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Abstract We consider an extension of the one-nucleon sec-
tor of baryon chiral perturbation theory beyond the low-
energy region. The applicability of this approach for higher
energies is restricted to small scattering angles, i.e. the kine-
matical region, where the quark structure of hadrons cannot
be resolved. The main idea is to re-arrange the low-energy
effective Lagrangian according to a new power counting and
to exploit the freedom of the choice of the renormalization
condition for loop diagrams. We generalize the extended
on-mass-shell scheme for the one-nucleon sector of baryon
chiral perturbation theory by choosing a sliding scale, that
is, we expand the physical amplitudes around kinematical
points beyond the threshold. This requires the introduction
of complex-valued renormalized coupling constants, which
can be either extracted from experimental data, or calculated
using the renormalization group evolution of coupling con-
stants fixed in threshold region.

1 Introduction

Effective field theories (EFTs) of the strong interaction
started with the pioneering work by Weinberg [1]. The main
idea of this approach is that by considering the most gen-
eral effective Lagrangian of dynamical fields corresponding
to the relevant light degrees of freedom, which is invariant
under all symmetries of quantum chromodynamics (QCD),
one can reproduce the non-trivial low-energy structure of the
S-matrix of QCD. Contributions of heavy degrees of free-
dom are analytic at low energies and therefore can be repre-
sented by a systematic expansion of the effective Lagrangian
in powers of quark masses and derivatives acting on fields.

a e-mail: jgegelia@hotmail.com

The Goldstone-boson sector of chiral EFT, called chiral per-
turbation theory (ChPT), has been worked out in detail in
Ref. [2]. The inclusion of nucleons in this framework proved
to be more complicated due to the non-vanishing chiral limit
value of the nucleon mass [3]. The encountered non-trivial
problem of power counting in manifestly Lorentz invari-
ant formulations of baryon ChPT (BChPT) has first been
resolved by applying the heavy baryon approach [4–7]. Later
it has been suggested that the power counting can also be
respected within the original manifestly Lorentz invariant
formulation of BChPT by applying an appropriate renor-
malization scheme [8–13]. The solution of the power count-
ing problem in manifestly Lorentz invariant formulations of
BChPT is based on the observation that the power count-
ing violating parts of loop diagrams are polynomial in quark
masses and external momenta and can be subtracted sys-
tematically by renormalizing the parameters of the effective
Lagrangian. A detailed discussion of conceptual issues and
applications of BChPT to various processes can be found,
e.g., in Refs. [14,15].

In the current work we extend the applicability of BChPT
beyond the low-energy region under the condition that the
scattering angles are small.

Below we demonstrate the main idea behind the extension
of applicability of BChPT on an example of a Taylor expan-
sion of a function of one variable. We treat the function the
way we do for the tree-order scattering amplitudes generated
by a chirally invariant effective Lagrangian. Let us consider a
function f (x) which is analytic at x = 0. It can be expanded
in a convergent Taylor series for small x

f (x) = xi (a0 + a1x + a2x
2 + · · · ), (1)

where a j are numerical coefficients and i is either zero, or
some integer number (in the case of BChPT the analog of i
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takes different values depending on the considered physical
amplitudes). For sufficiently small x the function f (x) can
be well approximated by the first few terms of the series of
Eq. (1). For larger x we may expand around another point,
say x0. If the function f (x) contains a singularity close to x0

(this is the case for BChPT due to the presence of resonances),
we isolate the singular part and expand the remaining non-
singular piece

f (x) = xiφ(x) = xi
[
φreg(x) + φsing(x)

]

= xiφsing(x) + xi
[
φreg(x0) + φ′

reg(x0)(x − x0)

+ φ′′
reg(x0)

2! (x − x0)
2 + · · ·

]
. (2)

Let us emphasize that while usually one would use the stan-
dard Taylor series expansion around x = x0 for the regular
part of the function f (x) (i.e. would expand xiφreg(x) not just
φreg) the alternative expansion given by Eq. (2) also provides
a consistent convergent series and, as will be seen later, an
analogous expansion is well suited for physical amplitudes
generated by the chirally invariant Lagrangian. In particu-
lar, if one cuts the series in Eq. (2) at any finite order of
(x − x0)

N , the obtained result will be an i + N th order poly-
nomial in x , i.e. it has the same structure as the i + N th
order result of the series of Eq. (1), however, with differ-
ent coefficients of the polynomial. This almost trivial feature
is important for BChPT as it guarantees that the effective
Lagrangian for higher energies at any finite order is obtained
by re-arranging a finite number of chirally invariant terms in
the standard effective Lagrangian designed for the expansion
at low-energies.

