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Abstract In this paper we proceed to study the high energy
behavior of scattering amplitudes in a simple field model,
with the Higgs mechanism for the gauge boson mass. The
spectrum of the j-plane singularities of the t-channel partial
waves and the corresponding eigenfunctions of the BFKL
equation in leading log(1/x) approximation were previ-
ously calculated numerically. Here we develop a semiclassi-
cal approach to investigate the influence of the exponential
decrease of the impact parameter dependence existing in this
model, on the high energy asymptotic behavior of the scatter-
ing amplitude. This approach is much simpler than our ear-
lier numerical calculations, and it reproduces those results.
The analytical (semi-analytical) solutions which have been
found in the approximation can be used to incorporate cor-
rectly the large impact parameter behavior in the framework
of CGC/saturation approach. This behavior is interesting as
it provides the high energy amplitude for the electroweak
theory, which can be measured experimentally.

1 Introduction

In [1] we solved the BFKL equation with a massive gluon
in the framework of the Higgs model numerically. Such an
equation arises in the electroweak theory with zero Weinberg
angle (see Ref. [2]). From a theoretical point of view this
model is an instructive example of the gauge invariant theory
in which the scattering amplitude has the correct large impact
parameter behavior (scattering amplitude ∝ exp (−mb) at
large b) but still has the unitarity problem as the scattering
amplitude increases as s� at high energies. Therefore, this
model is a perfect training ground to study how the correct b
behavior can influence the resolution of the unitarity problem
in the framework of the CGC/saturation approach [3–9].
This approach leads to a partial amplitude smaller than unity,
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as required by unitarity constraints. However, it generates a
radius of interaction that increases with a power of the energy
[10–13], leading to a violation of the Froissart bound [14,15].

Another facet of this model is that it is a possible candi-
date for an effective theory equivalent to perturbative QCD,
in the region of distances (r ) shorter than 1/m, where m
denotes the gluon mass. Indeed, for r � 1/m similar cor-
relation functions arise from fixing or eliminating Gribov’s
copies [16] (see Refs. [17–21]). We wish to emphasize that
a gauge theory with the Higgs mechanism leads to a good
description of the gluon propagator, calculated in a lattice
approach [22,23] withm = 0.54 GeV. Therefore, a plausible
scenario is that the Higgs gauge theory describes QCD in the
kinematic region r ≤ 1/m, while for r ∼ 1/�QCD > 1/m
the non-perturbative QCD approach takes over, and it leads
to the confinement of quarks and gluons, which is missing in
the theory with a massive gluon.

We found in [1] that the spectrum of the massive BFKL
equation in ω-space for t = 0 is the same as in the massless
case [24–28]. The simple parametrizations of the eigenfunc-
tions have also been obtained in Ref. [1]. In this paper we pro-
pose using the solution to the BFKL equation with massive
gluons, which has the advantage of being simple and semi-
analytic. Having this solution in hand, we are able to progress
to more difficult problems, e.g. a generalization of the main
equations of the CGC/saturation approach [9,29–42].

The equation for the scattering amplitude in leading
ln(1/x) approximation of perturbative theory has been on
the market for some time [24,25]; it is schematically shown
in Fig. 1. Its kernel is of the form [1,24,25]

K (q1, q2|q ′
1, q

′
2) = αSNc

2π2
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Fig. 1 The massive BFKL equation (a) and its kernel (b)

For q = 0 the kernel (1) simplifies considerably and yields
a homogeneous BFKL equation for the Yang–Mills theory
with the Higgs mechanism,

ω f (p) = 2ω(p) f (p) + αSNc

2π2

∫
d2 p′

×
⎛
⎜⎝ 2 f (p′)

(p − p′
)2 + m2

−
N2
c +1
N2
c

m2 f (p′)

(p2 + m2)(p′2 + m2)

⎞
⎟⎠ ,

(2)

where q1 = q2 = p, q ′
1 = q ′

2 = p′, and ω(p) is the gluon
Regge trajectory given by

ω(p) = −αSNc

4π2

∫
d2k(p2 + m2)

(k2 + m2)((p − k)2 + m2)

= −αSNc

2π2

p2 + m2

|p|√p2 + 4m2
ln

√
p2 + 4m2 + |p|√
p2 + 4m2 − |p| . (3)

Examining the rotationally symmetric solution, the kernel
can be integrated over the azimuthal angle φ. Introducing the
new variables

κ = p2

m2 ; κ ′ = p′2

m2 ; E = − ω

ᾱS
; ᾱS = αS Nc

π
, (4)

and changing the notation of the wave function f (p) to
φE (κ), we obtain the one-dimensional BFKL equation

EφE (κ) = T (κ)φE (κ) −
∫ ∞

0

dκ ′φE (κ ′)√
(κ − κ ′)2 + 2(κ + κ ′) + 1

+N 2
c + 1

2N 2
c

1

κ + 1

∫ ∞

0

φE (κ ′) dκ ′

κ ′ + 1
, (5)

where the kinetic energy is given by

T (κ) = κ + 1√
κ
√

κ + 4
ln

√
κ + 4 + √

κ√
κ + 4 − √

κ
. (6)

In this paper we will work mostly with the Fourier-
conjugate wave function in the Y -representation,

	(Y, κ) =
∫ ε+i∞

ε−i∞
dE

2π i
e−EYφE (κ), (7)

for which Eq. (5) takes the form

∂	(Y, κ)

∂Y
= −T (κ)	(Y, κ)

+
∫ ∞

0

dκ ′	(Y, κ ′)√
(κ − κ ′)2 + 2(κ + κ ′) + 1

−N 2
c + 1

2N 2
c

1

κ + 1

∫ ∞

0

	(Y, κ ′)dκ ′

κ ′ + 1
. (8)

