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Abstract We study the excitation of axial quasi-normal
modes of deformed non-rotating black holes by test parti-
cles and we compare the associated gravitational wave signal
with that expected in general relativity from a Schwarzschild
black hole. Deviations from standard predictions are quanti-
fied by an effective deformation parameter, which takes into
account deviations from both the Schwarzschild metric and
the Einstein equations. We show that, at least in the case
of non-rotating black holes, it is possible to test the metric
around the compact object, in the sense that the measurement
of the gravitational wave spectrum can constrain possible
deviations from the Schwarzschild solution.

1 Introduction

So far, general relativity has successfully passed all the
experimental tests [1]. However, its most interesting predic-
tions are still to be verified. The theory has been tested in
weak gravitational fields, mainly with precise experiments in
the Solar System and accurate radio observations of binary
pulsars. The agreement between theoretical predictions and
observational data is today confirmed with a precision rang-
ing from a few percent to about 10−5. There is now an increas-
ing interest to test the theory in other regimes, in particular
at very large scales and in strong gravitational fields. Tests
of general relativity at very large scales are relevant for the
problems of dark energy and dark matter: in the last 20 years,
this has been a very active research field [2]. The ideal lab-
oratory to test strong gravity is the spacetime around astro-
physical black hole (BH) candidates [3,4]. The spacetime
geometry around these objects has still to be verified and
there is a number of theoretical arguments suggesting that
macroscopic deviations from standard predictions are possi-
ble [5–7].
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In 4-dimensional general relativity, uncharged BHs are
described by the Kerr solution and they are completely spec-
ified by only two parameters, namely the mass M and the
spin angular momentum J . This is the well-known no-hair
theorem [8,9]. Astrophysical BHs should form from the col-
lapse of very massive stars, after the latter have exhausted
all their nuclear fuel [10]. According to the theory of gen-
eral relativity, the final product of the collapse should be
well described by the Kerr solution. Initial deviations from
the Kerr metric are quickly radiated away through the emis-
sion of gravitational waves [11]. For macroscopic objects, the
equilibrium electric charge is extremely small and is reached
soon because of the highly ionized host environment [12].
The effect of an accretion disk is normally negligible, as the
disk mass is many orders of magnitude smaller than the mass
of the central object [13].

Compact objects in X-ray binaries are classified as stellar-
mass BH candidates if they exceed 3 M�, which is the max-
imum mass expected for neutron and quark stars [14]. The
supermassive objects at the center of every normal galaxy are
called supermassive BH candidates because they cannot be
explained as clusters of non-luminous objects: the expected
cluster lifetime due to evaporation and physical collisions
would be shorter than the age of these systems [15]. The
non-observation of thermal radiation emitted by the possible
surface of these objects may also be interpreted as evidence
for an event/apparent horizon [16] (but see Refs. [17,18]
and there are also scenarios in which no thermal component
should be expected [5,6]). In the end, both stellar-mass and
supermassive BH candidates can be naturally interpreted as
the Kerr BHs of general relativity and they could be some-
thing else only in the presence of new physics. However, a
direct observation confirmation is completely missing.

The nature of BH candidates can be potentially tested
by studying the properties of the radiation emitted by the
accreting gas [19–26]. The electromagnetic spectrum of these
objects has indeed features determined by the motion of the
gas in the accretion disk and by the propagation of the pho-
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tons from the disk to the distant observer. The study of these
features potentially constrains the spacetime geometry and
check whether these objects are the Kerr BHs of general rel-
ativity. Current observations cannot do it, mainly because
there is a fundamental degeneracy among the parameters of
these systems: the relativistic features produced in a non-
Kerr background cannot be distinguished from those pro-
duced around a Kerr BH with a different spin [27–30]. With
the available data, we can rule out some exotic BH alter-
natives, like some kinds of compact objects [31,32] and of
traversable wormholes [33]. Non-Kerr objects with a hori-
zon are much more difficult to test. Current constraints on
stellar-mass BH candidates from the disk’s thermal spectrum
are reported in [34,35]. The possibility of testing the Kerr
metric in the future seems to depend on the possibility of
combining several observations of the same source to break
the degeneracy among the parameters of the system [36,37].

A complementary approach, not yet available, is to use
the gravitational wave signal [38–40]. This approach has
advantages and disadvantages. Assuming geodesic motion,
the properties of the radiation emitted by the gas in the accre-
tion disk only depend on the background metric, and there-
fore they can be used to test the Kerr metric. They cannot
distinguish a Kerr BH in general relativity from a Kerr BH in
an alternative theory of gravity [41,42]. On the contrary, the
emission of gravitational waves depends on both the back-
ground metric and the field equations of the theory, with the
advantage that it may be possible to distinguish Kerr BHs in
different theories and the disadvantages that a more rigorous
treatment would require the knowledge of the field equations.
However, a phenomenological description of the problem is
possible and it has been already employed, for instance, in
Refs. [43,44].

