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Abstract The exact gg Bethe—Salpeter bound state ampli-
tude is investigated in the space of relative energy E for a
fixed value of the relative position. By means of an approxi-
mate analysis it is shown to possess singularities in E when-
ever one of the quarks reaches the energy threshold for the
creation of a certain number of Schwinger bosons. These
results are confirmed by plots of numerical results.

1 Introduction

One of the essential and unsolved problems in quantum field
theory (QFT) is the correct description of bound states in
a truly relativistic way, with retardation effects taken into
account. On one hand it belongs to the less understood aspects
of QFT, and on the other it is one of the most important
issues, necessary for the explanation of the whole spectrum
of hadrons. Over 60 years ago the equation for the bound state
amplitude—the so-called Bethe—Salpeter (B-S) equation—
was proposed [1,2] but its solutions are still lacking even in
model studies.

Solving the B-S equation is not an easy task: it is an
integral equation in several dimensions but, what is worse,
it requires from the very beginning the knowledge of the
explicit form of the nonperturbative propagators for bound
particles, as well as their interaction kernel. Because none
of these quantities is known in realistic field theory or even
expected to be known, one is inevitably led to strong sim-
plifications as for instance that consisting in replacing full
propagators with free ones and using the so-called ladder
approximation. But even then the problem is still very com-
plicated and has found its solution only in few model calcu-
lations [3-5]. In hadronic physics a step forward has been
done in some numerical studies exploiting the truncated (i.e.
again approximated) QCD [6].

e-mail: t.radozycki@uksw.edu.pl

A novel and troublesome feature of the B-S equation is
the appearance of the additional variable, absent in nonrela-
tivistic studies: the so-called relative time or equivalently the
relative energy. There have been undertaken many attempts to
simplify the equation by neglecting the relative time depen-
dence of the amplitude [7-14]. Such approaches, however,
lead to oversimplification: by imposing the instantaneity con-
dition they throw aside the most important feature, which
differentiates the relativistic description from the nonrela-
tivistic one. In such an approach the most interesting part
of the information is then lost because of the approximation
itself.

The analysis of that nontrivial aspect of a bound system
has been undertaken in a couple of works [15-21] both in
euclidean [22-28] and in Minkowski space [28-35] (where
it is more difficult), but a complete description of any B-S
amplitude in its full complexity is missing, with one excep-
tion, to be mentioned below. That has been mainly due to the
lack of an appropriate model, which on one hand would con-
stitute a nontrivial QFT and on the other would allow for ana-
lytic and exact solutions. However, a couple of years ago the
B-S amplitude in the full analytic form was found in position
space in massless quantum electrodynamics in two dimen-
sions (in the so-called Schwinger model (SM) [36]) [37,38],
allowing ipso facto for a more detailed investigation of the
role played by relative variables in a nontrivial field theory.

The model in question is defined through the Lagrangian
density in two-dimensional (2D):

L(x) = E(X)(iy“% - gA“(X)VM)‘I‘(X)

§

1
— P 0 Fu () = 2 (3,4 ()’ (1)

where g is the coupling constant and & the gauge fixing
parameter (later set to be equal to infinity, which corresponds
to the Landau gauge). The Dirac gamma matrices may be
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chosen as 2D objects, for instance in the following form:
01 0 —1
0 _ 1 _
1 0
5_ .01 _
V—VV—(O _1>, )

and for the metric tensor we have g» = —g!! = 1.

In the last 50 years this model has become a perfect test-
ing laboratory for various nonperturbative properties of QFT.
Particular attention deserve, in this context, confinement,
topological sectors, instantons, and condensates. Among
other interesting features one should mention the existence
of an anomaly and nonzero mass generation of the gauge
boson without the necessity of introducing any auxiliary
Higgs field.

