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Abstract In the Bourrely—Soffer—Wu model we introduce
for the pomeron a new opaqueness in impact parameter
space in terms of different quark contributions described by
a Fermi—Dirac distribution. In order to check the validity
of this assumption we consider p p, p p, and 7%+ p elas-
tic scattering. We emphasize the role of the gluon above the
diffraction peak in the differential cross sections. Once these
contributions are determined we extend the model to light
nuclei elastic reactions like p d, p *He and 7% “He. The
results obtained show a good description of all these elastic
processes over the available experimental energy range and
moderate momentum transfer.

1 Introduction

The advent of the LHC collider has renewed the interest
of the high-energy behavior of the p p elastic scattering
and raises the question of the validity of numerous mod-
els devoted to this reaction. Many years ago we proposed
the Bourrely—Soffer—Wu (BSW) model [1] and made further
developments [2—4] to improve the agreement with exper-
iments. This model which is based on an impact-picture
phenomenology relies for the pomeron contribution to the
opaqueness on two assumptions:

(i) the energy dependence is deduced from the high-energy
behavior of quantum field theory [5,6];

(i1) the momentum transfer dependence follows from the
supposed proportionality between the charge density of the
proton and the internal distribution of matter [7—-10].

With these simple assumptions we were able to obtain a
good description of the available experimental data obtained
at the ISR, SPS and Tevatron.

To be more precise, the assumption (ii) has led us to take
for the momentum transfer dependence at the Born level a
dipole in an analogous way to the approximation made to
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describe the proton electromagnetic form factor, however,
this was not sufficient and an extra term was added (see
next section). We stress that the relation between charge
and matter density was never strictly proven, moreover, in
this description we ignore the quark constituents of the pro-
ton, so the purpose of the paper is to find a new opaqueness
expression which involves the proton constituents. The key
observation is that in BSW the opaqueness in impact param-
eter b space is very similar to a Fermi function, so we propose
that for each quarks we associate a Fermi component being
dependent on the impact parameter b. Another justification
of this new opaqueness is provided by our statistical model
for parton distribution functions (PDF) and transverse par-
ton distributions (TMD) which are built in with Fermi func-
tions [11-13], the model is able to describe a large set of
unpolarized and polarized structure functions in momentum
space.

This idea to introduce a Fermi function in b space has been
considered by several authors [14-16] and also in momen-
tum space with a Tsallis function [17, 18].! However, most
authors consider a global opaqueness which does not discrim-
inate between the quark components, and we will see that
in our approach the properties of each of them reflect their
importance inside the proton and that their associated ther-
modynamical potentials remain valid for light nuclei elas-
tic reactions. Let us also mention the quark—diquark model
[20,21] and the Generalized Parton Distributions (GPD),
which are functions of b and the transverse momentum
kt [22].

The paper is organized as follows: after a brief introduction
to the original BSW model in Sect. 2, we define in Sect. 3
a new expression for the opaqueness. In Sect. 4 we analyze
the p p and p p elastic scattering data which determine the
free parameters, the relation between the matter distribution
and the proton electromagnetic form factor is discussed in
Sect. 5; then we extend our approach to p d in Sect. 6 and

! For a review see Ref. [19].
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to p *He elastic scattering in Sect. 7. In order to check the
validity of our assumption we consider also the 7 p and
7 “He elastic scattering in Sects. 8 and 9, respectively. The
last section contains our conclusion.

2 A summary of the BSW model

In the BSW model [1-4] the amplitude is defined by the
eikonal expression

a(s, 1) = %/e—iq"’(l — e 926:h)) gp, )

where the opaqueness
Q(s,b) = S(s)F (D) + R(s, D), (2)

the energy dependence is given by the complex crossing sym-
metric expression deduced from quantum field theory,

c MC

T e

3)
and in Eq. (2) F(b) is the profile function related to the
pomeron contribution and R(s, b) represents Regge con-
tributions which are added to describe the low-energy scat-
tering. We define at the Born level the momentum transfer
dependence through the product of a dipole multiplied by an
extra function whose property is to avoid spurious dips at
large momentum transfer in the differential cross sections.
Therefore, the profile function reads