We extend the applicability of BChPT beyond the low-
energy region by re-arranging the chirally invariant terms
of the standard low-energy effective Lagrangian and by
introducing a generalization of the extended on-mass-shell
(EOMS) scheme of Refs. [11–13]. We obtain an EFT with
new well-defined power counting rules. Loop diagrams con-
tributing to physical amplitudes violate this power counting.
However, the divergent parts as well as power counting vio-
lating pieces can be subtracted by applying a generalization
of the EOMS scheme. The subtracted terms are absorbed
in the redefinition of parameters of the re-arranged effective
Lagrangian. As the subtractions are made above the thresh-
old, the corresponding counter terms contain imaginary parts.
This means that the renormalized parameters become com-
plex. Thus, the suggested modification of the EOMS scheme
belongs to the class of complex mass schemes (CMS) first
considered in Refs. [16,17]. One might be concerned about
unitarity within the CMS because of the use of complex
renormalized parameters, however, this issue has been dis-
cussed in detail recently in Ref. [18] (see also Ref. [19]).

Considering physical amplitudes of the one-nucleon sec-
tor within the new approach, we obtain a finite number of
diagrams at any finite order, i.e. the calculations are pertur-
bative. It is not surprising that this framework, which uses
the hadronic degrees of freedom for higher energies, can be
applied only close to the forward direction, where the quark
structure of hadrons cannot be resolved. Analogously to the
standard low-energy EFT, the radius of convergence of per-
turbative series is determined by the nearest non-analytic
structure. The branch points and cuts of the S-matrix of
QCD are generated by loop diagrams in the EFT frame-
work. On the other hand, poles represent non-perturbative
effects. Therefore, the appearance of poles in the S-matrix
requires the inclusion of the corresponding fields as explicit
degrees of freedom in the effective Lagrangian or perform-
ing some kinds of non-perturbative resummations. That is,
all resonances which appear at the considered energies must
be included as dynamical degrees of freedom in the effective
Lagrangian within our new perturbative framework.

Our paper is organized as follows. In Sect. 2 we consider
pion–nucleon scattering at tree order beyond the threshold
region and the corresponding re-arrangement of the chirally
symmetric effective Lagrangian. While our new approach
is applicable to the one-nucleon sector of BChPT in gen-
eral, in the current work pion–nucleon scattering is consid-
ered in some detail as a demonstration of the method. Sec-
tion 3 addresses the issue of renormalization introducing the
EOMS scheme with a sliding scale. The scale-dependence
of renormalized coupling constants and the phase shifts of
the pion–nucleon scattering in the threshold region applying
the EOMS scheme with the sliding scale are considered in
Sects. 4 and 5 contains conclusions. In the appendix we give
some explicit expressions and briefly touch upon the issue of
complex renormalized parameters and unitarity.

2 Pion–nucleon scattering at tree order
and the effective Lagrangian of BChPT

We consider the process πa(q)N (p) → πa′
(q ′)N (p′)

assuming exact isospin-symmetry. Here, a and a′ are Carte-
sian isospin indices. The Mandelstam variables are defined in
standard form as s = (p+q)2 = (p′ +q ′)2, t = (q−q ′)2 =
(p − p′)2, and u = (p − q ′)2 = (p′ − q)2. They fulfill the
identity s+ t +u = 2m2

N +2M2
π , where mN and Mπ are the

physical masses of the nucleon and the pion, respectively.
We parameterize the pion–nucleon scattering amplitude in
the standard way [22]:

Ta′a = δa′aT
+ + 1

2
[τa′ , τa] T−,

T± = ū(p′, σ ′)
[
D±(t, ν) − 1

4mN
[q ′/, q/]B±(t, ν)

]

× u(p, σ ). (3)
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In BChPT it is convenient to utilize the D and B
amplitudes as functions of t and ν, where ν = (s −
u)/(4mN ). Due to the crossing symmetry the amplitudes
X ∈ {D+, D−/ν, B+/ν, B−} are even functions of ν. It
is useful to consider the difference between the full pion–
nucleon scattering amplitude and the pseudovector Born term
expanded around the point ν = t = 0 [22,23] (subthreshold
expansion)

X (ν, t) = X pv(ν, t) +
∞∑

i, j=0

xi jν
2 i t j , (4)

where X pv(ν, t) are the pseudovector Born terms and x ∈
{d+, d−, b+, b−}.