In this work, we investigate the gravitational wave sig-
nal emitted when the axial quasi-normal modes of a BH are
excited by the passage of a test particle. As an exploratory
work, we consider the simplest case of non-rotating BHs. We
derive the master equations and we compute the wave form
and the energy spectrum as a function of the deviations from
general relativity and of the energy and the angular momen-
tum of the test particle. Deviations from standard predictions
are quantified by an effective deformation parameter, which
is used to take into account a possible non-Schwarzschild
background and corrections to the Einstein equations. We
find that the gravitational wave signal is mainly determined
by the geodesic motion of the test particle, while the contri-
bution from the proper excitations of the spacetime is smaller.

The content of the paper is as follows. In Sect. 2, we
review the excitation of axial quasi-normal modes of a
Schwarzschild BH by a test particle in general relativity. In
Sect. 3, we consider the same phenomenon in the case of
a non-rotating deformed BH. Since we compute the gravita-
tional wave signal from the Einstein equations, eventually our

predictions are parametrized by an “effective” deformation
parameter. Such a deformation parameter is not the same as
the one appearing in the background metric and therefore it
cannot be directly compared with the deformation parameter
constrained by the studies of the electromagnetic spectrum.
In Sect. 4, we present the results of our calculation and we
compare the gravitational wave signals from Schwarzschild
and deformed non-rotating BHs. A summary and conclusions
are reported in Sect. 5. Throughout the paper, we use units
in which GN = c = 1.

2 Scattering of particles by a Schwarzschild black hole

To study the gravitational wave signal by a test particle per-
turbing the Schwarzschild background, we can proceed as
follows [45]. At the zeroth order, the Einstein equations
are R0

αβ = 0 and the unperturbed solution is the static

Schwarzschild background g0
αβ . The first order term in the

perturbed metric is g1
αβ and it can be derived by

R1
αβ = 8π

(
Tαβ − 1

2
g0
αβT

γ
γ

)
. (1)

We expand the metric g1
αβ in tensor spherical harmonics. In

this work, we only consider axial perturbations. The equa-
tions governing polar perturbations can be obtained from the
axial ones by a coordinate transformation. We choose the so-
called Regge–Wheeler gauge and the perturbed line element
reads [45]

ds2 = g0
αβdxαdxβ + 2 sin θ

∑
l,m

∂Ylm(θ, φ)

∂θ

× [ flm(t, r)dtdφ + hlm(t, r)drdφ]

− 2

sin θ

∑
l,m

∂Ylm(θ, φ)

∂φ
[ flm(t, r)dtdθ

+ hlm(t, r)drdθ ]. (2)

The matter source in the Einstein equations is given by the
stress-energy tensor of a point-like particle moving along the
geodesics of the Schwarzschild background, namely

T αβ = μ
dT

dτ

dzα

dt

dzβ

dt

1

r2 δ(r − R(t))

δ(θ − �(t))δ(φ − �(t)), (3)

where μ is the particle’s rest-mass, zα = (T (t), R(t),�(t),
�(t)) is the world-line trajectory of the particle in terms of
the Schwarzschild t-coordinate, and τ is the particle’s proper
time. The tensor T αβ is expanded in tensor spherical har-
monics as well [46]. After some tedious calculations, the
components tφ, rφ, and θφ of Eq. (1) provide the following
equations:
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∂2

∂t2 Zlm(t, r) − ∂2

∂r2∗
Zlm(t, r) + Vl(r)Zlm(t, r) = Slm(t, r),

(4)
∂

∂t
flm(t, r) = ∂

∂r∗
[r∗Zlm(t, r)] , (5)

where

Zlm(t, r) =
(

1 − 2M

r

)
hlm(t, r)

r
(6)

and r∗ is the tortoise coordinate, namely

r∗ = r + 2M ln
( r

2M
− 1

)
. (7)

The potential Vl(r) and the source term Slm(t, r) are given,
respectively, by

Vl(r) =
(

1 − 2M

r

)[
l(l + 1)

r2 − 6M

r3

]
, (8)

Slm(t, r) = −16π i

(
1 − 2M

r

)

×
{
r

∂

∂r

[(
1− 2M

r

)
Dlm

]
−

(
1− 2M

r

)
Qlm

}
,

(9)

where

Dlm = − μm

l(l + 1)(l − 1)(l + 2)