2

Fiy = F16oP 5 4)
1

G s)

T U —t/mAHA—t/md)

We will see that this extra function is in fact related to the
gluon contribution. The scattering amplitude is expressed as
a Bessel transform

o0

a(s, 1) :is/]o(b\/—_t)(l — e 26Dy qp, (6)

0

we notice that the factorization property in Eq. (2) does not
hold when the amplitude is eikonalized. In impact space the
profile function reads

o]

F@) = / F@0)Joby/=D)v=Tdv/=i, ™

0

where the Bessel transform of F(r) gives the dimensionless
expression
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m1b
F(b) = — fm3m3 [[1 +2a%A3] A%zmgTKl(mlb)

mob
+[1 + 242 As3] A%zm%TKl(mzb)
+ 2424 (A13+A23)] Afmim3 (Ko(m1b) — Ko(m2b))

+ 2a2m%m%A12A32A31
x [A31 (Ko(m1b)—Ko(ab))— A3z (Ko(mab)— Ko (ab))] ’
(8)

the coefficients A;; depend on my, m3, a.In Eq. (8) the
terms associated with the Bessel Ky(ab) which depend on
the parameter a introduced in (4) give a negative contribution
to the sum. Conversely, we have

oo

F@t) = / F(b)Jo(bx/—1)b db. 9)

0

A fit of the experimental data (see Ref. [3]) gives for the
pomeron parameters the values we display in Table 1.

3 The Fermi-Dirac opaqueness

At the level of the BSW Born term in momentum space
we used a modified dipole approximation, arguing that there
should be some kind of similarity between the distribution
of matter and the distribution of charge inside the proton.
Taking the Fourier transform of this modified dipole we get
the opaqueness 2(s, b) in the impact parameter space b.
Now, looking at the curve F(b) in Fig. 2 of Ref. [1], we
observe that its shape can be approximated by Fermi—Dirac
functions.

We know from QCD that inside a proton its constituents
are two quarks u, one d, a sea and the gluon; we can infer
that each of them contributes to the profile function F(b).
From our previous observation we deduce that their global
effect can be described by a Fermi function, so we make the
hypothesis that the individual nature of these constituents is
also of Fermi type and that the sum should reproduce the
same profile function, F(b), as in BSW.

Now, in analogy with the Fermi PDF expressions, which
in 0%, x space depend on thermodynamical potentials and
temperature, see Ref. [11-13], we propose to associate to
each quark a Fermi function with a thermodynamical poten-
tial now in b space, namely, X,,, X4, Xj, X,,and a param-
eter by, which represents an average size localization of the
partons inside the proton. For the gluon due to the boson
nature we use a Bose—Einstein function and introduce a non-
zero potential otherwise its contribution would be infinite for
b = 0. These properties can be summarized by the following
crossing symmetric expression:
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Table 1 Parameters of the BSW model

¢ =0.167
myp = 0.577 GeV
a =1.858 GeV

¢ =0.748
my = 1.719 GeV
f=6971 GeV~2

Table 2 Pomeron parameters of the Fermi model for p p and p p

elastic scattering

¢ =0.1677 £0.0018

co = 0.0891 £ 0.0029

¢y =21.6197 £0.358

bo = 0.3337 £ 0.0098 fm
X4 =1.0654 +0.011 fm

¢ =0.7103 £0.0176

c1 = 13.4678 +0.238

c3 =4.9707 £ 0.242

X, =0.269 £ 0.0073 fm
Xg = 1.8837 £0.03138 fm

X, =0.6832 £0.014 fm

1 C1l
F) =co
I+exp[25X4] 1+ exp[252e]
(o) c3
+ + — |, (10)
1 —exp [b:g(g] 1 +exp [b—;fq

where the signs in front of the potentials are defined according
to the same convention as in the case of parton distributions.
Here, ¢ plays the role of the parameter f in BSW, the coef-
ficients ¢y, ¢2 and c3 are the relative weight of u, g and sea
with respect to the quark d. We ignore in this first approach
heavy quarks.