Spontaneously broken chiral symmetry predicts that
d+

00 = 0 and d−
00 = 1/(2F2) in the chiral limit of vanish-

ing up and down quark masses, where F is the pion decay
constant in that limit. Taking into account this observation,
the one-particle irreducible tree-order contributions of the
effective Lagrangian can be parameterized as

D+ = d+
0 (t, M) + d+

2 (t, M)ν2 + d+
4 (t, M)ν4 + · · · ,

D− = d−
1 (t, M)ν + d−

3 (t, M)ν3 + · · · ,

B+ = b+
1 (t, M)ν + b+

3 (t, M)ν3 + · · · ,

B− = b−
0 (t, M) + b−

2 (t, M)ν2 + · · · ,

(5)

where d±
j (t, M) and b±

j (t, M) are Taylor series in t and M ,
with M the leading-order term in the chiral expansion of the
pion mass. The coefficients of series in Eq. (5) also con-
tain chiral logarithms (i.e. terms ∼ ln M , which are not con-
tained in the effective Lagrangian but rather generated by
the on-shell condition of external pions). In the low-energy
region various contributions to the amplitudes are organized
according to the power counting which assigns order q2 to
t , q1 to ν and order q1 to M , with q denoting a small quan-
tity. The amplitudes of a given order in Eq. (5) are generated
by terms of the low-energy effective Lagrangian of corre-
sponding orders. Terms of the effective Lagrangian generat-
ing (leading) tree diagram contributions of order qN count
as order N .

To consider the tree-order amplitudes beyond the thresh-
old region we re-expand them at ν2 = μ2 as follows:

D+ = d+
0 (t, M) + ν2

[
d̃+

2 (t, M)+d̃+
4 (t, M)(ν2−μ2)+· · ·

]
,

D− = d−
1 (t, M)ν+ν3

[
d̃−

3 (t, M)+d̃−
5 (t, M)(ν2−μ2)+· · ·

]
,

B+ = ν
[
b̃+

1 (t, M) + b+
3 (t, M)(ν2 − μ2) + · · ·

]
,

B− = b̃−
0 (t, M) + b̃−

2 (t, M)(ν2 − μ2) + · · · . (6)

Note here that the different treatment of D+ and B− is caused
by the fact that d+

00 = 0, i.e. we keep at each order of the new
exapnsion the property that D+ = 0 for t = M = ν = 0.

Analogously, the fixed value d−
00 = 1/(2F2) causes the dif-

ferent treatment of D− and B+. The power series expan-
sion of Eq. (6) can be generated by an effective Lagrangian
with the same structures as contained in the standard effec-
tive Lagrangian constructed for the near-threshold region,
however, the terms have to be re-arranged according to new
power counting rules. In particular, considering now Q as a
small parameter, t counts as order Q2, while M and ν2 −μ2

count as order Q1. It is understood that in the Taylor series
of d̃±

i (t, M) and b̃±
i (t, M) a finite number of terms, cor-

responding to the given specified order of accuracy, are
retained. Terms of the effective Lagrangian, i.e. combina-
tions of the chirally invariant structures, which generate con-
tributions of order QN at tree level count as order QN . The
re-arranged effective Lagrangian is organized as an expan-
sion according to these orders. At any finite order it con-
tains a finite number of chirally invariant structures, terms
which coincide with those of the standard Lagrangian, how-
ever, the assigned orders are different and the coupling con-
stants are also different. In particular, each chirally invariant
term of the original low-energy effective Lagrangian with
a given low-energy coupling constant is split into an infi-
nite number of contributions in an infinite number of terms
of the re-arranged Lagrangian. The sum of coefficients of
all these infinite number of contributions of the same chi-
rally invariant structure (in terms of growing orders of the
re-arranged effective Lagrangian) reproduces the coefficient
of the corresponding term in the standard low-energy effec-
tive Lagrangian, at least formally. Notice that if one is com-
paring the low-energy effective Lagrangian without reso-
nances (as explicit degrees of freedom) to the re-arranged
effective Lagrangian with resonances, then one needs to
take into account that low-energy coupling constants also
get contributions from resonances when they are integrated
out.

To be more specific, the lowest-order terms in D+ are
proportional to ν2, M2 or t , which are of order Q0, Q2, and
Q2, respectively. Therefore, terms of the low-energy effec-
tive Lagrangian of order q2+2i , which give contributions to
D+ proportional to ν2+2i , count as order Qi . Terms of order
q2i+2 j+2k giving contributions proportional to ν2i (M2) j t k

( j + k �= 0) count as order Qi+2 j+2k . Here and below by the
order of a given structure is meant the lowest order, to which
it contributes.

The leading-order term in D− is generated by the covari-
ant derivative part of the standard leading-order low-energy
pion–nucleon Lagrangian L(1)

πN [3], which cannot be re-
arranged because it generates the undressed propagator of
the nucleon. The first subleading terms are proportional
to ν3, νM2, and νt , which are of order Q0, Q2, and
Q2, respectively. Therefore, terms of the low-energy effec-
tive Lagrangian of order q3+2i , which give contributions
to D− proportional to ν3+2i , count as order Qi . Terms
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of order q1+2i+2 j+2k giving contributions proportional to
ν1+2i (M2) j t k ( j + k �= 0) count as order Qi+2 j+2k .