In this work we concentrate on another remarkable prop-
erty of this model, spoken of above. Thanks to the ana-
lytic determination of the nonperturbative four-point Green’s
function [39—41] it allows for the investigation of the forma-
tion of bound states. It has been found that the SM model
possesses a state, which might be called a ‘meson’, consti-
tuting a bound system of a quark and an antiquark (the fun-
damental fermion of the theory is often called a quark, due
to the similarity between SM and QCD in some respects, as
for instance confinement) and which is also known as the
Schwinger boson of mass u = g//7.

In our former papers we concentrated on this issue. Firstly,
we analyzed the structure of the full four-point (two-fermion)
Green’s function and found the exact and explicit form of
the B-S bound state amplitude in all contributing instanton
sectors [37,38] (i.e. for k = 0, 1). This result seems to be
of a certain significance, since, to the best of our knowledge,
it is a unique exact B-S function, which is known exactly in
any nontrivial field theory. This result was obtained not by
solving the B-S equation, which we are even unable to write
down, but by analyzing the residue in the pole corresponding
to the Schwinger boson (cf. [42,43]).

Secondly, a subsequent paper [44] was devoted to the
investigation of the properties of the previously found B-S
function in the space of relative variables. The present work
continues this research concentrating on the relative-energy
variable.

The B-S function, which was found from the 7-channel
of the two-fermion Green’s in the residue of the pole corre-
sponding to P2 = p? (where P is the center-of-mass two-
momentum), i.e. to the Schwinger boson, has the form

®p(x) = B (1) + 0% (x). 3)

where x = [t, r] denotes the relative quark—antiquark coor-
dinates and the indices O and 1 refer to the k = 0 and
k = %1 instanton sectors. Higher sectors do not contribute.
The Green’s function in question is a vacuum (strictly speak-
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ing f-vacuum) expectation value of four fermion fields and
the residue factorizes into two bilinear functions. It is well
known, however, that to change the topological index of the
vacuum by 1 an operator which is quadratic in the fermion
fields is needed [45,46]. This is connected with the mass-
lessness of fermions in the theory and the absence of the
chirally noninvariant term mWY W in the Hamiltonian, which
results in the suppression of tunneling between topological
vacua. Consequently only chirality changing operators can
have nonvanishing matrix elements between various topo-
logical vacua, with the 2:1 correspondence between chirality
of the operator and instantonic number.

The following expressions for @5,9) and CD(,}) have been
found in the above mentioned works:

o0 (x) = —24/7Sp(x)e €W 5 sin(Px /2)

= Ch(t, yuy’, )
CDSJ)(x) = —Z\Ijﬁel”fe’?”’zﬂ(")e_m’”s)/5 cos(Px/2)
= Dp(t,r)e )5, )

where 6 is the vacuum parameter. Sp(x) here denotes the free
fermion propagator:
1 X

So(¥) = C2m x2— e

6

and the function B, appearing in many quantities of the
Schwinger model, is defined as

B(x)

# I:—%T-H/E+ln u2x2/4 + %Hél)(‘//ﬂxz)] ,
x timelike,

oL [y + 0 V=224 + Ko=)

x spacelike.

)

The symbol y is here the Euler constant and Hé]) and K
are Hankel function of the first kind and the Basset function,
respectively.

The present paper is organized as follows. In the next
section we consider CDEL(,)), the exact B-S amplitude in the
instanton sector, k = 0. We investigate its relative-energy
dependence for fixed values of relative position in the center-
of-mass frame. Using some approximations we identify the
location and character of singularities in relative energy. This
analysis has a qualitative rather than a quantitative charac-
ter. The obtained results are confirmed by the appropriate
plots. In Sect. 3 we concentrate on the B-S amplitude in the
sector k = 1. We carry out the same program as in Sect. 2
and find similar singularities for the function CDE.}) . The last
section contains a summary of the results obtained and some
conclusions.