Our goal is to show that the expression (10) can be used to
describe different elastic reactions and that, once the poten-
tials are determined from p p elastic scattering, their values
are an intrinsic property of the quarks, also valid for scatter-
ing reactions involving light nuclei, and they give a reliable
description of the proton electric form factor at low Q2.

4 The p p and p p elastic scattering

Now, it remains to determine the values of the above param-
eters by making a fit to the data. We use the same set of data
as in the original BSW [31-45]; to be precise, the energy
ranges from piap = 100 GeV to /s = 1.8 TeV for p p and
p p, and for the momentum transfer we restrict the values
to |1] < 5 GeV2. In order to put more constraints on the
pomeron we take into account low-energy data, so we use
for the Regge contributions the same expressions as in BSW
[1,3]. A fit gives for the pomeron parameters the numerical
values one finds in Table 2.

With these parameters we obtain a x> = 2060 for 955 pts
which gives a x2/pt = 1.95 and has to be compared with
the BSW value x2/pt ~ 2.8. We notice that the parameters

F(t) (Gev?)

! ! !
0 1 2 3 4

It (GeV®)

Fig. 1 The profile function F (t) as a function of |¢| for pp scattering.
Fermi solid red curve, BSW dashed blue curve

X

F(b)

b (fm)

Fig. 2 The profile function F(b) as a function of b for pp scattering.
Fermi solid red curve, BSW dashed blue curve

¢, ¢’ are close to the ones obtained with BSW, which means
that the asymptotic behavior of S(s) is preserved.

We show in Fig. 1 the function F(¢) and in Fig. 2 the pro-
file function F(b) produced by the Fermi—Dirac functions;
both of them are very close to the BSW curves. With the
parameters of Table 2 the individual contribution of quarks
to the profile function is shown in Fig. 3. We see that they are
concentrated around 1 fermi, which is the expected size of the
proton, the two quarks u in the proton give the main contri-
bution compared to the d quark, the gluon has a contribution
concentrated at small b.

We plot in Figs. 4 and 5 the differential cross sections for
p p and p p, where we obtain good agreement with the data.
The prediction at \/s = 7 TeV shows that the Fermi version
presents as BSW the same mismatch at large r compared with
the TOTEM differential cross section measurement [23,24];
see Fig. 6. At this energy we predict oior = 91.95 £ 1.2 mb,
0e] = 25.7 £2.2 mb, p = 0.124. These values have to be
compared with the TOTEM data oy = 98.0 £ 2.5 mb; notice
that we agree with o] = 25.43 +1.07 mb and the position of
the first minimum of the differential cross section. We show
in Fig. 7 the behavior of the total and elastic cross sections.

@ Springer
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b (fm)

Fig. 3 Individual contribution of quarks to the profile function for pp
scattering

do/dt [mb/GeV?]

P U R SRS
0 2 4 6

t| (GeV/c)®

Fig. 4 The pp differential cross section as a function of |¢|. Experi-
ments from Refs. [31-36]

Let us make a comment: the inclusion the TOTEM data
in our fit notably increases the x 2, so the quoted parameters
values are obtained leaving aside these data. A discussion of
the BSW model with respect to the TOTEM data is reported in
Ref. [25]. In fact, our pomeron, whose energy dependence is

@ Springer
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Fig. 5 The pp differential cross section as a function of |¢|. Experi-
ments from Refs. [34,35,37-45]

10—

PP Vs = 7Tev

do/dt [mb/GeV?]

S

0.5 1 1.5 2 2.5
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Fig. 6 A prediction of the Fermi model compared to the TOTEM
experimental data [23,24]

controlled by the parameters ¢, ¢/, which are constrained by
afitin an energy range from low energy up to 1.8 TeV cannot
give a total cross section as high as the one obtain by TOTEM.
In order to reach this value we need a revision of the pomeron
behavior, but before making any modification we wait for a
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Fig. 7 The pp total and elastic cross sections as a function of \/s.
Experimental data from Refs. [23,46]

confirmation from another experiment [26,27]. Let us point
out that at the Tevatron energy 1.8 TeV we obtain o;,; =
73.6£ 1.5 mb which is in agreement within the experimental
range 71.42 < oyor < 80.03 mb with an average error 2.4 mb
[28-30]. Notice that the values of the above parameters c, ¢’
are perfectly compatible with the high-energy behavior of
light nuclei reactions discussed in the next sections.