For completeness of presentation, we recall that the mass-
less BFKL equations have the following form:

EφBFKL
E (κ) =

ε → 0
ln
(κ

ε

)
φBFKL
E

−
∫ ∞

0

dκ ′φBFKL
E (κ ′)

|κ − κ ′| + √
κε

= −
∫ ∞

0

dκ ′(φBFKL
E (κ ′) − φBFKL

E (κ))

|κ − κ ′| ,

(9)

∂	BFKL(Y, κ)

∂Y
=

ε → 0
− ln

(κ

ε

)
	BFKL(Y, κ)

+
∫ ∞

0

dκ ′	BFKL(Y, κ ′)
|κ − κ ′| + √

κε
. (10)

The way of regularization at ε → 0 stems directly from
Eq. (2), considering small masses εm2 instead of m2. Then
Eq. (10) can be rewritten with a different way of regulariza-
tion, for example
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EφBFKL
E (κ) =

ε → 0
− ln

(
ε2

2

)
φBFKL
E

−
∫ ∞

0
dκ ′φBFKL

E (κ ′)�(|κ − κ ′| − ε)

|κ − κ ′| + ε
,

(11)

where �(z) is the unit step function which is equal 1 for
z > 0 and 0 for z < 0. At large κ , the solutions of Eq. (5)
should coincide with the eigenfunctions of Eq. (9), which
are well known [24–28] and have the form

φE (κ)
κ→∞−−−→ φBFKL

E (κ) ∼ κγ−1 with

E(γ ) = −χ (γ ) = ψ (γ ) + ψ(1 − γ ) − 2ψ(1), (12)

where ψ(x) = �′(x)/�(x) is a digamma function. Two
eigenfunctions, φE (κ) ∝ κγ−1 and φE (κ) ∝ κ−γ , describe
the states with the same energy. For γ = 1

2 + iν these eigen-
functions are normalized and form a complete set of func-
tions.

2 Semiclassical approach: generalities and equations

2.1 The main qualitative features of the solution

For completeness of presentation, we start discussing the
solutions to Eq. (5), repeating the key qualitative and general
features of solutions that have been discussed in Ref. [1]. The
first one has been mentioned in the previous section: at large
values of κ , the eigenfunctions φE (κ) should approach the
eigenfunctions of the massless BFKL equations (12).

The behavior of the solutions, at small values of κ , is
easier to understand by rewriting Eq. (5) in the coordinate
representation. Using

∫
d2 p′

2π

eir·p
′

p′2 + m2
=
∫ +∞

−∞
p′dp′ J0(rp′)
p′2 + m2

= K0(rm) (13)

where J0(z) and K0(z) are the Bessel and MacDonald func-
tions [43], we can rewrite Eq. (5) in the form

E f (r) = H fE (r), where

fE (r) =
∫

d2 p

(2π)2 e
ip·rφE

(
p2

m2

)
, (14)

and

H = p2 + m2

|p|√p2 + 4m2
ln

√
p2 + 4m2 + |p|√
p2 + 4m2 − |p| − 2K0(|r |m)

+N 2
c + 1

2N 2
c

P̂

= T (p2) + V (r) + N 2
c + 1

2N 2
c

P̂ = H0 + N 2
c + 1

2N 2
c

P̂. (15)

In (15) we introduced a shorthand notation P̂ for the projector
onto the state ∼ m2/(p2 + m2),

P̂φ(p) = m2

p2 + m2

∫
d2 p′

π

φ(p′)
p′2 + m2

in coordinate representation−−−−−−−−−−−−−−−→ K0(|r |m)

∫
d2 p′

π

φ(p′)
p′2 + m2

.

(16)

The behavior of Eq. (12) at large p translates into the short
distance behavior

fE=E(γ )(r)
r	1/m−−−−→ f BFKL

E=E(γ )(r) ∼ (r2)γ−1 ∪ (r2)−γ . (17)

To understand the behavior of the solutions at large dis-
tances, we should distinguish the two cases, when the wave
function’s decrease is slower than e−mr , and when the
decreases are faster than e−mr . In the former case, as we
may see from Eqs. (15) and (16), we may neglect the contact
term and the term ∼V (r), and Eq. (14) degenerates into

T f 0
E=E(γ )(r) = κ + 1√

κ
√

κ + 4
ln

√
κ + 4 + √

κ√
κ + 4 − √

κ
f 0
E=E(γ )(r)

= E(ν) f 0
E=E(γ )(r) (18)

where κ = −∇2
r . The eigenfunctions of Eq. (18) have the

form

f 0
E=E(ν)(r) ∼ ei

√−ar for a < 0; and

f 0
E=E(ν)(r) ∼ e−√

ar for a > 0. (19)

From Eq. (18) we can see that the parameters a and γ are
correlated, viz.

E = T (−a) = −χ(γ ). (20)

The solution to this equation is shown in Fig. 2. The Fourier
image of 1/(p2 +m2)1−γ in the coordinate representation is

1

(κ + a)1−γ

Fourier image−−−−−−−→ 1

�(1 − γ )

(
2
√
a

r

)γ

Kγ (
√
ar)

√
ar�1−−−−→ 1

�(1 − γ )

(
2
√
a

r

)γ √
π

2
√
ar

e−√
ar .