Eur. Phys. J. C (2014) 74:3037

Page 3 0f9 3037

2 The B-S function in the noninstantonic sector

The relative-energy B-S function in the instanton sector
k = 0 1is defined through the Fourier transform over relative
time:

o0
- E
q>§9)(E,r)=/6’7’d>§9)(t,r)dt=C$(E’r))’w’5~ ®)

—00

Fourier-transformed quantities will be, throughout this paper,
identified only by their arguments, without the change of the
appropriate symbols. We hope it will not be confusing. The
one half in the exponent comes from the definition of the
center-of-mass variables and relative ones, we use for the
two-body system

1
X = E(xl +x2), X =x1— X2, 9)
and hence
=X+ ! =X ! (10)
x| = 2x, Xy = 2x.

With this convention the Fourier exponent in question
becomes

el (Pxi+pax) _ el'PX‘H'%X (1)

where P = [P°, Pl = p; + p, is the total (center-
of-mass) two-momentum satisfying P> = u2, and Q =
[E, q'1 = p1 — py is the relative one. The inverse relations
are

1 1
pr=5FP+0). pp=7(F-0). 12)

The quantities COP (E,r) and C,l, (E, r) may be given the
following form:

" _ Aw_, r)es P, (13)
"~ Blw_, et (14)

CO(E, 1) = Alwy, r)e 2F'

Ch(E.r) = B(wy,r)e 2"
where we introduced the notation

1 0
£ =S (E£PY). (15)

The coefficient functions A and B after some rearrangements
are expressed through the Cauchy principal value integrals
as follows:

A(w,r)

sin w|r|,

lgzﬁ(t,r) + lﬁ
2

- -

o0
t sin wt
P/dt
0

(16)

B(w, r)

£ 2
—ig"pr) 4 cosw|r|.

o0
P/dt cos wt i/
12 —r2 2r
0
(17)

From the asymptotics of the Hankel function of the first
kind it may easily be seen that for large 7 the factor e /¢ 2Bt
behaves as

1_i
TleJ/E/2 /1ut, (18)

and, by virtue of the Dirichlet rule, the integral for A owes
its convergence at infinity to the interplay between the oscil-
latory functions sin w¢ and Hél) in (7). This is an impor-
tant observation for our conclusions. The convergence of
B, which has one power of + more in the denominator, is
absolute, but it may be improved by an oscillatory factor
too. However, due to the complicated form of the function
B(t, r) these integrals cannot be found explicitly and one is
doomed to use approximations or perform a numerical analy-
sis. It is a common feature of the Schwinger model that ana-
lytic solutions can be calculated only in coordinate space.
It refers to various physical quantities, an exception being
purely bosonic Green’s functions.

It is clear that the function A(w, r) is odd in the argument
w and even in relative position r, and B(w, r) conversely.
Consequently C (I);l (E, r) have the following symmetry prop-
erties:

e—ig )

CY(—E.r)=CY(E, —r),
Ch(—E.r)=—Ch(E, —r). (19)

In the center-of-mass frame, where P! = 0 and P = “w,
these quantities satisfy

CO(—E,r) =
CL(—E,r) =

CO(E, ),
—CYE, 1),

COE, —r) = CY%(E,r), (20)
ChL(E,—r) = —Ch(E,r).
1)

Let us now try to identify the possible singularities of
A(w, r) in w for fixed r. According to what was said above,
they arise when the Dirichlet rule fails (or rather may not
be applied due to the cancelation among oscillating factors)
and therefore it is sufficient to consider the integral from a
certain point A|r| toinfinity (with A > 1), which will be called
A(w, r). The last term in (16) is inessential for this analysis,
since it does not contribute to any singularities. Using (7),
we have

t sin ot
2 — ;234

Alw, eJ/F/2

Alr|

X exp [i% HY (/12 = r2)] . (22)
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Since for large values of # the Hankel function behaves as [47]

H" (uv/12 = r2) ~ e" ™ exp [i,u 2 — r2]

+ ) (23)

each following term of the above expansion as well as that
of the exponent function in the integrand of (22) has bet-
ter convergence properties, contributing thereby less to the
singularities in w. Therefore the strongest ones, which can
eventually be clearly identified on the plots, come only from
the first few terms:

2 I
1_
T t2—r2( 8u~/12 —r2

Alw,r) = Ag(w, 1) + Ap(w, 1) + Ac(w, 1) + - - - .