The lowest-order terms in B+ are proportional to ν, which
is of order Q0. Therefore, terms of the low-energy effec-
tive Lagrangian of order q3+2i , which give contributions to
B+ proportional to ν1+2i , count as order Q1+i . Terms of
the order q3+2i+2 j+2k giving contributions proportional to
ν1+2i (M2) j t k ( j + k �= 0) count as order Q1+i+2 j+2k . Note
here that the amplitudes B± are multiplied with [q ′/, q/], which
gives two additional orders of the small parameter q in low-
energy region and one additional order of Q in the higher-
energy region. We assign Q1 to the factor [q ′/, q/] according
to its contribution to the cross section in the energy region
beyond the threshold.

The lowest-order terms in B− are proportional to ν0,
which is of order Q0. Therefore, terms of the low-energy
effective Lagrangian of order q2+2i , which give contribu-
tions to B− proportional to ν2i , count as order Q1+i . Terms of
order q2+2i+2 j+2k , giving contributions to B− proportional
to ν2i (M2) j t k ( j + k �= 0) count as order Q1+i+2 j+2k .

Thus to construct the re-arranged Lagrangian of order N ,
using the above power counting for tree-order contributions,
we need to examine all structures of the standard BChPT
Lagrangian up to (including) order 2(N + 1) + 1 and deter-
mine their orders for the region beyond the threshold accord-
ing to their contributions in the tree-order amplitudes. In
addition, we need to re-arrange the structures of the stan-
dard low-energy effective Lagrangian in such a way that in
tree-order amplitudes power series expansions in terms of
ν2 − μ2 appear. We denote the kth order re-arranged effec-
tive Lagrangian by L̃(k)

πN .
The tree diagrams contributing to theπN scattering ampli-

tudes at q3 order are shown in Fig. 1. Below we specify
explicitly the amplitudes corresponding to one-particle irre-
ducible tree-order diagrams which are generated by the stan-
dard low-energy effective Lagrangian up to including the
third order [20,21]. For the purpose of the re-arranged theory
we also include one fourth-order and one fifth-order term:

(a) (b) (c)

(d) (e) (f)

Fig. 1 Tree diagrams contributing to the pion–nucleon scattering at
O(q3). The solid and dashed lines correspond to the nucleon and the
pion, respectively. Crossed diagrams are not shown. Different tree dia-
grams correspond to different orders

D+
tree = 16 c2 m2

N ν2

8F2m2 − 4 c1M2

F2 + c3(2M2
π − t)

F2

+ 16 e16 ν4

F2 + · · · ,

D−
tree = ν

2F2 + 4d3ν
3

F2

+ 2ν
[
2M2

π (2d5 + d1 + d2) − (d1 + d2)t
]

F2

+ fxν5

F2 + · · · ,

B+
tree = 4 (d14 − d15)mN ν

F2 + · · · ,

B−
tree = 1

2F2 + 2c4mN

F2 + · · · . (7)

Here,m and F are the nucleon mass and pion decay constant
in the chiral limit, respectively, and the ci , di , and ei are the
low-energy constants of the standard effective Lagrangian
[21] and fx is a linear combination of coupling constants
of the fifth-order effective Lagrangian (not yet available in
literature).

Below we show the new tree-order expressions obtained
by re-arranging these terms. Contributions of different orders
are put in square brackets and the corresponding orders of
the small parameter Q are indicated as subscripts:

D+
tree =

[
16 c̃2 ν2

8F2

]

0
+
[

16 ẽ16 ν2(ν2 − μ2)

8F2

]

1
+ · · · ,

D−
tree =

[
ν

2F2 + 4d̃3ν
3

F2

]

0

+
[
f̃xν3(ν2 − μ2)

F2

]

1

+ · · · ,

B+
tree =

⎡

⎣
4
(
d̃14 − d̃15

)
m ν

F2

⎤

⎦

0

+ · · · ,

B−
tree =

[
1

2F2 + 2c̃4mN

F2

]

0
+ · · · , (8)

where we kept only zeroth-order terms in the B± amplitudes
because of the order Q1 prefactor [q ′/, q/]. The new parameters
c̃i , d̃i , and ẽi depend on μ and they are related to the original
low-energy constants:

c2 − �c2 = c̃2 + ẽ16μ
2 + · · · ,

c3 − �c3 = c̃3 + 8 ẽ15μ
2 + · · · ,

c4 − �c4 = c̃4 + 8 ẽ18μ
2 + · · · , (9)

where �ci are the contributions of resonances which need
to be included dynamically in an extended effective theory
and the ellipses stand for an infinite number of terms with
increasing powers of μ.

The leading-order re-arranged effective Lagrangian of the
one-nucleon sector generating the leading zeroth-order term
in the expansion of Eq. (8) reads
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L̃(0)
πN = 	̄

(
iγμD

μ − m + 1

2
gAγμu

μγ5

)

× 	 − c̃2

4m2 〈uμuν〉 	̄
(
DμDν + h.c.

)

× 	 + d̃3

12m3 	̄
{[
uμ, [Dν, uλ]

] (
DμDνDλ+sym.