(21)

The function 1/(κ + a)1−γ describes both the short dis-
tance (17) and the long distance (19) behaviors. In [1] we
demonstrated that the ground state with the minimal energy
is achieved on this class of functions.
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Fig. 2 The function a(γ ) (solution to Eq.(20)) versus γ (a) and versus ν where γ = 1
2 + iν (b)

2.2 Semiclassical approach: generalities

2.2.1 The method of steepest descent

For massless BFKL, the general solution has the form

	(Y, κ) =
∫ ε+i∞

ε−i∞
dγ

2π i
φin(γ )e−E(γ )Y+(γ−1) ln κ , (22)

where φin(γ ) should be found from the initial conditions at
Y = 0. For the massive case, we will look for solutions
of Eq. (8) of the analogous form

	(Y, l) =
∫ ε+i∞

ε−i∞
dγ

2π i
φin(γ )e−E(γ,l)Y+(γ−1)l , (23)

where we introduced a new variable l = ln(κ + a), which is
stable in the small-κ limit, and φin(γ ) is fixed by the initial
conditions at Y = 0. In Eq. (23) we can take the integral over
γ using the method of steepest descent, which is equivalent to
a search of the semiclassical solution of Eq. (8). The equation
for the saddle point takes the general form

−∂E(γSP(Y, l), l)

∂γ
Y + l = 0. (24)

If φin (γ ) in the integrand of (23) is a smooth function, we
can replace it with its value at γ = γSP. The integral over γ ,
in the vicinity of a saddle point, (24), yields

	(Y, l)

= φin(γSP(Y, l))e−E(γSP(Y,l),l)Y+(γSP(Y,l)−1)l

×
∫ ε+i∞

ε−i∞
dγ

2π i

exp

(
−1

2

∂2E(γSP(Y, l), l)

∂γ 2
SP

Y (γ − γSP(Y, l))2) (25)

= φin(γSP(Y, l))

√√√√ 1

2π

∣∣∣ ∂2E(γSP(Y,l),l)
∂γ 2

SP

∣∣∣Y eS(Y,l)

= φin(γSP(Y, l))

√√√√ 1

2π

∣∣∣ ∂2E(γSP(Y,l),l)
∂γ 2

SP

∣∣∣Y e− 1
2 l eωeff (l,Y )Y .

The omission of higher-order corrections in Eq. (25) is
justified due to the smallness of the parameter

R = 1

6

∣∣∣∣∂
3E (γSP (Y, l) , l)

∂γ 3
SP

∣∣∣∣Y
/

×
(

1

2

∣∣∣∣∂
2E (γSP (Y, l) , l)

∂γ 2
SP

∣∣∣∣Y
)3/2

	 1. (26)

The smoothness of the initial function φin (γ ) implies the
condition

1√∣∣∣ 1
2

∂2E(γSP(Y,l),l)
∂γ 2

SP

∣∣∣Y
	 ln φin (γ )

dγ
|γ=γSP (27)

and determines the kinematic region of applicability of the
semiclassical approximation. As we will demonstrate below,
both conditions are satisfied for sufficiently large Y � 1.

2.2.2 Solution with method of characteristics

The method of characteristics for a partial differential equa-
tion (PDE) corresponds to a reduction of the PDEs to a system
of ordinary differential equations (ODE) for characteristic
lines along which the PDE converts into an ordinary differ-
ential equation. A direct application of the method of char-
acteristics to the evolution equation, Eq. (8), is not straight-
forward, since it is an integrodifferential equation. However,
as we show in detail in Sect. 1, for the special case which
corresponds to a semiclassical approximation, this method is
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applicable. The characteristic lines correspond to fixed eigen-
values ω, with the rapidity Y as a natural parameter, i.e.

ωSC = χ (γSC)+ P̃ (l(Y ), γSC(Y ), a (γ∞)) = χ (γ∞) . (28)

where for the sake of convenience we use the new variable l =
ln (κ + a). Along each trajectory, γ (l) satisfies a differential
equation,

dγSC

dl
= −∂ P̃ (l(t), γSC(t), a)

∂l

/

(
dχ (γSC)

dγSC
+ ∂ P̃ (l(t), γSC(t), a)

∂γSC

)
, (29)

and the relation with the parameter Y is given by

dl (Y )

dY
= −dχ (γSC (l (Y )))

dγ
− ∂ P̃ (l(Y ), γSC(l (Y )), a)

∂γSC
.

(30)

The effective intercept introduced in Eq. (25) equals

ωeff (Y, l) =
(
S (Y, lSP (Y )) + 1

2
lSP (Y )

)/
Y, (31)

where S(Y ) and l(Y ) are found from

dS

dY
= (γSC (Y, l) − 1)

dl (Y )

dY
+χ (γSC (Y, l)) + P̃ (l, γSC (Y, l, a)) . (32)

Before applying the semiclassical approach to the BFKL
equation for massive gluons, in Sect. 2.3, we would like to test
it on the massless BFKL equation (9), for which analytical
solutions are known (see for example Ref. [3,9]), and only
after that in Sect. 2.4 we apply it to the massive case.

2.3 Massless BFKL equation in semiclassical approach

Combining Eqs. (9), (12), and (24), we obtain for the saddle
point γSP (Y, l = ln κ)

χ ′
γ (γSP (ξ)) + ξ = 0 where ξ = l/Y. (33)

The solution to Eq. (33) is shown in Fig. 3a. Equation (25)
yields

	BFKL (Y, l = ln κ) ∝ eωeff (ξ)Y , where

ωeff (ξ) = χ (γSP (ξ)) +
(

γSP (ξ) − 1

2

)
ξ. (34)

The dependence ωeff (ξ) is plotted in Fig. 3b. Figure 3c shows
the ratio R (ξ,Y ) defined in Eq. (26). This ratio is small at
large values of Y and small ξ , justifying the applicability of
the semiclassical approximation in this region.