The role of the gluon
In the Born term Eq. (4) of BSW we have introduced the

2 . . .
extra term sz; in order to cancel a spurious second dip

in the differential cross section; this term implies that F (1)
has a zero at |t| = a? = 3.74GeV? and becomes negative
above. The Bessel transform of the Fermi distribution (10)
with respect to b gives a function F(r) which has also a zero
at |t| = 4.3 GeV? and a negative value above, see Fig. 1. We
will show that the origin of this zero is produced in fact by
the gluon as we now explain.

Looking at the expression of F'(b) Eq. (10) we see that it
contains four terms, including the u, d, the sea, and the gluon
contributions. Let us suppose that we remove the gluon con-
tribution, a fit made with only the u and d and the sea gives
a very large Xz, moreover, F () has no zero, so one can
conclude that the gluon contribution is necessary to obtain
a reasonable x2 and to produce a zero in F(t). Concerning
the gluon, a more detailed comparison between the Fermi
and the BSW approaches can be made. When making a plot

of Eq. (8) we observe that the terms associated with Bessel
functions whose arguments depend on m| or my give a pos-
itive contribution to F(b), while terms associated with the
parameter a give a negative contribution. In the Fermi case
the gluon has a denominator 1 —exp [hz{g ] where the minus
sign reflects the Bose nature of the contribution. Now the
value of the potential X, must be such that the denomina-
tor never vanishes; otherwise we get a singularity, and tak-
ing also into account the constraint for » = 0 we see that
the denominator must be always negative. This makes obvi-
ous a clear correspondence between the gluon and the con-
tribution due to the term associated with the parameter a
in BSW.

5 The proton electric form factor at low Q2

In Sect. 2, we have introduced the BSW profile function F (1)
Eq. (4), which depends on G2(1) (Eq. 5), interpreted as a
nuclear form factor. In Sect. 3, we have defined a new F (1)
as the Bessel transform of the Fermi—Dirac expressions (10).
Now, we raise the question if there is any relation between
this nuclear form factor and the electromagnetic form factor
of the proton. To this end, we define using Eq. (10) the proton
electric form factor by the expression

o0
1 C1
6@ = [ babab) 2 +
e J Je 1+exp [szfd] 1+exp [b;j(u
c c3
+ + — | . (11)
1 —exp [b-;j(“' 1+ exp [b:j("]

Compared to Eq. (10) we introduce the normalization fac-
tor fe2 and replace the quarks extension by inside the proton
by b, which corresponds to the electromagnetic case, and
all the other parameters are kept fixed at the values given in
Table 2. The normalization factor fe2 is determined by the
condition G,.(0) = 1, and we obtain fe2 = 0.0143 GeV?2
and the best agreement with the experimental form fac-
tor data gives b, = 0.326 fm—a value slightly less than
by = 0.337 fm. We can interpret this small difference by
the fact that u quarks give the most important contribu-
tion at small b (see Fig. 3) and carry 4/3 of the charge,
while the d quark, giving a smaller contribution, has a
charge —1/3.

In order to make a comparison with experiment we have to
rely on the available measured ratio Ge(Qz) / Gdip01e(Q2)2
since we are not able to compute the magnetic form factor,
so we cannot use the measurements of G,/ G,,. In Fig. 8 we
show the plot Ge(Qz) / Gdipole(Qz) produced by the Fermi

2 Gdipole(Qz) = W is the usual dipole form factor.
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Fig. 8 The proton electric form
factor G,(Q?) normalized to

G dipole as a function of Q2.
Fermi solid curve, uncertainty
domain shaded area, BSW

dashed curve. Experimental
data: square [47,48], triangle
[49], star [50], circle a data
analysis presented in Ref. [51]

0.7 L L

distributions (11) (solid line), the agreement with experimen-
tal data at low Q is relatively good, we notice that the recent
polarized experiment at JLab [47,48] (squares in the figure)
gives the most precise values. For reference we show the case
of BSW given by Eq. (4); we observe a fast decrease of this
ratio, because the parameters m and m, are only valid in the
nuclear case.