L2
z

E

1

r4

(
1 − 2M

r

)

× δ (r − R(τ ))
∂Y ∗

lm

∂θ

∣∣∣
�= π

2 ,�(t)
, (10)

Qlm = − iμ

l(l + 1)

Lz

r2(r − 2M)

dR

dτ

× δ (r − R(τ ))
∂Y ∗

lm

∂θ

∣∣∣
�= π

2 ,�(t)
. (11)

Here E and Lz are, respectively, the specific energy and
the axial component of the specific angular momentum of
the particle, which is assumed to move on the equatorial
plane � = π

2 . The wave form of the signal is Zlm(t) =
limr→+∞ Zlm(t, r). The energy spectrum of gravitational
waves at infinity is proportional to

dW

dω
= 1

16π2

+∞∑
l=2

l∑
m=−l

(l−1)l(l+1)(l+2) |Zlm(ω)|2 , (12)

where Zlm(ω) is the Fourier transform of the wave form
Zlm(t). We remind the reader that there are no monopole
(l = 0) and dipole (l = 1) contributions in general relativity,
and that the leading order term is the quadrupole (l = 2) one.
Moreover, multipoles with m = l − 1, l − 3, etc. correspond
to axial perturbations, while those with m = l, l − 2, etc.
correspond to polar perturbations. As a preliminary study,
here we are restricting our attention to axial perturbations
only, and therefore we will ignore the signal associated with
polar perturbations.

3 Scattering of particles by a deformed black hole

In the case of an alternative theory of gravity, one could pro-
ceed in the same way, namely starting from the corresponding
BH solution and considering the perturbations generated by
a test particle moving along the geodesics of that metric (in
the case of a metric theory of gravity). The evolution of these
perturbations and the associated gravitational wave signal at
infinity are then determined by the field equations of the the-
ory. The final result depends on both the background metric
and the field equations. In this sense, the approach is more
powerful than the study of the properties of the radiation
emitted by the gas in the accretion disk, as the latter is only
sensitive to the background metric. However, if we use grav-
itational waves, we can only test a particular theory, while
the actual fundamental theory may not be known.

In this paper, we explore a different approach. We con-
sider the Johannsen–Psaltis metric [47], which describes the
gravitational field around non-Kerr BHs and in which the
deviations from the Kerr geometry are quantified by a set
of “deformation parameters”. The simplest non-rotating BH
has only one non-vanishing deformation parameter and its
line element reads

ds2 = −
(

1 − 2M

r

) (
1 + ε

M3

r3

)
dt2

+
(

1 − 2M

r

)−1 (
1 + ε

M3

r3

)
dr2 + r2d�, (13)

where ε is the deformation parameter and the gravita-
tional force is weaker (stronger) than the one around a
Schwarzschild BH with the same mass when ε > 0 (ε < 0).
If ε = 0, we recover the Schwarzschild solution. We note
that the horizon is at rH = 2M for any value of ε. The metric
in Eq. (13) is not a solution of any known field equations of
an alternative theory of gravity. It is just the Schwarzschild
metric with an ad hoc deformation, which is quantified by the
parameter ε. Like the parameters β and γ in the Parametrized
Post-Newtonian formalism extensively employed to test gen-
eral relativity in the Solar System, the deformation parameter
ε in the Johannsen–Psaltis metric is to be thought of as a free
parameter to be determined by observations.

In the case of gravitational wave signals, we can just image
that the line element in Eq. (13) is the vacuum static solution
of some alternative theory of gravity. Since we want to remain
as generic as possible, we do not want to specify (and actually
we do not know) the exact field equations of the underlying
theory. We can thus assume that the field equations are still
given by Eq. (1), but now g0

αβ is the Johannsen–Psaltis met-
ric. We can then proceed as in the previous section and find
the fundamental equations governing the axial perturbations
generated by a test particle moving along the geodesic of the
background metric. Within this approach, axial perturbations
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are still described by Eq. (4), but now the potential Vl(r) and
the source term Slm(t, r) are

Vl(r) =
(

1 − 2M

r

) [
l(l + 1)

r2

(
1 + ε

M3

r3

)
− 6M

r3

]
, (14)

Slm(t, r) = −16π i

(
1 − 2M

r

){
r

∂

∂r

[(
1 − 2M

r

)

×
(

1+ε
M3

r3

)2

Dlm

]
−

(
1− 2M

r

)(
1+ε

M3

r3

)2

Qlm

}
.