Below we analyze them starting from the most singular one:

t sin wt
2)3/4

Aq(o, e)/E/2

(24)

Ar|

For large values of A one can neglect 72 in the denominator,
and the value of the integral can be found to be

(1 -0/ ore/2 580 ()
2V2 Viel

x [1 . 23(\/W)] , (25)

Aa(a), r) &

where S(x) is the Fresnel integral:

o

S(o) = /dr sin (% 12) . (26)

0

We are interested in the behavior at @ ~ 0 (it is the only
possible singular point) with large but fixed A, which corre-
sponds to a small value of o. In such a case we can use the
expansion

S(o) ~ ga +0(c"), 27)

and the first two terms of (25) become

(I =i) /1 oVE/2 sgn (w)

A~l1 9 ~
W o]
_U=DVE 3/2
e e’E2(\r ) w. (28)

The quantity A, is then seen to possess a strong singularity
at w = 0, which should be represented with an infinite peak
on the plot of CDES)(E, r).

@ Springer

The subsequent term of (22) after some rearrangements
has the form

o0

- 1 t sin wt

Ap(w, 1) = ZeVE/Z/dt 2 _w2 exp [iu t2—r2].
Alr|

(29)
Again 2 may be omitted for large A and one can obtain for
Ay the approximated result:

Ap(o, 1) ~ ’ge”ﬂ [Ei (ixlr|(u + @) — Ei (irlr|(u — )],

(30)

where Ei is the exponential integral function. It has the fol-
lowing expansion for an imaginary argument:

.. i . 2
El(la)%lna+7+y5+lo+0(0 ), 31
which shows that A, (w, r) contains the logarithmic singular-
ities at w = £u. They should again manifest themselves as

infinite peaks, although less pronounced than those of (28).
The next term may be given the form

Ac(w, r) = %ﬁ eVE/2

o0
tsma)t
x/dt T exp[ZzM\/ —r] (32)

Alr|

One can show in the same way as above that it has branch
points of the kind +/w £ 2u, but the integral is convergent
even for w = £2u.

The quantity B is smoother, but it also contributes to sin-
gularities. We define B in an analogous way to A and find
that the most singular term is

o
L+i
rMeVEﬂ dtht. (33)

Zﬁ (t2 _ r2)3/4

Alr|

By(w, 1) ~ —

This integral is convergent in an absolute way and it may
be shown to contain a singularity of the kind /||, which
might eventually appear in the form of slight cusps, but they
will be hidden by the peaks of Aq in the same place. The
following terms in B(w, r) need not be considered.

Because CDEE)) is a combination of A(w4, r) and A(w—_, r)
via the Eqgs. (8), (13), and (14), we expect the manifesta-
tions of the following well-defined singularities in the form
of peaks in the B-S amplitude:

l. oy =0=— E ==+pu.
2. wr=u=—=>FE=u, E=3u.
3. wr=—u—E=—u, E=-3u.
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The singularities coming from (32) occurring at w+ = 2
and w+ = —2u, which correspond to E = —5u, —3u, 31,
Su are expected to be less visible. What is important, the posi-
tions of all the singularities are not affected by the value of the
relative coordinate r. These analytical although approximate
results are confirmed below by the appropriate numerical
graphs.

Since C[Dg(,)) is a2 x 2 complex matrix, it cannot be directly
represented on the plot. To show the relative-energy depen-
dence of the B-S amplitude, we therefore define a scalar,
similarly to what was done in [44]:

) ! 0+ 507\
o= (3ot o))
It is a gauge invariant, dimensionless quantity and can

serve as a measure for the strength of the B-S amplitude. It
may be simply expressed in terms of A and B, as

= {[/i(a)Jr,r)e%Pl’ — Alw_, r)e*%Plr]
— Alw_, r)erP'r

(34)

)ab(;})(E,r) C%(E,r)‘zﬂc;(}s,r)f}l/z

B i pl
x |A(wy, r)e 2"

+ _B(a)Jr,r)e%Pl’ — é(w,,r)e_%Plr]

r i i 1/2
X B(w+,r)e_7Plr—B(a),,r)efplr } ,

(35)

where bars over symbols refer to complex conjugation.