In the introduction we raised the question of a possible
relation between the nuclear and electromagnetic form fac-
tors; our Fermi approach shows clearly that with only two
new parameters we can make a close link between the dis-
tribution of matter and the distribution of charge inside the
proton.

6 The p d elastic scattering

In the previous section we considered elastic scattering
between two elementary particles p p, pp and found the
basic properties of quarks, sea, and gluon interaction through
a Fermi-Dirac function in impact parameter space. The ques-
tion arises how to extend this type of interaction when a light
nucleus like the deuteron is involved in the p d elastic scat-
tering.

Our theoretical input for the profile function is the same
formula defined for p p by Eq. (10), where we keep the
same value of the parameters c, ¢’ and the thermodynamical
potentials; the only free parameters are the normalization
coefficients ¢y, c1, ¢2, c3, and the parameter by associated
with the deuteron size. We infer that the total cross section
for this process is higher than in the proton case; ¢y must
increase.

The experimental data [53-55] cover the energy range
40 < piap < 397 GeV and the momentum transfer range
0.00077 < |t] =< 0.2435 GeV? [53-55]. Of course, the
energy domain is more limited than in the p p reaction, and

@ Springer

Q® (GeV?)

Table 3 Pomeron parameters of the Fermi model for p d elastic scat-
tering

co = 0.0726 £ 0.002
¢y =7.4228 +0.0.23
by = 0.544 £0.0122 fm

c1 =33.1219 £ 0.229
c3 = —35.592 £1.09

0.6 - B

F(b)

0.2 ~

b (fm)

Fig. 9 The profile function F(b) as a function of b

the momentum transfer covers only low |¢| values; neverthe-
less, we find it interesting to check the validity of our assump-
tion on the universality of the thermodynamical potentials in
this case. After a fit of the data we obtain x2 = 1533 for
1000 pts, giving a x 2/ pt = 1.53, which s slightly better than
the proton value. The resulting parameters for the pomeron
are given in Table 3.

The profile function F(b) shown in Fig. 9 differs from
the p p case with a maximum at b = 0.5 fm. In Fig. 10 we
plot the different components of the pomeron contribution,
we observe that the gluon and the quark u give the major
contribution. The differential cross sections show a perfect
agreement with the data in the measured low t region; see
Figs. 11 and 12. Concerning the total cross we obtain for
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1.5

0.5
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0 0.5 1 1.5 2 2.5

b (fm)

Fig. 10 Individual contribution of quarks to the profile function for
p—d

Elp (GeV)

do/dt [mb/GeV?]

60 (x107%) .

70 (x107%) .

PR B
0.05 0.1

P R R
0.1% 0.2 0.25

lt| (Gev/c)?

Fig. 11 The pd differential cross section as a function of |¢|. Experi-
ments from Refs. [53-55]

instance at Ej,p = 240 GeV, oior = 73.77 £ 0.4 mb, to be
compared with the experimental value 74.42 +0.53 mb [52]
This result confirms that our basic Fermi interaction
between quarks obtained in the elastic proton case, where
we have a system made of 4u + 2d, remains valid for this
light nucleus scattering where now it contains Su + 4d.

Elab (Gev)

182

281 (x107")

il

346 (x107%) |

1073 384 (x107°)
397 (x107%)
10’3 L L L L 1 L L L L 1 L L L
0.05 0.1 0.15
[t] (Gev/c)®

Fig. 12 The pd differential cross section as a function of |¢| continued

Table 4 Pomeron parameters of the Fermi model for p “He elastic
scattering

co = 0.0134 £0.0015
c2 =24.9568 +1.02
bp = 0.5967 £ 0.0018 fm

c1 =29.9041 £+ 1.01
c3 = 0.4968 £ 0.067

7 The p *He elastic scattering

Following the same approach as the previous sections, we
propose to describe the elastic reaction p “He from the mea-
surements made at Fermilab with a gas target in a range
of energies from 97 to 400 GeV and momentum transfer
0.003 < |¢] < 0.52 GeV? [56,57].