2.3.1 Diffusion approximation

As we can see from Fig. 3a, at ξ → 0 or, in other words, at
large Y � l, the trajectory γSP approaches a limiting value
γSP(∞) = 1

2 . Since χ(γ ) is an analytic function near this
point, it can be approximated by

χ (γ ) = ω0 + D

(
γ − 1

2

)2

+ O

((
γ − 1

2

)3
)

, (35)

with ω0 = 4 ln 2 = 2.772 and D = 14ζ(3) = 16.822.
In the approximation (35), Eq. (33) can be solved easily and
yields

γSP = 1

2
− ξ

2D
. (36)

Substituting (36) into Eq. (25), we obtain

	BFKL (ξ,Y ) = φin

(
1

2
− ξ

2D

)√
1

4πDY
e− 1

2 l eω0Y− ξ2

4DY ,

(37)

i.e., the semiclassical approach reproduces the diffusion
approximation [9] for the BFKL equation.

2.3.2 Double log approximation

For small values of γ ≈ 0, the BFKL kernel can be approx-
imated by

χ (γ ) = 1

γ
. (38)

In this limit, Eq. (33) gives the trajectory γSP = 1/
√

ξ and
the wave function

	BFKL (ξ,Y ) = φin (1/ξ)

√
1

2πξ3/2Y
e2

√
ξY

= φin (Y/ l)

√
1

2πl3/2Y−1/2 e
2
√
Yl . (39)

Equation (39) is the solution in the double log approxima-
tion [9].

2.4 Massive BFKL equation in semiclassical approach

Plugging the solution Eq. (23) into Eq. (8), we obtain the
equation for E (γ, l) in the form

E (γ, l) = T (el − a) + CT (l, γ (l) , a; ) − K (l, γ (l) , a) ,

(40)
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Fig. 3 Semiclassical solution for massless BFKL equation (see Eq. (9)): trajectories as a function of ξ = l/Y (a); effective Pomeron intercept
(ωeff versus ξ (b); and the ratio R of Eq. (26) at fixed ξ as a function of Y (c)

where the emission kernel K (l, γ (l) , a) is given by

K (l, γ (l) , a) =
∫ 1

a
κ

tγ (l)−1dt√
(1 − t)2 + 2

κ
(1 + t) + 1−4a

κ2

+
∫ 1

0

t−γ (l)dt√
(1−t)2+ 2

κ
t (1+t)+(1 − 4a) t2

κ2

.

(41)

The integral over t in Eq. (41) can be evaluated analytically
and expressed in terms of the Appel function F1

1:

K (l, γ (l) , a) = 2

√
t0 − t+
t+ − t−

(t+)1−γ (l)

×F1

(
1

2
, 1 − γ (l) ,

1

2
,

1

2
, 1− t0

t+
,
t+ − t0

t+ − t−

)

+√
π

� (γ (l))

�
( 1

2 + γ (l)
) 2

×F1

(
1

2
,

1

2
, γ (l) − 1

2
,

t+

t+ − t−

)

+B (1, γ (l))

×F1

(
γ (l) ,

1

2
,

1

2
, 1 + γ (l) , t−, t+

)
, (42)

where

t0 = a

κ
; t± = 1 + 1

κ
± 2

√
t0 − 1

κ
. (43)

For practical reasons it is convenient to introduce a func-
tion P (l, γ, a) defined as

P (l, γ, a) =
∫ 1

t0
dt (tγ−1 − 1)

[
1√

(1 − t)2 + (2/κ)(1 + t) + (1 − 4a)/κ2

− 1√
(1 − t)2

]
−
∫ t0

0
dt

tγ−1 − 1√
(1 − t)2

+
∫ 1

0
dt (t−γ − 1)

1 See Eqs. 9.180–9.184 in Ref. [43].

[
1√

(1 − t)2 + (2/κ)t (1 + t) + (1 − 4a)t2/κ2

− 1√
(1 − t)2

]
. (44)

Then Eq. (40) can be cast into the form

E = −χ (γ (l)) + T̃ (l, a) + CT (l, γ (l) , a)

−P (l, γ (l) , a) = −χ (γ (l)) − P̃ (l, γ (l) , a) , (45)

where

CT (l, γ, a) =5

9

e(1−γ )l

el + 1−a
(a−1)1+γ B

(
a − 1

a
, 1 − γ, a

)
,

(46)

T̃ (l, a) = T (el − a) − L(el , a) (47)

L (κ, a) =
∫ 1

a
κ

dt√
(1 − t)2 + 2

κ
(1 + t) + 1−4a

κ2

+
∫ 1

0

dt√
(1 − t)2 + 2

κ
t (1 + t) + (1 − 4a) t2

κ2

, (48)

= − ln(1 + a − κ +
√

(1 − a + κ)2)

+ ln(1 + √
1 − 4a + 4κ)

−κ ln(κ(1 − κ +√−4a + (1 + κ)2)√−4a + (1 + κ)2

+κ ln(1 − 4a + 3κ + √
1 − 4a + 4κ

√−4a + (1 + κ)2)√−4a + (1 + κ)2
,

(49)

and B (x, p, q) is the incomplete Beta function.2 Figure 4
illustrates how all the ingredients of Eq. (45) behave as func-
tions of l = ln(κ + a(ν)).