To investigate the relative-energy dependence of the B-S
function, the most natural thing to do is to perform the plot
of |<I>;(,))(E , )| in the CM frame, thereby putting P! = 0. In
this frame it takes the form

‘<1>§9)(E,r)’
= {[A(ws. 1) — Alo_, N][Awy, 1) — Alw_, )]

+[B(ws,r) — Blo_, N [B(wy, r) — Blo_, N1}
(36)

and becomes an even function in both relative energy and
relative position. In a boosted frame the plotted function is
no longer even, but the positions of the singularities in relative
energy remain invariant.

Figure 1 shows the dependence of (36) on the relative
energy for certain fixed relative positions. The main notice-
able feature is the presence of strong peaks for the relative
energy constituting an odd multiple of the Schwinger mass
(. This is what we expected from our approximations.

Some explanations require the behavior at £ = +£3pu,
where, according to our former analysis, the function should
display a logarithmic nature. This ought to lead to infinite
peaks, and this really appears to be the case, when investi-
gated carefully. It may be, however, estimated that they are
extremely narrow. For instance at the value of 1 the width
becomes almost 10 times narrower than the thickness of the
plotting line, and therefore it cannot be properly represented
on the drawing. The singularities at £ = £5u can also be
identified, but it requires very high resolution plots.

The appearance of the singularities at relative energies
corresponding to an odd number of Schwinger boson masses
1 may be understood from the simple picture. Let us consider
a quark—antiquark pair of energies £ and E, which form a
bound state, i.e. a meson of the CM energy equal to . If, due
to some fluctuation, one quark acquires the energy sufficient
to create a meson, i.e. £; = u, becoming of course a deeply
off-shell particle (if one at all can talk about on-shell particles
in the bound state) then we must have E> = 0 and the relative

r=0.01 r=0.4
5 5
3 3
1 1
E E
-5 -3 -1 1 3 5 -5 -3 -1 1 3 5
r=1 r=1.5 r=2
5 5 5
3 3 3
1
E E E
-5 =3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5

Fig. 1 The dependence of the amplitude |d>§9) | on relative energy E with fixed relative position r. The variable r for the successive plots is chosen

to be 0.01, 0.2, 0.4, 1, 1.5, 2. E is measured in units of x and r in units of ;=

1
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energy £ = Ey —
singularities.

Now assume that a quark gained an energy sufficient to
create n bosons. Then E| = nu and E> = (1 — n)p in order
that £y + E> = pu (in this rough image). In such a case for
the relative energy we obtain £ = E| — E; = (2n + D).
Such fluctuations are, however, much less probable and hence
higher singularities are softer.

The other observation, which can be done by analyzing
the E and r dependence of |d>59)| is that for small relative
energies the amplitude decreases with increasing ». How-
ever, for E exceeding the first threshold, i.e. for E > pu, the
described behavior becomes opposite: the amplitude grows
with relative distance. This observation has yet some limi-
tations: we were not able to verify it for very big values of
r since then the oscillatory integrals (16) and (17) become
extremely slowly convergent. As we will see in the following
section, this behavior will not be the same for the k = +1
instanton sector.

