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Abstract We consider the direct photon production in a
two hadron collision with one of the hadrons transversely
polarized. By using the contour gauge for gluon fields, we
find that there are new twist-3 terms present in the hadron
tensor of the considered process in addition to the standard
twist-3 terms. In this work, we demonstrate that the signifi-
cance of these new terms are twofold: first, they are crucial
to both the QED and the QCD gauge invariance and, second,
their contributions to the hadron tensor are at least the same
as those from the standard ones. We also study the resulting
effects which are responsible for the universality breaking of
the corresponding twist-3 parton distributions.

1 Introduction

The problem of the electromagnetic (QED) gauge invari-
ance in the deeply virtual Compton scattering and similar
exclusive processes has intensively been discussed during
the last few years (for example, see [1–6]). This develop-
ment explored the similarity with the earlier studied inclusive
spin-dependent processes [7]. The gauge invariance of hard
process amplitudes is ensured by twist-3 contributions and
by the use of the equations of motion that provide a possi-
bility to exclude the three-particle (quark–gluon) correlators
from the amplitude. So that, after combining with the two-
particle correlator contributions, one gets the gauge-invariant
expressions for the physical amplitudes or, in the case of
lepton–hadron processes, for the corresponding hadron ten-
sors [7]. This scheme was originally developed in the case
of the particular inclusive processes with transverse polar-
ized hadrons, like structure function g2 in DIS [7] and single
spin asymmetry (SSA) [8] due to the soft quark (fermionic
poles [9]). Also, the QCD gauge invariance of the so-called
gluonic poles contributions [10] has been a subject of studies
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in [11] where the methods that are used rely on the Wilson
exponentials [12–15].

We have shown in our recent work [16,17] that, in order to
ensure the QED gauge invariance of the transverse polarized
Drell–Yan (DY) hadron tensor, it is mandatory to include
the contribution from the extra diagram originating from
the nontrivial imaginary part of the corresponding twist-3
function BV (x1, x2). Before this study [16,17], the function
BV (x1, x2) has been argued to be real, and the imaginary
part of the amplitude was ensured by means of a specially
introduced “propagator”1 in the hard part of the hadron ten-
sor [18]. However, we have explained in [16,17] that the
BV -function does, in fact, have an imaginary part, and the
existence of this imaginary part can be realized with a help of
the contour gauge. Moreover, the BV -function with the com-
plex prescription induces a new contribution to the hadron
tensor. As has been stressed, this extra contribution leads to
the amplification of the corresponding tensor by a factor of
2. This finding of ours has independently been confirmed in
[19] by using a different approach. Besides, from the point
of view of phenomenology, the corresponding SSAs in the
DY process and the role of gluon pole contributions have
previously been discussed in [20–35].

In the present paper, we extend our approach used in
[16,17] to the case of the direct photon production in two
hadron collision where one hadron is transversely polarized.
We derive the hadron tensor for this process and study the
effects which lead to the soft breaking of factorization (or
the universality breaking) through the QED and QCD gauge
invariance. In a similar manner as in [16,17], the special role
is played by the contour gauge for gluon fields. We demon-
strate that the prescriptions for the gluonic poles in the twist-
3 correlators are dictated by the prescriptions in the corre-
sponding hard parts. We argue that the prescriptions in the
gluonic pole contributions differ from each other depend-

1 This is the so-called special propagator originally suggested by J.
W. Qiu.
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Fig. 1 The Feynman diagrams
which contribute to the polarized
Drell–Yan hadron tensor
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ing upon the initial or final state interactions (FSIs) of the
diagrams under consideration. Moreover, the different pre-
scriptions are needed to ensure the QCD gauge invariance.
We treat this situation as a breaking of the universality con-
dition resulting in factorization soft breaking. The extra dia-
gram contributions, which naively do not have an imaginary
phase, is discussed in detail.

In the paper, we also show that the new (“non-standard”)
terms do contribute to the hadron tensor exactly as the “stan-
dard” terms known previously. This is exactly similar to the
case of the Drell–Yan process studied in [16,17].