2 See Eq. 8.39 in Ref. [43].
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Fig. 4 All ingredients of Eq. (4) versus l at γ = 1
2 and a = a

( 1
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(see Eq. (20); Fig. 2)
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Fig. 5 The trajectories for the BFKL equation with massive gluons (solutions to Eq. (28) and to Eq. (30)) versus l = ln (κ + a). The function
YSC (l) is the inverse function to l = l (Y ) of Eq. (29)

3 Semiclassical solutions to the BFKL equation
with massive gluon: numerical results

3.1 Trajectories and intercepts

To solve the general BFKL equation with massive gluons,
we need to find the trajectory from Eq. (24) which will be a
function of both ξ = l/Y and l. According to the method of
characteristics discussed in Sect. 2.2.2, these trajectories are
the solutions of Eq. (28) or, equivalently, Eq. (29). Unfortu-
nately, we are able to solve Eq. (28) only numerically, and
these solutions are shown in Fig. 5.

All the trajectories can be characterized by their asymp-

totic boundary condition γSC (l)
l�1−−→ γ∞. We note that in

Eq. (20) one should understand γ as γ∞, thus reducing it to
the form

T (−a) = −χ (γ∞) . (50)

At small values of l all the trajectories γSC (l, ξ) vanish,
reflecting the K0(

√
ar)-behavior of the solution in the coor-

dinate representation. The negative value of γSC for soft l in
a numerical solution of Eq. (28) is different from what one
expects from a massless BFKL. In Sect. 3.4.3 we will dis-
cuss this region in more detail, here we only point out that
E (γ, l) is an analytical function of γ for negative values of
γ ’s without any singularities at γ = −n, n = 0, 1, 2 . . . .
Figure 6 shows that γSP (l), given by the solution of Eq. (28)
and presented in Fig. 5, satisfies the equation even at l < lsoft.

5 10 15 20
l

1

2

3

4

5

6

0.2
0.3
0.4
0.5

Fig. 6 Intercept of the massive BFKL Pomeron versus l on the trajec-
tories with different γ∞

The trajectories lSP (Y ) can be found by solving Eq. (29),
and they are shown in Fig. 5b for several boundary condi-
tions. In the ξ 	 1 region the solution may be constructed
analytically without solving an additional equation. The first
observation is that at large l, the set of trajectories should
coincide with the same set for the massless BFKL equa-
tions (33),

γSP (l, ξ)
l�1−−→ γ BFKL

SP (ξ) ≡ γ∞. (51)

Assuming that γ BFKL
SP (ξ) is close to 1

2 at small ξ (the so-
called Bjorken limit), we can consider the deviation as a
small parameter,

γSP (l) = γSC

(
l, γ∞ = 1

2

)
+ δγSP (l, ξ) . (52)

To find δγSP (l, ξ), Eq. (24) can be rewritten in the form
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Fig. 7 ωeff ≡ ωSP of the massive BFKL Pomeron versus l at fixed ξ = l/Y . b ωSP (l) are close for small values of ξ

δγSP (l) = lim
ε→0⎛

⎜⎜⎜⎜⎝−ξ

(
γSC

(
l, γ∞ = 1

2

)+ ε − 1
2

)
(

dχ
(
γ=γSC

(
l,γ∞= 1

2

)
+ε
)

dγ
+ ∂ P̃

(
l,γ=γSC

(
l,γ∞= 1

2

)
+ε,a(γ∞)

)
∂γ

)

⎞
⎟⎟⎟⎟⎠ ,

(53)

where ε ≈ 0 is a small cutoff needed to regularize some inter-
mediate results. In particular, Eq. (53) reproduces Eq. (36)
and gives the final result at l � 1 where

dχ (γ = γSP (l))

dγ
+ ∂ P̃ (l, γ = γSC (l) , a (γ∞))

∂γ
	 1. (54)

The solution to Eq. (24) in this approximation has the form

	 (Y, l)

= φin (γSP (Y, l))

√√√√ 1

2π

∣∣∣ ∂2E(γSP(Y,l),l)
∂γ 2

SP

∣∣∣Y e− 1
2 l eωeff (l,ξ)Y ,

(55)

where we introduced an effective intercept,

ωeff (l, ξ) = −E (γSP (Y, l) , l) +
(

γSP (Y, l) − 1

2

)
ξ, (56)

and γSP is given by Eq. (52).
The l-dependence of the effective intercepts ω (l, ξ) is

shown in Fig. 7. At small ξ these intercepts are close to the
massless BFKL given by Fig. 3a in the entire region of l. In
the region of large ξ , the effective intercepts are considerably
smaller than the intercept of the massless BFKL Pomeron.
For small l, i.e., the scattering amplitude at small values of
l and large values of ξ , it is suppressed in comparison to the
behavior determined by the intercept of the massless BFKL
Pomeron. Since the asymptotic region at high energies (large
Y ) corresponds to ξ 	 1, the high energy behavior of the

massive BFKL Pomeron is the same as for the massless one.
This agrees with our earlier results of the numerical calcula-
tion (see Ref. [1]).

3.2 Accuracy of the semiclassical approach

The accuracy of the semiclassical approximation is con-
trolled by the ratio R of Eq. (26). Figure 8 shows this ratio
for different values of ξ . From the figure we conclude that
for ξ ≤ 1 the ratio R is small and we can safely use the semi-
classical approximation. For l < 4, the ratio R is small in the
region of largeY (small ξ ). This occurs because for large l the
solution of the BFKL equation for the massive gluons should
coincide with the solution of the massless BFKL equation.

These estimates confirm our expectation that the semiclas-
sical method provides a reliable approach at high energies
(large values of Y ).

At large ξ , our procedure does not work even at large l.
In terms of kinematics, we need to deal with γSC 	 1, while

in Fig. 8 we used γSC
l�1−−→ 1

2 . For this region of large l and
ξ , we develop an approximation which corresponds to the
double log approximation and for very large l it coincides
with the DLA for the massless BFKL equation.