Our theoretical input for the profile function relies on the
same formula defined for p p by Eq. (10) where we keep
the same value of the parameters ¢, ¢’ and the thermodynam-
ical potentials; here again the only free parameters are the
coefficients ¢, c1, ¢2, ¢3, and the parameter by.

A fit gives a x> = 476 for 504 pts or a x2/pt =
0.94. The resulting parameters for the pomeron are given in
Table 4:

With these parameters we plot in Fig. 13 the different
components of the pomeron contribution, we observe that the
gluon and the quark u give the major contribution a situation
similar to the p d case (see Fig. 10). A plot of the differential
cross sections is shown in Fig. 14; we notice that the dip
region is well described. Concerning the total cross we obtain
at Ejgp = 250 GeV ooy = 132.13 0.5 mb, to be compared

@ Springer



2736 Page 8 of 13

Eur. Phys. J. C (2014) 74:2736

0.25

0.2

0.1

b (fm)

Fig. 13 Individual contribution of quarks to the profile function for
4
p “He

10 T T
10 ]
~ |- :
s 1 Ejp (GeV) ]
> j
§ 97
é 107% L L 146 (x107) J
- j
N
3 CA
—2. 4
1074 [ 200 (x10%) ]
259 (x107%) ]
10°¢ L 301 (x107%) ]
L 3
393 (x107°) ]
10’8 L L L L L L
0.2 0.4
2
t| (GeV/c)

Fig. 14 The p *He differential cross section as a function of |¢|. Exper-
iments from Refs. [56,57]

with oyt = 131.6 & 0.8 mb of Ref. [57]. For this reaction
the agreement with the data validates our assumption on the
structure of the profile function F'(b) and the fact that the
thermodynamical potentials are kept the same.

@ Springer

8 The ¥ p elastic scattering

In addition to p p scattering the 7* p must give new infor-
mation on the partons content of the 7 p interaction. For this
reaction, in the original BSW the pomeron contribution is
defined by the expression

- aJZT +1

F() = fzGO)Fr(t) 55—, (12)
az —t

where F; (t) = 1 is a simple pole, and from a fit we

1—t/m3,
obtained the following parameters:

m3z = 0.7665 GeV, f; =4.2414, a, =2.3272 GeV.

(13)

For the Fermi description of the m p interacting system
in impact parameter space we explore a slightly different
approach compared to the proton case, in the sense that we
introduce a different quark potential according to the charge
of the pion so that the new pomeron profile function takes
the form

d
Frr (®) = do bxt T b—Xi
1+expl bod] 1+exp[T“]
dr ds
+ + (14)
b+Z b+Z;
1—exp[—zog] 1+exp[:0q]

Since the quark structure for 7t isu d and for 7~ is d i,
we define a set of thermodynamical potentials X ,jt, X ;'E cor-
responding to 7T, the reason being that in the system at rest
we have 3u + d for m 7 and 2u + 2d for 7w ~. Therefore, the
potentials are not necessarily the same as in pp. For the sea
we introduce a global potential Z;, and for the gluon com-
ponent a potential Z,. The parameters ¢, ¢/, which drive the
asymptotic energy behavior, are kept the same as in p p (see
Table 2).

A simultaneous fit of 7* data for pp, = 100-250 GeV
and momentum transfer |f| < 2.5 GeV? [58-62] gives a
x2 = 1005 with 608 pts or a x2/pt = 1.65. The resulting
parameters for the pomeron are given in Table 5.

