r) + 2a + r)2

)1/3

, (53b)

respectively. These solutions were previously obtained by
Abebe et al. [23] for a radiating star which has the property
of conformal flatness.

7 Equations of state

In relativistic astrophysics it is important that the model
should admit an equation of state on physical grounds. Many
exact solutions for a radiating star that have been found before
do not satisfy this condition. We can report that particular
classes of models in this paper do admit a linear equation of
state which are barotropic. We give each of these cases below
and associate them with the relevant Lie symmetry.

(a) The generator aG1 − cG2 + cG3
(
k �= − 3a

c

)

Using the generator aG1 −cG2 +cG3 we can obtain a model
from (26) which admits an equation of state. The line element
for this case is

ds2 =
[(

mψ1/2 + nψ−1/2
)

2ck
3a+ck

]2
(

−
[

1

f (t)

]2

dt2

+
[
k

r

]2 [
dr2 + r2

(
dθ2 + sin2 θdφ2

)])
, (54)

where ψ =
[
r−1/c exp

(∫ dt
a f (t)

)] a
√

3a+ck
k
√
a−ck . The matter vari-

ables become

μ =
[

2
(
a2 − ack + c2k2

) (
ck

(
m2ψ2 − 4mnψ + n2

)

−6amnψ)

] [
ck3(a − ck)(3a + ck) (mψ + n)2

×
(
ψ−1/2 (mψ + n)

) 4ck
3a+ck

]−1

, (55a)

p‖ =
[

2a
(

6amnψ − ck
(
m2ψ2 − 4mnψ + n2

))]

×
[
k2(ck − a)(3a + ck) (mψ + n)2

×
(
ψ−1/2 (mψ + n)

) 4ck
3a+ck

]−1

, (55b)
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p⊥ =
[
(a + ck)

(
ψ−1/2 (mψ + n)

)− 4ck
3a+ck

(12amnψ

+ck (mψ + n)2
) ] [

ck3(3a + ck) (mψ + n)2

×
(
ψ−1/2 (mψ + n)

) 4ck
3a+ck

]−1

, (55c)

q =
[
k

r

(
mψ1/2 + nψ−1/2

)
2ck

3a+ck

]−1

p‖. (55d)

From the above we generate the linear barotropic equation
of state

p‖ = λμ, λ = ack

a2 − ack + c2k2 , (56)

provided that k �= − 3a
c .

(b) The generator aG1 − cG2 + cG3
(
k = − 3a

c

)

The generator aG1 −cG2 +cG3 helps to find another model
(29) when k = − 3a

c . This model also admits an equation of
state. The line element for this case is given by

ds2 =
⎡
⎣ nϕm

exp
(
c2

48 log2 ϕ
)
⎤
⎦

2 [
− (1/ f (t))2 dt2 + 9 (a/(cr))2

×
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]]
, (57)

where ϕ = r−1/c exp
(∫ dt

a f (t)

)
. The matter variables

become

μ =
[

13
(
c4 log2 ϕ − 48mc2 log ϕ + 24

(
c2 + 24m2

))

× exp

(
1

24
c2 log2 ϕ

)] [
2592a2n2ϕ2m

]−1
, (58a)

p‖ =
[ (

48mc2 log ϕ − c4 log2 ϕ − 24
(
c2 + 24m2

))

× exp

(
1

24
c2 log2 ϕ

)] [
864a2n2ϕ2m

]−1
, (58b)

p⊥ =
[ (

48mc2 log ϕ − c4 log2 ϕ + 48c2 + 576m2
)

× exp

(
1

24
c2 log2 ϕ

)] [
648a2n2ϕ2m

]−1
, (58c)

q =
⎡
⎣3a

cr

nϕm

exp
(
c2

48 log2 ϕ
)
⎤
⎦

−1

p‖. (58d)

We observe that this case also admits an equation of state

p‖ = λμ, λ = − 3

13
, (59)

which is linear and barotropic.

(c) The generator bG2 + cG3

The generator bG2 + cG3 can also be associated with an
equation of state. The line element for this model becomes

ds2 = −3

4
g′2r±2

√
3

3 dt2 + g2r± 2
√

3
3 −2

[
dr2

+r2
(

dθ2 + sin2 θdφ2
)]

. (60)

from (42). In the above we have set the arbitrary constant
d = 0 without any loss of any generality. The matter variables
become

μ = 14r
∓ 2√

3

3g2 , (61a)

p‖ = −4r
∓ 2√

3

3g2 , (61b)

p⊥ = −r
∓ 2√

3

g2 , (61c)

q =
[
gr±

√
3

3 −1
]−1

p‖. (61d)

This solution also satisfies the barotropic equation of state

p‖ = λμ, λ = −2

7
, (62)

which is linear.

8 Discussion

Our treatment indicates an interesting interplay between Lie
symmetries, Lie algebras, nonlinear differential equations
and a radiating star in relativistic astrophysics. We have ana-
lyzed a radiating star with a shear-free matter distribution
with anisotropic stress using the Lie analysis of differential
equations. A systematic study of the master equation, gov-
erning the evolution of the radiating star, was undertaken.
Three classes of new exact solutions were generated. In each
case the Lie infinitesimal generators can be identified and the
gravitational potentials may be written explicitly. In certain
cases we find that our models contain solutions found previ-
ously. In particular we regain the conformally flat solutions
of Abebe et al. [23]. We also find that three exact models,
for specific forms of the Lie point symmetry, contain a lin-
ear equation of state. The line elements and the equations
of state can be written in explicit form. We summarize our
results in Tables 1 and 2. In Table 1 the Lie point symme-
tries and corresponding invariants are listed. The restrictions
on the arbitrary functions g(x) and h(x) and the constants
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Table 1 Symmetry, invariants, restrictions, and resulting gravitational potentials