In Fig. 9 we plot the ratio

RSC =
dγSC(l)

dl

(1 − γSC (l))2 . (57)

This parameter controls the smoothness of the functions
ω (Y, l) and γ (Y, l) and thus the precision of the semiclassi-
cal approach. Figure 9 shows that this ratio is very small at
large l and does not exceed ≈ 0.4 even at small l.

3.3 Saturation momentum

It is well known that we can find a saturation momentum
by searching for the particular trajectory on which the wave
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Fig. 8 The ratio of Eq. (26) for large values of Y . a Ratio at fixed ξ = l/Y which are small, and b R at ξ = 1 as a function of l
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Fig. 9 The ratio of Eq. (57) versus l

function 	 (Y, κ) = const (see Refs. [3,44–48]). Mathemat-
ically, this corresponds to a solution of the system of two
equations

trajectory: −∂E (γSP (Y, l) , l)

∂γ
Y + l = 0,

front line: E (γSP (Y, l) , l) Y = (1 − γSP)l. (58)

In the case of the massless BFKL equation, the solution
to the equations of Eq. (58) is γSP = γcr = 0.37 [3]. For
the massive BFKL equation, the critical trajectory is shown
in Fig. 10a. The equation for the saturation momentum for
massless BFKL equations is of the form

lcr = ln(Q2
s (Y ) /Q2

s (Y = 0)) = χ (γcr)

1 − γcr
Y. (59)

The solution to Eq. (58) for lcr = ln(Q2
s (Y )/Q2

s (Y = 0))

is shown in Fig. 10b. The difference between the massive
and massless cases is sizable only for small values of l =
ln (κ + a).

3.4 Analytical solutions

In this section we develop two analytical methods of search-
ing for solutions based on the diffusion and DLA approxi-
mations for the massless BFKL equation.

3.4.1 Diffusion approximation

A brief glance at the trajectories for small values of ξ (see
Fig. 6) allows us to conclude that these trajectories are close
to γ = 1

2 at least for l ≥ 5. Therefore, for such values of l
we can develop the diffusion approach, in complete analogy
with the case of the massless BFKL equation that has been
discussed in Sect. 2.3.1. In the vicinity of γ = 1

2 we can
expand the general expression of Eq. (45) as

ω (γ, l) = −E (γ, l, a) = �(l) + �1 (l)

(
γ − 1

2

)

+�2 (l)

(
γ − 1

2

)2

. (60)

The functions �(l) ,�1 (l) and �2 (l) are plotted in Fig. 11a.
We see that at large l (say at l ≥ l0 ≈ 5) the functions

�i reach constant values, �(l)
l>l0−−→ ω0; �1 (l)

l>l0−−→ 0; and

�2 (l)
l>l0−−→ D. Substituting the expansion (60) into Eq. (28),

we obtain

�(l) + �1 (l)

(
γSC (l) − 1

2

)

+�2 (l)

(
γSP − 1

2

)2

= χ

(
1

2

)
, (61)

whose solution is

γSC (l) ≡ γD (l)

=
(

−�1 (l) ±
√

�2
1 (l) −4�2 (l)

(
�(l) −χ

(
1

2

)))/
(

2�2 (l)
)
. (62)

123



558 Page 10 of 14 Eur. Phys. J. C (2015) 75 :558

10 15 20 l
0.05

0.10

0.15

0.20

0.25

0.30

0.35

BFKL, m 0

BFKL, m 0

2.5 3.0 3.5 4.0 Y
8

10

12

14

16

18

BFKL, m 0
BFKL, m 0

(a) (b)

Fig. 10 The critical trajectories for BFKL equation with m = 0 and with m �= 0 (see Fig. 10a). Figure 10b shows the evolution of the logarithm
of the saturation scale as defined in (59) with rapidity Y
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Fig. 11 Functions �i (l) of Eq. (60) (a) and functions di (l) in Eq. (69) (b)
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Fig. 12 Functions γSC (l, ξ) versus l: exact solution to Eq. (28); dif-
fusion approximation and approximation at small values of γ . In the
figure ξ = 0.01

The physical γD corresponds to the minus sign in Eq. (62).
In Fig. 12 we compare the trajectory Eq. (62) with the exact
trajectory at ξ = 0.01, which has been calculated in Sect. 3.1.
For l > l0 ∼ 10 we can safely use the solution Eq. (62).

Using Eq. (61), we can calculate the wave function of
Eq. (25), which takes the form

	 (Y, l) = φin (γSP (l))

√
1

4�2 (l) Y
e− 1

2 l eωeff (l,ξ)Y , (63)

with

ωeff (l, ξ) = χ

(
1

2

)
−

(
ξ
(
γD (l) − 1

2

))2
2
(
�1 (l) + 2�2 (l)

(
γD (l) − 1

2

)) .
(64)

Equation (64) provides a good description of the intercept
for rather large l > l0 ∼ 10.

3.4.2 Small γ approximation

For l < l0, we cannot use the diffusion approximation since,
as we can see from Fig. 12, the diffusion trajectory is much
larger than the exact one in this region. Actually, the exact
γSP (l, ξ) at small ξ approaches γSP → 0. At γ → 0 the gen-
eral expression for P (l, γ, a) in Eq. (45) can be simplified
and takes the form

χ (γ ) + P̃ (l, γ, a)
γ→0−−−→ 1

γ
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+P̃γ→0 (l, γ, a) = 1

H (l, a)

1

γ
(1 − e−γ (l−la)),

with H (l, a) = 1/

√
(1 + exp (−l))2 − 4a exp (−2l)

and la = ln a. (65)

Equation (24) takes the form

1

H (l, a)

{
− 1

γ 2
SC

(1 − e−γSC(l−la))

+ (l − la)
1

γSC
e−γSC(l−la)

}
= −ξ. (66)

Equation (66) has two solutions in different regions: (1)
γ 	 1 but γ (l − la) � 1; and (2) γ 	 1 and γ (l − la) 	
1. In the first kinematic region Eq. (66) reduces to

− 1

γ 2
SC

= H (l, a) , (67)

with the solution

γSC = √
H (l, a) ξ . (68)

We can check that γ (l − la) = 1√
H(l,a)ξ

(l − la)
l�la−−→√

Yl
H(l,a)

� 1. Therefore, this solution corresponds to the

DLA approximation in this kinematic region.
For the kinematic region γ 	 1 and γ (l − la) 	 1

Eq. (65) leads to the analytical function at γ → 0, in con-
trast to the case of the massless BFKL kernel. Therefore, we
can search for a parametrization ω (l, ξ), which has the same
form as Eq. (61), viz.