)

+ h.c.} 	. (10)

Here, 	 denotes the nucleon field, Dμ	 = (∂μ + 
μ)	 is
the covariant derivative (in the absence of external vector and
axial-vector fields) and

u2 = U, uμ = iu†∂μUu†, 
μ = 1

2
[u†, ∂μu], (11)

where U is a unimodular unitary (2 × 2) matrix of the
Goldstone-boson fields. Terms of the re-arranged effective
Lagrangian, corresponding to next-to-leading order contri-
butions explicitly shown in Eq. (8) has the form

L̃(1)
πN = ẽ16

48m4

{
	̄
[〈hλμhνρ〉Dλμνρ + h.c.

]

× 	 + 12m2μ2〈uμuν〉	̄
(
DμDν + h.c.

)
	

}
.

+ i
d14 − d15

8m
	̄

{
σμν

〈 [
Dλ, uμ

]
uν

− uμ [Dν, uλ]

〉
Dλ+h.c.

}
	− c̃4

4
	̄γ μγ ν

[
uμ, uν

]

× 	 + f̃x 	̄

{
Ô − μ2

48m3

( [
uμ, [Dν, uλ]

]

× (
DμDνDλ + sym.

) + h.c.

)}
	, (12)

where by Ô we indicated a combination of operators of the
fifth-order low-energy Lagrangian (not yet available in the
literature), which generates the contribution ∼ ν5 in the D−
amplitude.

3 EOMS scheme with sliding scale

To renormalize loop diagrams, we use the EOMS scheme
with a sliding scale. In particular, we move the normalization
point away from the threshold to larger values of the energy.
That is, we take the forward-scattering amplitude at some
fixed energy in the chiral limit as an input and calculate the
expansion around this point. The renormalized parameters of
the effective Lagrangian become complex in this framework.
Within this scheme the power counting of the previous sec-
tion is also applicable to loop diagrams. However, the rules
are more complicated for higher-energy regions. In particu-
lar, the orders assigned to one-particle irreducible tree dia-

grams and correspondingly to the effective Lagrangian can-
not be directly translated into the rules for loop diagrams.
That is, to vertices generated by the re-arranged effective
Lagrangian we assign their corresponding orders according
to q-counting. Next we draw all loop diagrams using these
vertices and recalculate the orders of loop diagrams in q-
counting (low-energy region) to orders of Q-counting (high-
energy region) analogously to tree-order diagrams. Doing so
we assign definite orders of a small parameter Q to each
loop diagram. Depending on the order of our calculation we
identify those diagrams which have to be included. For exam-
ple, consider diagram f) of Fig. 2. According to the standard
power counting it is of order q3. This diagram together with
its crossed partner gives a contribution in D− amplitude,
proportional to ν3. Therefore, recalculating the orders anal-
ogously to tree-order diagrams, we find that diagram f) is of
order Q0 in higher-energy region.

Loop diagrams do not satisfy the power counting before
renormalization is carried out. However, all power count-
ing violating parts are polynomial in external momenta and
the pion mass squared and therefore can be canceled (sub-
tracted) by counterterms of the effective Lagrangian. We use
the EOMS scheme with a sliding scale as demonstrated below
by considering a simple one-loop integral

B0(p
2, M2,m2) = (2π)4−nμ4−n

d

i π2

×
∫

dnk
[
k2 − M2 + iδ

] [
(p + k)2 − m2 + iδ

] , (13)

where n is the number of space-time dimensions and μd is
the scale of dimensional regularization, which should not be
confused with our subtraction point. According to standard
power counting rules B0(p2, M2,m2) is of order q1. This
power counting can be satisfied by subtracting the integral
at p2 = μ2

p. Note that μ2
p = m2 + 2mμ, where μ is the

subtraction point used later in Sect. 4, provided that p2 is
identified with the Mandelstam s of pion–nucleon scattering.
By direct calculation we obtain the following subtraction
terms:

BST
0 = −32 π2λ̄ − 2 ln

m

μd
+ 1 +

(
μ2

p

m2 − 1

)

×
[

ln

(
μ2

p

m2 − 1

)

− iπ

]

, (14)

where

λ̄ = μ4−n
d

16π2

{
1

n − 4
− 1

2

[
ln(4π) + 
′(1) + 1

]}
. (15)

The final expression is obtained by subtracting BST
0 from B0.