Table 5 Pomeron parameters of the Fermi model for 7% p elastic
scattering

do = 3.4408 +£0.118
dy = 2.5345 £0.195

X;F =0.2802 4 0.002 fm
XT = 0.0096 £ 0.0004 fm
Z3 = 0.6323 £0.0118 fm
bo = 0.3096 & 0.004 fm

dy = 2.406 £ 0.21
dy = 55128 £0.323

X, = 0.2307 £ 0.0197 fm
X7 = 0.1772 £ 0.0065 fm
Z, = 0.3537£0.0116 fm
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lt| (Gev?)

Fig. 15 The profile function F(r) as a function of |¢| for 7* p. Fermi
solid red curve, BSW dashed blue curve

F(b)

b (fm)

Fig. 16 The profile function F (b) as a function of b for 7% p. Fermi
solid red curve, BSW dashed blue curve

Notice that the parameters do, di, d2, d3, bo, Z5, Z are
the same for both reactions. In Figs. 15 and 16 a plot is made
for F (t) and F(b) with a comparison to the BSW profile,
the curves are very close, which shows the validity of the
Fermi profile. The variation of F (t) in r p for BSW shows
a zero at |t| = 5.6 GeV?, while for Fermi the zero occurs
at |t| = 6.9 GeV?, and this difference in the zero position
reflects the dominance of the gluon over the sea as seen in
Fig. 17.

Compared to p p scattering we do not have the same
range of high-energy data so the pomeron parameters are
subject to less constraints, nevertheless it is interesting to
determine the size of the different components in Eq. (14).
With the parameters of Table 5 we plot in Fig. 17 the indi-
vidual contribution of the components in the 7+ p case. We
observe the dominance of the quark u# and the gluon, but
the sea contribution, which was small in p p (see Fig. 3),
becomes more sizeable, which is expected due to the pion
effect.

We have introduced In Eq. (14) the potentials X ui, X th in
order to separate the reactions 7+ leading to two separated
profiles F7TjE (b); with the parameters of Table 5 the numerical

0 0.5 1 1.5 2
b (fm)

Fig. 17 Individual contribution of quarks to the profile function for
+
T p

difference between F;(b) and F, (b) is very small, and this
fact can be explained by the experimental the differential
cross sections for the two processes which are close in the
energy range considered here, we remark that the difference
is in part due to the Regge p contribution.

In Figs. 18 and 19 a plot of the differential cross sections
shows a reasonable agreement with the data. Also, the large
|#| values presented in Fig. 20 reveal the existence of a dip
around |r| = 4.5 GeV? consistent with the data. For the
total cross sections we obtain at pj, = 310 GeV a value
Otot = 24.86 + 0.2 mb for 7~ p and oyt = 24.48 + 0.3 mb
for 7T p, the experimental values are, respectively, oy =
24.9 4+ 0.08 mb and ooy = 24.5 & 0.1 mb from Ref. [52].
Since we have a different pomeron potential for 7~ and
7T, as regards the incidence on the total cross section at
high energy, a prediction at /s = 7 TeV gives, respec-
tively, for the two reactions 58.8 and 58.2 mb, the difference
is 1 %, so the near equality of the cross sections at high
energy is preserved in accordance with the Pomeranchuk
theorem.

9 The n* 4He elastic scattering

To study this reaction we follow the same approach as in the
previous sections, namely, we keep the parameters c, ¢’, and
the thermodynamical potentials identical to those of the = p
case. The parameters are determined from a fit of the CERN
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Fig. 18 The ™+ p differential cross section as a function of |¢|. Exper-
iments from Refs. [58-62]

10 100GeV(x10%)

do/dt [mb/GeV]
5\

—
O\
T
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—
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T
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Fig. 19 The w~ p differential cross section as a function of |¢|. Exper-
iments from Refs. [58-61]

data[57]for 50 < Epp < 300 GeV and a |¢| domain between
0.0086-0.0481 GeV?2. We obtain a x> = 640 for 584 pts or
a x2/pt = 1.1, which is close to the pion—proton value. The
obtained parameters for the pomeron are given in Table 6:

@ Springer

do/dt [mb/GeV?]

6 8

4
t| (GeV/c)?