ωγ	1 (γ, l) = −E (γ, l, a = 4) = d (l)+d1 (l) γ+d2 (l) γ 2,

(69)

with the functions di plotted in Fig. 11b. We can see from
Fig. 12 that we can rely on Eq. (69) only for l−la 	 1/(γ =
0.2) ≈ 5. Equation (24) with ω (l, ξ) given by Eq. (69) has
the solution

γSC (l) ≡ γS (l) ≡ γD (l)

=
(

−d1 (l) ±
√

d2
1 (l) − 4d2 (l)

(
d (l) − χ

(
1

2

)))/

(2d2 (l)) , (70)

which is shown in Fig. 12. This solution leads to good approx-
imation for l = 3 ÷ 5 with

ωeff (l, ξ) ≈ χ

(
1

2

)
− ξ2γ 2

S (l)

2 (d1 (l) + 2d2 (l) γS (l))
. (71)
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0.5

1.0

1.5

2.0

2.5

3.0

BFKL

l 4

l 3

l 2.5

Fig. 13 Function ω (γ, l) versus γ at fixed l. ωBFKL = χ
( 1

2

)

The wave function takes the form

	 (Y, l) = φin (γSP (l))

√
1

4d2 (l) Y
e−l eωeff (l)Y . (72)

3.4.3 l ≤ lsoft

Earlier we have seen that the trajectory γSP(l) has a node at
some value lso f t , and becomes even negative for l � lso f t .
As we can see from (69) and Fig. 13, the function ωSP(γ ) is
analytic at γ = 0, so we can extrapolate it to negative but
small γ ’s using Eq. (69). In principle, we can expect some
high twists singularities at γ = −n with n = 0, 1, 2, . . . ,
which stem from the expansion of

1√
(1 − t)2 + (2/̃κ)(1 + t) + (1 − 4a)/̃κ2

=
∞∑
n=0

Cn (l, a) tn

(73)

at small t in Eq. (44). Taking the integral over t in Eq. (44) in
the vicinity of small t , one can see that for γ → −n we obtain
the same expression as in Eq. (65), replacing γ in Eq. (65)
by γ + n. The energy (intercept) turns out to be a regular
function at γ = −n, and we can use Eq. (69) for |γ +1| < 1
with the function d(1)

i (l) calculated at γ = −1 (see Fig. 12
and Fig. 13).

Figure 13 illustrates that the intercept ω (γ, l) is an ana-
lytical function without singularities at negative γ which
increases at large |γ |.

Unfortunately, we have not found a simple analytical
approach that enables us to describe the scattering amplitude
at all values of l. However, we would like to recall that the
numerical solutions to Eq. (52) and Eq. (53) depend neither
on the value of the QCD coupling, nor on the initial condi-
tion, and reduce the procedure of calculation of the scattering
amplitude to a simple equation. Solving this equation is a
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much easier task than the exact numerical calculation of the
eigenvalues and eigenfunctions that was done in Ref. [1].

4 Conclusions

In our previous paper (see Ref. [1]) we studied the BFKL
equation with massive gluons in the lattice and proved that its
spectrum coincides with the spectrum of the massless BFKL
equation. This observation gives rise to the hope that the
correct large impact parameter (b) behavior of the scatter-
ing amplitude A ∝ exp (−mb), which is the inherent fea-
ture of the massive BFKL equation, will not affect the high
energy behavior of the scattering amplitude. Therefore, we
may expect that the modification of the BFKL equation due
to confinement would not strongly affect the equations that
govern the physics at high energy (in particular, the nonlin-
ear equations of the CGC/saturation approach to high density
QCD).

In this paper we developed the semiclassical approxima-
tion which allowed us to investigate the high energy behavior
of the scattering amplitude. The method provides a simple
procedure for the calculation and reduces it to a numerical
solution of Eq. (28), which is much simpler than the direct
numerical calculations of the eigenvalue problem in the lat-
tice realized in Ref. [1].

Having these solutions, we propose a modification of the
high energy asymptotic behavior, caused by the correct large
b exponential fall off of the amplitude. Actually, we did not
find any unexpected behavior, and the semiclassical solution
reproduces the scattering amplitude which is very close to
the amplitude of the massless BFKL equation, at least at
high energies.

In Sect. 3.3 we estimate the value of the saturation momen-
tum, solving the linear evolution equation with very general
assumptions as regards the nonlinear corrections. We demon-
strated that the value of the saturation momentum is close
to the one for the massless BFKL equations, leading to the
assumption that saturation physics will look similar for both
massive and massless BFKL equations.