The subtracted integral BR
0 is indeed of order O(q) if p2 ∼
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (k) (l) (m)

(n) (o) (p) (r)

(s) (t) (u) (v)

Fig. 2 One-loop diagrams contributing to the pion–nucleon scattering at O(q3). The solid and dashed lines correspond to the nucleon and the
pion, respectively. Crossed diagrams are not shown

μ2
p ∼ m2, and it is of orderO(Q) if we take p2 ∼ μ2

p 
 m2.
This can easily be seen by expanding in M and p2 − μ2

p:

BR
0 =

(
μ2

p − p2
) [

m2 ln

(
μ2
p

m2 − 1

)
− iπm2 + μ2

p

]

μ4
p

−

(
p2 − μ2

p

)2
[

2iπm4 − 2i(π − i)m2μ2
p − 2

(
m4 − m2μ2

p

)
ln

(
μ2
p

m2 − 1

)
+ μ4

p

]

2μ6
p

(
m2 − μ2

p

)

−
M2

[(
m2 + μ2

p

)
ln

(
μ2
p

m2 − 1

)
− iπm2 − 2μ2

p ln M
m − iπμ2

p + μ2
p

]

μ2
p

(
m2 − μ2

p

) + · · · . (16)

4 Pion–nucleon scattering at leading one-loop order

The purpose of this section is to apply the EOMS scheme
with sliding scale in the low-energy region of pion nucleon
scattering at order q3 and compare the results with those of
the EOMS scheme. For energies in the threshold region we
take the subtraction scale μ as a small quantity and there-

fore the standard q counting applies for tree as well as for
loop diagrams. For larger values of μ the relative values

of different contributions change, some of them becoming
more important than others and the new Q-counting applies
(note that there is no sharp border between the threshold and
higher-energy regions). Applying the above specified rules
of Q-counting, the loop diagrams of order q3 contribute at
order Q0 and higher. Loop diagrams of order q4 start con-
tributing at order Q1. That is, for higher energies our cal-
culation of this section corresponds to the full Q0 calcula-
tion of diagrams involving only pions and nucleons. For phe-
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Fig. 3 The renormalized
(complex) coupling constants of
EOMS scheme with sliding
scale μ ∈ [0, 0.2] GeV. The
solid (red) and dashed (blue)
lines represent the real and
imaginary parts of the coupling
constants, respectively
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Fig. 4 Partial-wave phase
shifts. The solid (red) lines are
our predictions using the central
values of the LECs from fitting,
while the cyan bands show the
change of the phase shifts
corresponding to the variation of
the LECs within their 1 − σ

uncertainties. Solid (black) dots
represent phase shifts taken
from Ref. [26]. Note that fit has
been performed for energies up
to 1.13 GeV. Here the
renormalization scale was taken
μ = 0, which corresponds to the
EOMS scheme
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nomenological applications in the energy region far beyond
the threshold it is necessary to include relevant resonances as
dynamical degrees of freedom. For example, if we are inter-
ested in πN elastic scattering up to 1.6 GeV, in the P33 par-
tial wave we need to include the �(1232) and the �(1600)

as explicit degrees of freedom, in the P11 partial wave the
Roper resonance N (1440) has to be taken into account, etc.
We postpone such a comprehensive analysis for the future
work.

The lowest-order standard pion–nucleon Lagrangian, gen-
erating the nucleon propagator and vertices needed in this
section, is given by [3]

L(1)
πN = 	̄

(
iγμD

μ − m + 1

2
gAγμu

μγ5

)
	, (17)

and the lowest-order O(q2) effective mesonic Lagrangian
has the form [2]

L2 = F2

4
Tr(∂μU∂μU †) + F2M2

4
Tr(U † +U ). (18)

The pion–nucleon Lagrangian of second and third orders,
needed for our tree diagrams, can be found in Refs. [20,21].
Tree and loop diagrams contributing to the pion–nucleon
scattering at q3 order are shown in Figs. 1 and 2, respectively.
Contributions of tree-order contact diagrams in the pion–
nucleon scattering amplitudes are given in Eq. (8). We cal-
culated all loop diagrams and subtracted the power counting
violating terms. To obtain the subtraction terms we expanded
the D± amplitudes generated by the loop diagrams in powers
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Fig. 5 Real part of the amplitudes multiplied by the modulus of the
nucleon momentum in the center of mass frame. The dashed (green),
dash-dotted (blue), dotted (violet) and solid (red) lines stand for the LO,
NLO, NNLO contributions and their sum, respectively. The cyan bands

show the change of the phase shifts corresponding to the variation of the
coupling constants within their 1 − σ uncertainties. The corresponding
values of μ are shown in the figures
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of M , t , and ν2 − μ2 up to order q2 by counting M as order
q1, and t and ν2 − μ2 as order q2. As the B± are multiplied
by [q ′/, q/], which counts as order q2, we only need to subtract
the zeroth-order contributions from them. We checked that
all subtraction terms are absorbed by redefining the coupling
constants of the effective Lagrangian. While the subtraction
terms are complex for μ �= 0, we further checked that in
the μ → 0 limit the real-valued subtraction terms of the
EOMS scheme [24,25] are reproduced. The complex renor-
malized coupling constants, i.e. ci (i = 1, . . . , 4), of the
EOMS scheme with sliding scale are shown in Fig. 3, where
the subtraction scale μ varies from 0 to 0.2 GeV. We do not
show the di couplings of the third-order Lagrangian because
at this order of accuracy they are all μ-independent. All the
involved coupling constants for μ = 0 case are determined,
following the strategies of Refs. [24,25], by fitting to the
phase shifts of the GWU/SAID group [26] and results very
similar to those of Refs. [24,25] are obtained, they are shown
in Fig. 4. For μ �= 0, the coupling constants can be obtained
with the help of renormalization group equations with respect
to μ, which lead to