(15)

Of course, for ε = 0 we recover the standard case, namely
Schwarzschild metric and general relativity. When ε �= 0,
we have a different wave form Zlm(t) and a different energy
spectrum dW/dω. In this sense, we have introduced a phe-
nomenological parametrization in the general relativity axial
perturbations of a Schwarzschild BH and deviations from
standard predictions are quantified in terms of ε. However,
such a deformation parameter ε is not the original ε in the
Johannsen–Psaltis metric any more. The parameter appear-
ing in Eqs. (14) and (15) is a sort of effective parameter that
takes deviations from the Einstein equations into account.
The relation between this ε and the one appearing in the
Johannsen–Psaltis metric and constrained from the electro-
magnetic spectrum of BH candidates [34] is unknown at this
level and therefore it is difficult to make any comparison
between the two approaches. Of course, we could have also
started from the very beginning from Eq. (4), writing some ad
hoc correction in terms of a number of deformation param-
eters. However, this might have introduced additional arbi-
trariness and included unphysical deviations that cannot be
obtained from any theory of gravity.

4 Simulations

The numerical method to compute the wave form and the
energy spectrum is the same as the one adopted in Ref. [45].
It consists of three steps.

1. We fix the parameters of the background metric (ε) and
of the particle (E and Lz) and we compute the particle
trajectory for a discrete number of time steps, ranging
from a large R to the turning point R = Rt .

2. We compute the source term Slm(t, r) for each time and
spatial point of the grid. Following Ref. [48], we approx-
imate the delta function by a narrow Gaussian

δ (r − R(t)) ≈ α√
π
e−α2(r−R(t))2

. (16)

In our calculations, we use α = 5, which is large enough
not to affect our results.

3. We numerically solve Eq. (4).

Fig. 1 Wave form (top panel) and energy spectrum (bottom panel)
produced by the excitation of axial quasi-normal modes of non-rotating
BHs (Schwarzschild BH ε = 0, deformed BHs ε �= 0) by a test particle
with E = 2.38µ and Lz = 12.5µM. See the text for more details

With the above machinery, we compute the wave form at
infinity, Zlm(t), and the energy spectrum, dW/dω, for test
particles moving in the gravitational field of Schwarzschild
and deformed BHs. In our calculations, we only compute the
signal of the multipole l = 2 andm = 1, which is the leading
order term for axial perturbations.

Figure 1 shows the wave form (top panel) and the energy
spectrum (bottom panel) of the gravitational wave signal pro-
duced by a test particle with E = 2.38µ and Lz = 12.5µM
moving in the spacetime of a Schwarzschild BH (red solid
line) and of deformed non-rotating BHs with ε = ±2 and
5 (the case ε = −5 has no turning point for this choice
of E and Lz). To quantify the relative contribution between
the mode excitation and the quadrupole orbital emission, we
have computed the energy spectrum with ε = 0 in Vl(r) and
ε �= 0 in Slm(r) (quadrupole orbital emission) and then the
case with ε �= 0 in Vl(r) and ε = 0 in Slm(r) (mode exci-
tation), and compared with the Schwarzcshild and deformed
BH spectra. The result is shown in Fig. 2. It is evident that
the gravitational wave signal is mainly determined by the
geodesic motion of the test particle in the background metric,
while the contribution due to the mode excitation is smaller.
This suggests that in the description of this kind of phenom-
ena the field equations of the theory play a minor rule with
respect to the geodesic motion. This may further justify our
approach to plug the Johannsen–Psaltis metric into the Ein-
stein equations: eventually the signal is mainly determined by
the quadrupole moment formula and the particle trajectory.
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Fig. 2 Energy spectrum in the case ε = 0 (red solid line), ε = 0 in
Vl (r) but ε �= 0 in Slm(t, r) (green dashed line), ε �= 0 in Vl (r) but
ε = 0 in Slm(t, r) (blue dotted line), and ε �= 0 (violet dashed-dotted
line). Here the test particle has E = 2.38µ and Lz = 12.5µM. See the
text for more details

The small contribution from the mode excitation can easily
be understood if we notice that the maximum of the potential
Vl(r) is at rmax ≈ 3 M and therefore ε(M/rmax)

3 	 1 for
ε = O(1).

Figure 3 show the energy spectrum in the case the test
particle has different Lz . In the top panel we set Lz = 12.0µ
M, in the bottom panel Lz = 13.0µ M. We do not show the
spectrum for ε = −2 when Lz = 12.0µM because in this
case there is no turning point and the test particle is swallowed
by the BH.