We believe that in this paper we have taken the natural
next step in the understanding of the influence of the correct
large b decrease of the amplitude on its high energy behavior.
It should be stressed that this behavior is interesting as it pro-
vides the high energy amplitude for the electroweak-weak
theory, which can be measured experimentally. The solution
which has been discussed in this paper determines the asymp-
totic high energy behavior of the electroweak-weak theory
for zero Weinberg angle. We plan to address the physical case
of nonzero Weinberg angle [2] elsewhere.
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Appendix A: Solution with method of characteristics

The method of characteristics for a partial differential equa-
tion (PDE) corresponds to a reduction of the PDEs

F(x1, . . . , xn, u, p1, . . . , pn) = 0, pi = ∂u

∂xi
(A.1)

to a system of ordinary differential equations (ODEs) for
characteristic lines along which the PDE converts into an
ordinary differential equation. These characteristics satisfy
the Lagrange–Charpit equations

ẋi
Fpi

= − ṗi
Fxi + Fu pi

= u̇∑
pi Fpi

. (A.2)

An instructive example, familiar from classical mechan-
ics, is the Hamilton–Jacobi equation, for which the char-
acteristic lines correspond to the trajectories of particles
which are solutions of the Newtonian equations of motion.
A detailed discussion of the method is beyond the scope of
the present paper and can be found in the literature (see e.g.
textbooks [49,50]).

A direct application of the method of characteristics to the
evolution equation (8) is not straightforward, since it is inte-
grodifferential equation. However, as we will show below, for
a special case which corresponds to a semiclassical approxi-
mation, this method is applicable. It is convenient to rewrite
the wave function 	 in terms of the “action” S [51],

	(Y, κ) = eS(Y,κ). (A.3)

Then the evolution equation (8) takes the form of a non-
linear PDE,

F (Y, l, S, γ, ω) = ω (Y, l) − χ (γ (Y, l))

−P̃ (l, γ (Y, l, a)) = 0, (A.4)

where we introduced the shorthand notations

ω (Y, l) = ∂S (Y ; l)
∂Y

; γ (Y, l) − 1 = ∂S (Y ; l)
∂l

(A.5)
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and introduced a new variable l = ln (κ + a) which remains
finite in the small-κ limit. The explicit form of the function
P̃ (l, γ (Y, l, a)) in Eq. (A.5) is given in Sect. 2.4, and in

the special limit P̃ (l, γ (Y, l, a))
l�1−−→ 0. From the exact

solutions of the massless BFKL (12), we expect that, at large
κ , the effective action should depend linearly on the rapidity
Y and the new variable l,

SSC ≈ ω∞ + (γ∞ − 1)l, (A.6)

where γ∞ and ω∞ = ωBFKL(γ∞) are constants. In a semi-
classical approximation which is valid for moderate values
of Y , we assume that3 ωSC and γSC are slowly varying
functions of the variables l, Y : viz. ω′

Y (Y, l) 	 ω2 (Y, l),
ω′
l (Y, l) 	 ω2 (Y, l) and γ ′

Y (Y, l) 	 (1 − γ (Y, l))2,
γ ′
l (Y, l) 	 (1 − γ (Y, l))2. Making this assumption, the

equation (A.4) has the form of a PDE, which can be solved
using the method of characteristics [49,50]. The character-
istic lines l(t),Y (t), S(t), ω(t), and γSC(t), where t is some
parameter (the analog of time in the case of classical mechan-
ics), satisfy the system of ODEs

dl

dt
= ∂F

∂γ
= −dχ (γSC)

dγSC
− ∂ P̃ (l(t), γSC(t), a)

∂γSC
, (A.7)

dY (t)

dt
= ∂F

∂ω
= 1, (A.8)

dS

dt
= (γ − 1)

∂F

∂γ
+ ω

∂F

∂ω

= (γSC − 1)

{
−dχ (γSC)

dγ
− ∂ P̃ (l(t), γSC(t), a)

∂γ

}
+ ωSC,

(A.9)
dγSC

dt
= −

(
∂F

∂l
+ (γSC − 1)

∂F

∂S

)

= ∂ P̃ (l(t), γSC(t), a)

∂l
, (A.10)

dωSC

dt
= −

(
∂F

∂Y
+ ω

∂F

∂S

)
= 0. (A.11)

Equation (A.8) implies that the parameter t corresponds to
the rapidity Y . From (A.11) we can see that ωSC is conserved
on characteristic lines, and it can be fixed from the asymptotic
conditions Eq. (12) as

ωSC = χ (γSC) + P̃ (l(t), γSC(t), a (γ∞)) = χ (γ∞) .

(A.12)

3 We introduce a subscript index SC for the semiclassical approxima-
tion.

A combination of (A.7) and (A.10) allows us to eliminate the
Y -dependence and find γSC as a function of l on a trajectory,

dγSC

dl
= −∂ P̃ (l(t), γSC(t), a)

∂l

/

(
dχ (γSC)

dγSC
+ ∂ P̃ (l(t), γSC(t), a)

∂γSC

)
. (A.13)

From Eq. (A.7) we can obtain the trajectory equation (30).
The lines l (Y ) ≡ lSC (Y ) give the set of trajectories. The

trajectory that leads to the dominant contribution to 	 (Y, l)
can be found from the equation

l = lSC (Y ; γ∞) = lSP (Y ; γ∞) (A.14)

CorrespondingγSC (Y, lSC (Y ) ; γ∞) = γSP (Y, lSP (Y ) ; γ∞).
Finally, the Eq. (A.9) can be rewritten in the form

dS

dY
= (γSC (Y, l) − 1)

dl (Y )

dY
+ χ (γSC (Y, l))

+P̃ (l, γSC (Y, l, a)) . (A.15)

Comparing Eq. (A.15) with Eq. (25) one can see that the
effective intercept is equal to ωeff (Y, l) = (S (Y, lSP (Y )) +
1
2 lSP (Y ))/Y .
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