c̃i (μ) = cEOMS
i + m

32π2F2 δi (μ), cEOMS
i ≡ c̃i (μ = 0),

(19)

where the explicit expressions of δi (μ) are given in the
appendix. The real parts of the amplitudes for three specific
subtraction scales, μ = 0, 0.1, and 0.2 GeV, are shown in
Fig. 5. As expected from general considerations, the rela-
tive size of contributions of different orders depends on the
choice of μ.

The bare parameters expressed in terms of renormalized
ones are substituted in the effective Lagrangian generating
the main interaction terms and counterterms. These countert-
erms need to be fixed once, in our case by adjusting them to
subtraction terms of the pion–nucleon scattering amplitudes.
For other processes, where the same terms of the effective
Lagrangian contribute, the same renormalized couplings and
counterterms are used. This guarantees that our approach
respects all underlying symmetries encoded in the effective
Lagrangian. While we cannot give a general proof that the
same counterterms also remove the power counting violating
terms from loop diagrams contributing to various related pro-
cesses, we expect that this is the case. The reason for this is
that the Ward identities derived from symmetries of the effec-
tive Lagrangian are satisfied order-by-order of the expansion
around any kinematical point, not only at threshold.

5 Conclusions

In this work we introduced a new approach to BChPT which
is applicable for processes in the one-nucleon sector at small

scattering angles at energies beyond the low-energy thresh-
old regions. In this kinematical region, despite the higher
energies, the quark structure of hadrons is still not resolved.
For the considered energies contributions of tree-order dia-
grams have to be re-ordered. This is done by re-arranging
the chirally invariant terms of the standard low-energy effec-
tive Lagrangian. Resonances which appear for the consid-
ered energies need to be included as explicit degrees of free-
dom. This guarantees that the tree-order diagrams represent
Taylor series expansions of analytic functions and thus are
convergent. This way we obtain an effective field theoret-
ical approach with a well-defined power counting for tree
diagrams. To apply the same power counting also for loop
diagrams, we use a new renormalization scheme for loop
diagrams, the generalized EOMS scheme with sliding scale.
Within this scheme, by exploiting the freedom of the choice
of renormalization condition in quantum field theories, we
shift the renormalization point in the physical region beyond
the threshold. The renormalized loop diagrams satisfy a sys-
tematic power counting for higher energies, provided that
small scattering angles are considered. By shifting the renor-
malization point in the physical region beyond the thresh-
old we subtract also the imaginary parts of loop diagrams.
This requires splitting of real bare couplings in complex
renormalized couplings and complex counterterms. Thus the
renormalized coupling constants of our re-arranged effec-
tive Lagrangian become complex. Finally, we are left with
a self-consistent effective field theoretical approach with a
well-defined power counting. The new re-arranged effec-
tive Lagrangian contains a finite number of terms at any
finite order and a finite number of Feynman diagrams con-
tribute to physical quantities at any finite order. In the cur-
rent work we have not included resonances, but rather con-
centrated on conceptual issues of the pion–nucleon sector.
While we considered only the pion–nucleon scattering here,
the pion photo- and electro-production processes as well as
Compton scattering and processes involving several pions
and/or photons (for special kinematics) can be treated anal-
ogously.
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Appendix A: Running of the dimension-two LECs

Explicit expressions of the coefficients δi (μ) appearing in
Eq. (19) are given by

δ1(μ) = 0,

δ2(μ) =
{

− (1 + g2
A)2

(m2 − 4μ2)
H̄01 + g4

Am
2

μ2 H̄11(m
2)

−
[ H̄11(m2 + 2mμ)

2μ2(m + 2μ)

(
4g2

Aμ3 − 2μ2(m + μ)

+ g4
A(m2 + 3m2μ − 2μ3)

)

+ g4
Am

3

μ
H̄B(m2 + 2mμ) + (μ → −μ)

]}

M2=0

−
{

(g2
A − 1)2 log

(
m2

μ2
d

)

− (2 + g4
A)

}

δ3(μ) = 0

δ4(μ) =
{

− g2
A(−5 + g2

A)

4

+ −(2 + 7g2
A + 3g4

A)m2 + 4(1 + 5g2
A + 2g4

A)μ2

4m2(m2 − 4μ2)
H̄01

+ g2
A(−1 + 5g2

A)

4
H̄02(0)+g2

A

(

1+ 2g2
Am

2

μ2

)

H̄11(m
2)

+
[ H̄11(m2 + 2mμ)

2mμ2(m + 2μ)

(
μ4 − 2g2

Aμ3(m + μ) + g4
A

× (−2m4 − 8m3μ − 7m2μ2 + 2mμ3 + μ4)

)

− g4
Am

2(m + μ)

μ
H̄B(m2 + 2mμ) + 2g4

Am
4H̄13

× (m2 + 2mμ, 0) + (μ → −μ)

]}

M2=0

− 1

2

{

(3g4
A − 2g2

A − 1) log

(
m2

μ2
d

)

− g2
A(5 + g2

A)

}

.