Symmetry Invariants Restrictions Gravitational potentials

aG1 + bG2 x = exp
(∫ t dt

a f (t)

)

r1/c , g = kh, b = 0 A = n
f (t) exp

(∫ x 8acxc−1 exp
(

2axc
ck

)
(axc−ck)

exp
(

2axc
ck

)
(6a2x2c−10ackxc+3c2k2)+m

dx + ∫ t cdt
a f (t)

)
,

+cG3 A = h(x)
f (t) B = k f (t)

exp
(∫ t cdt

a f (t)

) A where x = exp
(∫ t dt

a f (t)

)
r−1/c

× exp
(∫ t cdt

a f (t) g = kh, b = −2c A = n
f (t) exp

(∫ x 8ac exp
(

2ax−c
ck

)
(ckxc−a)

x
(

exp
(

2ax−c
ck

)
[6a2+3c2k2x2c−10ackxc]+mx2c

) dx

+ ∫ t bdt
a f (t)

)
, − ∫ t cdt

a f (t)

)
,

B = k f (t)

r2 exp
(∫ t −cdt

a f (t)

) A, where x = exp
(∫ t dt

a f (t)

)
r−1/c

B = g(x)rb/c g = kh, b = −c A = 1
f (t)

(
m

[
r−1/c exp

(∫ t dt
a f (t)

)] a
√

3a+ck
2k

√
a−ck

+n
[
r−1/c exp

(∫ t dt
a f (t)

)]− a
√

3a+ck
2k

√
a−ck

)
2ck

3a+ck ,

B = k f (t)
r A

g = kh, b = −c, A = n
f (t)

[
r−1/c exp

(∫ t dt
a f (t)

)]m

exp
(
c2
48 log2

[
r−1/c exp

(∫ t dt
a f (t)

)]) ,

k = −3a
c B = −3a

c
f (t)
r A

bG2 + cG3 A = h(t)r (b+c)/c, b =
(
±

√
3

3 − 1
)
c A = ±

√
3

2
g′√g√
g+d r

±
√

3
3 ,

B = g(t)rb/c, and t B = gr±
√

3
3 −1

aG1 + bG2 A = h(r)
exp

(∫ t bdt
a f (t)

)

f (t) , g = kh A = d
r4/3 f (t)

((
α(r)+2a2+abkr

)2

(α(r)+2abkr+a2)

)1/3

exp
(∫ t bdt

a f (t) − α(r)
3a2 − bkr

3a

)
,

B = g(r) B = k f (t)A

× exp
(∫ t bdt

a f (t)

)
, A = d

f (t)

(
α(r)+2abkr+a2

(α(r)+2a2+abkr)
2

)1/3

exp
(∫ t bdt

a f (t) + α(r)
3a2 − bkr

3a

)
,

and r B = k f (t)A

a, b, c, and k are given. The resulting gravitational potentials
A(r, t) and B(r, t) are written explicitly. Table 2 identifies the
symmetries with those particular exact solutions for which
an explicit linear barotropic equation of state exists.

The solutions found in this paper may be used to study the
physical properties of a relativistic radiating star. To illustrate
this we consider the temperature profiles. The causal heat
transport equation becomes

τ (qB)t + ABq = − κ

B
(AT )r . (63)

The coefficient of thermal conductivity κ and the relaxation
time τ are chosen as

κ = γ T 3τc, τc =
(

α

γ

)
T−σ , τ =

(
βγ

α

)
τc, (64)

based on physical grounds as shown by Govender and coau-
thors [33,34]. In Eq. (64) α ≥ 0, β ≥ 0, and γ ≥ 0 are
constants and τc is the mean collision time between mass-
less and massive particles. We consider the special case of
mean collision time σ = 0 for simplicity. Then (63) can be
integrated to give

(AT )4 = − 4

α

(
β

∫
A3B(qB)t dr +

∫
A4qB2dr

)
+w(t),

(65)

which is the causal temperature. If we choose the gravita-
tional potentials in (42), the causal temperature can written
explicitly explicitly as
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Table 2 Equation of state
Symmetry Gravitational potentials Equation of state

aG1 + bG2 A = 1
f (t)

(
m

[
r−1/c exp

(∫ t dt
a f (t)

)] a
√

3a+ck
2k

√
a−ck p‖ = λμ,

+cG3 +n
[
r−1/c exp

(∫ t dt
a f (t)

)]− a
√

3a+ck
2k

√
a−ck

)
2ck

3a+ck , λ = ack
a2−ack+c2k2

B = k f (t)
r A

A = n
f (t)

[
r−1/c exp

(∫ t dt
a f (t)

)]m

exp
(
c2
48 log2

[
r−1/c exp

(∫ t dt
a f (t)

)]) , p‖ = λμ,

B = −3a
c

f (t)
r A λ = − 3

13

bG2 + cG3 A = ±
√

3
2

g′√g√
g+d r

±
√

3
3 , p‖ = λμ,

B = gr±
√

3
3 −1 λ = − 2

7

Fig. 1 Causal temperature (dashed line), noncausal temperature (solid
line) versus r

T 4 =
(

w(t) −
[
r

2√
3 g′(t)4

(
30dβ + √

3αr
1√
3 g(t)3/2

+ 24β
√
g(t)

)] [
4αg(t)

(
d + √

g(t)
)

3
]−1

)

×16
(
d + √

g(t)
)

4

9r
4√
3 g(t)2g′(t)4

. (66)

Figure 1 then gives the graphical behavior of the temperature
when α = d = −1, g(t) = t = 0.5, and w(t) = −1.

We find that the temperature is decreasing as we approach
the boundary and the causal temperature is greater than the
Eckart temperature. This is consistent with other treatments
(see for example the recent analysis of Reddy et al. [35]).
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