Fig. 20 The 7+ p differential cross section for large || values. Exper-
iment from Ref. [59]

Table 6 Pomeron parameters of the Fermi model for 7+ “He elastic
scattering

do = 0.072 £ 0.007
dy =23.262 +1.20
by = 0.5640 £0.0124 fm

dy =17.98699 £ 1.03
d3 =46.306 £ 2.215

The parameter bg has the same order of magnitude as the
one obtained in p *He. The different quark components are
plotted in Fig. 21; we see that the gluon, the quark u, and the
sea give the major contributions.

We show in Figs. 22 and 23 a plot of differential cross
sections, although the ¢ range is limited to the forward direc-
tion, the agreement with the data remains good. In Fig. 24
we make a prediction for the large || 7~ “He differential
cross section at the highest measured energy, 300 GeV; a dip
occurs at |7| = 0.3 GeV?, which is slightly shifted to higher
|t| value compared to the reaction p “He (see Fig. 14).

For the total cross sections we obtain at Ejy, = 150 GeV
a value oo = 83.620.2 mb for 7~ *He and oo = 85.17+
0.3 mb for 71 *He, the experimental values are, respec-
tively, oot = 83.0 £ 0.9 mb and oy = 85.3 £ 0.7 mb from
Ref. [57].

In the previous sections we made an analysis of eight reac-
tions, p p, p p, pd, p *He, 7+ p, n* *He. The parameter
by introduced in the profile function of Eqgs. (10) and (14)
is related to the average size of the interacting parton sys-
tem. We show in Fig. 25 a plot of the by values as a function
of the number of quarks # and d which are involved in a
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b (fm)

Fig. 21 Individual contribution of quarks to the profile function as a
function of b for = “He
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Fig. 22 The n~ *He differential cross section as function of |¢|. Exper-
iment from Ref. [57]

reaction, and we observe an increase of the by values with,
the number of quarks—an expected feature but interesting
to confirm. This result is similar to the well-known nuclear
situation where the mean radius of a nucleus increases with
the corresponding atomic mass number.

150 (x107Y)

10

0.01 0.02 0.03 0.04 0.05
lt| (GeV/c)?

Fig. 23 Then* 4He differential cross section as function of ||. Exper-
iment from Ref. [57]

————————————————————
n~ “He 1
10° L .
F E,, = 300GeV ]
10" b 3
o F 1
> F -
> [ ]
O] L i
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2 1E 3
£ i ]
- s ]
3 L ]
D 0t
5 10 ¢ 3
107° L E
L J A S E Y R
0 0.2 0.4 0.6 0.8 1

It| (Gev/c)?

Fig. 24 n~ “He differential cross section at large |¢| values. Experi-
ment from Ref. [57]

10 Conclusion
The introduction of Fermi—Dirac functions as a new opaque-

ness built in with different parton components in impact
parameter space gives a reasonable description of the eight
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Fig. 25 The bg values as functions of u and d quarks number

elastic reactions p p, p p, p d, p *He, 7% p, and

n* “He. The size and the behavior of these components
in impact parameter space agrees with what we expect in
their localization inside the interaction domain. This first
simplified approach certainly needs a more refined version
introducing heavy quarks and also reducing the number of
parameters.

We would like to emphasize that we do not have to rely
on the assumption of proportionality between the matter dis-
tribution and the charge distribution, which was introduced
arbitrarily in the original BSW because in our Fermi approach
the relation is obtained in a natural way. In BSW the presence
of the extra term in F () to cancel a second dip, which was
never justified, is now explained by the role of the gluon.
We have also proven that the thermodynamical potentials
associated with the partons and determined from the basic
interactions in p p and 7 p elastic scattering are an intrinsic
property of the partons and also valid for elastic light nuclei
reactions.

With the same approach one could envisage an extension
to the spin amplitudes, where for each parton one defines
two potentials related to the spin orientation up—down, in an
analogous way to the polarized PDF [11-13]. However, due
to the scarce measurements of polarized elastic reactions at
high energy there exists the difficulty to obtain reliable values
of the parameters.
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