(A1)

Here, the loop integrals are defined as

H01 = (2πμd)
4−n

iπ2

∫
dnk

1

k2 − m2 ,

H11(s) = (2πμd)
4−n

iπ2

∫
dnk

1

[k2 − M2][(k − p − q)2 − m2] ,

H02(t) = (2πμd)
4−n

iπ2

∫
dnk

1

[(k − p)2 − m2][(k − p′)2 − m2] ,

HB(s) = (2πμd)
4−n

iπ2

∫
dnk

1

[k2 − M2][(k − p)2 − m2][(k − p − q)2 − m2] ,

H13(s, t) = (2πμd)
4−n

iπ2

∫
dnk

1

[k2 − M2][(k − p)2 − m2][(k − p − q)2 − m2][(k − p′)2 − m2] .

(A2)

Note that p (p′) and q are the momenta of the incom-
ing (outgoing) nucleon and of the incoming pion, respec-
tively. The finite parts of the loop integrals that remain
after subtracting the UV divergent parts proportional to

λ̄ = μ4−n
d

16π2

{
1

n−4 − 1
2

[
ln(4π) + 
′(1) + 1

]}
are denoted as

H̄.

Appendix B: Complex renormalized parameters
and unitarity

The use of complex renormalized parameters raises the ques-
tion if the CMS violates unitarity. In general, unitarity is
guaranteed by a real (Hermitian) bare Lagrangian and the
fact that the renormalization is an identical transformation.
Still, order-by-order unitarity in perturbation theory within
the CMS is a non-trivial issue. It has been looked at in
Ref. [19] and thoroughly investigated recently in Ref. [18].
Here, we give an intuitive argument for demonstration. For
definiteness, let us consider the scalar φ4 theory in 4 dimen-
sions. The Lagrangian of the theory depends on two param-
eters, the bare mass m0 and the bare coupling λ0. Using
standard dimensional regularization and the minimal sub-
traction scheme (MS) we get rid of the divergences and
express the physical quantities, like the scattering ampli-
tudes, in terms of renormalized parameters of the MS scheme
mMS and λMS as power series in the renormalized coupling
constant

Mi = Fi (mMS(μd), λMS(μd), p, μd), (B1)

where p stands for kinematical variables and μd is the renor-
malization scale. The physical amplitudes satisfy the con-
ditions of unitarity up to the order of accuracy of a given
calculation. We can change the renormalization scheme by
switching to another one. For example, we can calculate the
pole mass of the scalar particle and the scattering amplitude
M(s, t, u) of two scalars at the symmetric non-physical kine-
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matical point

m = φ1(mMS(μd), λMS(μd), μd),

λ(ν̄) = M(−ν̄2/3,−ν̄2/3,−ν̄2/3)

= φ2(mMS(μd), λMS(μd), ν̄, μd), (B2)

express mMS(μd) and λMS(μd) in terms of m and λ(ν̄) from
Eq. (B2) and substitute in Eq. (B1). This way we obtain

Mi = F̃i (m, λ(ν̄), p, ν̄), (B3)

where the F̃i are some functions (different from Fi ) of real
arguments. Surely enough by doing this identical transfor-
mation one does not violate unitarity.

Although very convenient, it is by no means necessary
to choose the new renormalized coupling at a non-physical
kinematical point. Taking e.g. a physical normalization
point

m = φ1(mMS(μd), λMS(μd), μd),

λC (ν̄) = M(2m2 + ν̄2, 0, 2m2 − ν̄2)

= φ3(mMS(μd), λMS(μd), ν̄, μd), (B4)

expressing mMS(μd) and λMS(μd) in terms of m and λC (ν̄)

from Eq. (B4) and substituting in Eq. (B1), we obtain

Mi = F̄i (m, λC (ν̄), p, ν̄), (B5)

with F̄i some functions (different from F̃i and Fi ) of real and
complex arguments. Once more, by doing this identical trans-
formation one does not violate unitarity, even though λC (ν̄)

is complex. However, as the unitarity condition is only sat-
isfied up to higher orders of perturbation theory, the relevant
issue is of course the convergence of the obtained perturba-
tive series.
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