E> = . This corresponds to the first two

3 Instantonic contribution to the B-S function

The relative-energy B-S function in the instanton sector k =
=+1 has the form

o0
. E .
o) (E,r) = / ¢ 7' oW (1, rdt = Dp(E, r)e 0775,

—00

(37)

The tensor structure of CD;,D is simpler than that of CD;(,)). It
contains only one (scalar) coefficient Dp (E, r), which may
be written in terms of a new function F (w, r), defined as

o0

Flw,r)= eVE/dt cos wt i BT, (38)
0

in the form

Dp(E.r) = Flws. e 2" — F(w_ e’ (39)

For large ¢ the exponent under the integral has the follow-
ing behavior:

eigzﬁ(f,r) ~(1+ l')e*VE/z i (40)

Jit
which again guarantees the convergence (via the Dirichlet
rule) of the improper integral (38), except for certain partic-
ular values of w corresponding to divergent singularities.

The function F(w, r) is, in an obvious way, an even func-
tion in both arguments, which gives for Dp:

Dp(—E,r) = Dp(E, —r). 41

@ Springer

Consequently in the CM frame Dp(E, r) has the follow-
ing symmetry properties:

Dp(—E,r) = —Dp(E,r), Dp(E,—r)= Dp(E,r).

(42)

Let us now concentrate on the possible singularities of
F(w, r) as the function of w with fixed value of relative
position 7. Similarly to the quantity A(w, r) we focus on the
behavior of the integrand function at infinity. We therefore

define
VN2 /
Alr|

X exp [—i% HY (/12 = r2)] , (43)

assuming that the parameter A is large. Using again the expan-
sion (23) we find the less convergent term in the form

) 1
Fu(o, . \/> VE/Z/

Ar|

cos wt

F(w,r) = —r2)1/4

cos wt

@2 — )l (44)

For A >> 1 one can omit 7 as before, and the approximate
value of the above integral is

- I+ sgn (w)
F (o, eVE/?
N Jiol

x [1 _ 2C(,/2x|wr|/n)] , (45)

where C(x) is the second Fresnel integral, defined as

o

C(o) = / dt cos (% 12> . (46)

0

For small values of ¢ it may be approximated, according to
the well-known formula:

2

Clo)~o— 65+ 0@ (47)
40 ’

and we find in F, (w, r) a similar singularity at @ = 0 as was
identified in A, (w, r):

Fu(w,r) ~ (+Dvr ove/2 SEN (‘“)

(48)

2V2 Vil
For the next term of the expansion of (43) we obtain
o
~ i cos wt
— _ _oYE/2 P i 2_,2

Fp(w,r)= 4e E /dt )i exp [zu t*—r ],

Alr|
(49)
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r=0.2

r=0.4

5
‘ 3
1
E E
1 3 5 -5 -3 -1

r=0.01
5
3
1
E
-5 -3 -1 1 3 5
r=1 r=
5 5
3 3
1
E
-5 -3 -1 1 3 5 -5 -3 -1

Fig. 2 Same as Fig. 1, but for |<I>§,1)|

and after the standard approximation it becomes

Fp(w,r) ~ ée“‘/z [Ei (iAlr| (14 + w) + Ei (iAlr|(n — w)].
(50)

Using (31), we see that (50) is logarithmically divergent as
w — . Itis aresult identical to the case of Ap(w, r). The
last term we are interested in is

_A=DVT e
161

e e]

t
X /‘dt&exp [ZiM\/tz—rz]. (51)

(tz _ r2)3/4

Fe(w, 1) =

Alr]

Due to the sufficiently high power of ¢ in the denominator,
this integral is convergent even for @ = £2u. It may be
shown to contain a slight singularity of the kind /w £ 2u.

One can then summarize that the instanton sector k = %1
reveals identical singularities at the same values of w as for
k = 0. It is also confirmed by the appropriate plots.