In order to figure out whether an accurate measurement
of the gravitational wave spectrum can distinguish different
spacetimes and test general relativity, we can proceed as fol-
lows. We consider a reference model in which the spacetime
is described by the Schwarzschild metric (ε = 0) and the test
particle has a certain specific energy and axial component of
the specific angular momentum. Such a reference model can
be compared to another model, in which the metric has a
deformation parameter ε, and the specific energy and axial
component of the angular momentum are, respectively, E
and Lz , by evaluating the following function (for the sake of
simplicity, we set M = μ = 1):

S(ε, E, Lz)=
∑
i

⎡
⎣ log

( dW
dω

)
i (ε, E, Lz) − log

( dW
dω

)ref
i

C log
( dW

dω

)ref
i

⎤
⎦

2

,

(17)

Fig. 3 As in the bottom panel in Fig. 1, but for a test particle with
E = 2.38µ and Lz = 12.0µM (top panel) and with E = 2.38µ and
Lz = 13.0µM (bottom panel). See the text for more details

where (dW/dω)ref
i is the energy spectrum of the reference

model at the frequency ωi , (dW/dω)i (ε, E, Lz) is the energy
spectrum of the model with parameters (ε, E, Lz), and C is
a constant that we have quite arbitrarily set to 0.3. Equa-
tion (17) clearly looks like a χ2 and C as the error. We do
not call S χ2 simply because we do not want to perform
a rigorous analysis, which would require a more detailed
discussion beyond the scope of our present exploration
work.

Figure 4 shows the contour level of S assuming that the
test particle in the reference model has E = 2.38µ and
Lz = 12.5 Mµ. The sum is performed over 41 frequencies,
from ω0 = 0 to ω40 = 0.6/M . In the left panel, S is mini-
mized over Lz . In the right panel, S is minimized over E . If
we identified S with χ2, S = 3.5, 8.0, and 14.2 would cor-
respond to the probability interval designated as 1-, 2-, and
3-standard deviations for three degrees of freedom. From this
contour levels, it seems that the measurement of the energy
spectrum can test the background metric and constrain ε.
There is no correlation between the deformation parameter
ε and the parameters of the test particle’s E and Lz . This is a
good result if we want to test BH candidates, but we have to
consider that we are restricting our attention to non-rotating
BHs only. The typical problem to test BH candidates is the
strong correlation between the spin and possible deviations
from the Kerr solution. We leave the extension to rotating
BHs to a future work.
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Fig. 4 Contour levels of S. The reference model has ε = 0 (Schwarzschild BH), E = 2.38, and Lz = 12.5 (μ = M = 1). In the left panel, S is
minimized over Lz . In the right panel, S is minimized over E . See the text for more details

5 Summary and conclusions

Astrophysical BH candidates are supposed to be the Kerr
BH of general relativity, but any observational confirmation
is still lacking and the same Einstein’s theory has not yet been
tested in strong gravitational fields. The Kerr paradigm can
be potentially verified by studying the electromagnetic and
gravitational signals emitted from these systems. The radia-
tion emitted by the gas in the inner region of the accretion
disk is affected by relativistic phenomena and the study of the
electromagnetic spectrum of a BH candidate can thus provide
information on the background metric close to the compact
object. Gravitational waves produced by perturbations in the
spacetime geometry around BH candidates are determined
by both the background metric and the field equations of the
gravity theory.

In this paper, we have considered the axial perturbations
generated by a test particle moving in the gravitational field
of non-rotating BHs. Starting from the Johannsen–Psaltis
parametrization, we have derived some effective equations
governing the evolutions of the gravitational wave signal and
we have compute the associated energy spectrum. Devia-
tions from the Schwarzschild predictions in general relativ-
ity are quantified by an effective deformation parameter ε.
Because of the dependence of the gravitational wave signal
on the field equations of the underlying theory, it is not pos-
sible to directly compare the results from electromagnetic
and gravitational spectrum. In the former case, experiments
can really constrain the deformation parameter appearing in
the Johannsen–Psaltis metric. With the gravitational wave
approach, the final parameter has also absorbed possible devi-
ations from the Einstein equations.

We find that the gravitational wave signal is mainly deter-
mined by the geodesic motion of the particle, while devi-

ations in the axial quasi-normal modes due to a different
background are smaller. Employing a simple analysis with
the S function in Eq. (17), we have compared different mod-
els to figure out if and how the energy spectrum can constrain
the deformation parameter ε and thus test general relativity.
Our result is promising: as shown in Fig. 4, it seems that the
measurement of the gravitational wave spectrum can distin-
guish different spacetimes, constraining ε and determining
the parameters of the test particle’s E and Lz . However, our
discussion is limited to non-rotating BHs. The typical prob-
lem to test BH candidates is the strong correlation between
the estimate of the spin and of the deformation parameters.
We leave the analysis of rotating BHs to a future work, which
is fundamental to understand if and how this approach can
test BH candidates.
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