Similarly to (34) we define now the quantity, which rep-
resents the ‘value’ of the B-S function in this sector:

M 1 W+ ~m1)?
N

It is independent both on the choice of gauge and on the
vacuum 6 parameter and may be given the form

(52)

&, | = 1Dp(E. ]

= H[F(cw., r)eéplr — F(o_, r)e_%Plr]

i i 1/2
X [F(a)+, r)e_fplr—F(a)_, r)efPlr“ ,
(53)

1.5 r=
5
3
E E
1 3 5 -5 -3 -1

1 3 5

which in the CM frame reduces to the simple expression
1
oW (E. )|

= {[F (w4, r) = Flo_, N[F(@y,r) — Flo_, N}
(54)

Similarly to |d>g9) (E, r)| it becomes an even function of both
relative position and relative energy. In Fig. 2 the plot of (54)
is presented as a function of E for various fixed values of r.

The general relative-energy dependence reflects the prin-
cipal features of the trivial topological sector. The peaks at
E = (2n + ) for small values of n are clearly visible.
However, contrary to Fig. 1, there is no apparent enhance-
ment with increasing r for relative energy exceeding the first
threshold.

In Fig. 3 we plot for completeness the dependence on E
of the full B-S function |® p|, defined as

1 2 2
| p| Z\/E w[Ohdp] =\/‘c1>§9>‘ +|oy)| .

(55)

4 Summary

In summary, one should emphasize that the Schwinger model
turns out to be an exceptional tool to investigate the properties
of the bound states in QFT (apart from another nonperturba-
tive aspects). The fact that the exact form of the B-S ampli-
tude is explicitly known, constitutes a unique opportunity to
analyze its dependence on relative variables and particularly
the role played by the relative energy. The results obtained in
the present work show that the ‘strength’ of the B-S function
defined by Egs. (34) and (52) exhibits singularities for odd
number of Schwinger boson mass p. The appearance of this
threshold structure remains in some correspondence with the
results of the approximated scalar—scalar model [15]. This
effect finds its justification in a simple picture, in which we

@ Springer
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Fig. 3 Same as Fig. 1, but for |®p|

attribute energies £ and E» to both quarks and keep the total
energy fixed, which in the center-of-mass frame is equal to
(. The location of singularities is identical in all instanton
sectors.

The other effect, present only in the instanton sector, k =
0, is the enhancement of the ‘value’ of the B-S function for
medium values of 7 (in units of x~!) for a relative energy
exceeding the first threshold for production of Schwinger
bosons, and opposite behavior for small r. The region of
large relative positions was not investigated due to obstacles
of numerical origin.

Our formulas show that, in a boosted frame, the distribu-
tion of singularities remains unaltered, although plots lose
in this case their symmetric character with respect to the
replacement E — —E.

It should be noted that the results of Sects. 2 and 3 stay
in agreement with those of [44], where it was found that
the singularities in the two-momentum space are located on
hyperbolas [see Eq. (17)]. Inthe CM frame and in the notation
of the present work, they have the form

%(E +w’ = (g =np,
JE == (g =2 (56)
and may be rewritten as
= :i:% V(E + )? — 4n2p?
= i% V(E = @n—Dw(E + 2n+ D), (57)
f= i% V(E — w)? — 4n2p2
= :i:% VE+ Q2n—Dp)(E — 2n+ D). (58)

Now, in the Fourier integral over q] the singularities in E
arise, according to the Landau procedure [42,48,49], when

@ Springer

two singularities of the integrand functions merge. This hap-
pens for £ = (2n— 1) or E = —(2n+ 1) in the first case,
andfor E = —(2n—1)por E = (2n+1)u in the second one.
They all correspond to an odd number of Schwinger boson
masses, as found in the present work. This is only a rough
argumentation, since the explicit form on the B-S amplitude
in two-momentum space is unknown.

The results obtained here may be of some interest for stud-
ies of bound states in more realistic models, both in particle
and nuclear physics. It is believed that the retardation effects
may play an essential role in true QFT bound states [50]. One
should also mention that processes in which bound states
appear in internal lines require Feynman integrations over
relative coordinates or momenta and are strongly affected by
the presence of singularities. The B-S function appears also
in the matrix elements and scattering processes involving
bound states [43,51] and its role is significant for properly
describing the meson decay properties. Therefore any insight
into its structure seems to deserve particular attention .

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
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