2 Getting started: case of Drell–Yan process

For pedagogical reasons, we recall briefly our findings for
the Drell–Yan process where one of the hadrons possesses
the transverse polarization; see [16,17] for all details. As
usual, the Drell–Yan process with the transversely polarized
nucleon is defined as

N (↑↓)(p1) + N (p2) → γ ∗(q) + X (PX )

→ �(l1) + �̄(l2) + X (PX ), (1)

where the virtual photon producing the lepton pair (l1 + l2 =
q) has a large mass squared (q2 = Q2), while the trans-
verse momenta are small and integrated out. The dominant
light-cone directions for the DY process (Fig. 1) are defined
as p1 ≈ n∗ Q/(xB

√
2) and p2 ≈ n Q/(yB

√
2) with the

dimensionless light-cone vectors n∗
μ = (n∗+, 0−, 0⊥) and

nμ = (0+, n−, 0⊥).
Since we deal with a large Q2 in the process under con-

sideration, it is possible to apply the factorization theorem to
get the corresponding hadron tensor factorized in the form
of a convolution:

Hadron tensor

= {Hard part (pQCD)}{Soft part (npQCD)}. (2)

Usually both the hard and the soft parts in Eq. (2) are, inde-
pendent of each other, UV- and IR-renormalizable. More-

over, various parton distributions which parametrize the soft
part have to manifest the universality property.

Based on the DY process, it is convenient to study the role
of twist-3 by exploring different kinds of asymmetries, for
instance, the left–right asymmetry. This left–right asymmetry
means the transverse momenta of the leptons are correlated
with the direction S × ez where Sμ implies the transverse
polarization vector of the nucleon and ez is a beam direc-
tion [36]. Generally speaking, any SSAs can be presented
in the following symbolical form (at this moment, the exact
expression for SSA is irrelevant):

A ∼ dσ (↑) − dσ (↓) ∼ Lμν Hμν, (3)

where Lμν is an unpolarized leptonic tensor and, conse-
quently, has only the real part; Hμν stands for the hadronic
tensor, which is also real. Since one of the hadrons is trans-
versely polarized, the corresponding matrix element which
forms the soft part of hadron tensor reads [16,17]
〈
p1, S

T |ψ̄(λ1ñ) γ + gAα
T (λ2ñ) ψ(0)|ST , p1

〉

= iεα+ST −(p1 p2)

∫
dx1dx2 e

ix1λ1+i(x2−x1)λ2 BV (x1, x2),

(4)

where the light-cone vector ñ is a dimensionful analog of
the vector n. Therefore, in order to provide for the condition,
Hμν ∈ �e, the complex i in the r.h.s. of (4) has to be com-
pensated for either (a) by the complexness of the hard part
(this is the standard contribution):

H (a)
μν ∼ i �m [Hard]

⊗
{
〈p1, ST |O(ψ̄, ψ, A)|ST , p1〉 F∼ iεα+ST −BV

}
,

(5)

or (b) by the complexness of the soft part:

H (b)
μν ∼ Hard

⊗
{
〈p1, ST |O(ψ̄, ψ, A)|ST , p1〉 F∼ iεα+ST − i �m [BV ]

}
.

(6)
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In Eqs. (5) and (6),
F∼ and O(ψ̄, ψ, A) are the shorthands

for the Fourier transformation and the corresponding quark–
gluon operator, respectively [Eq. (4)]. In general, the hard
parts in Eqs. (5) and (6) differ from each other. For instance,
the hard part of the diagram presented in Fig. 1a contains the
quark propagator in contrast to the hard part of the diagram
in Fig. 1b.2

However, in the previous studies (for example [11,18,28–
30]), BV (x1, x2)-function has been assumed to be a purely
real function:

BV (x1, x2) = P
x1 − x2

T (x1, x2) (7)

with the functionT (x1, x2) ∈ �e which parametrizes the cor-
responding projection of 〈ψ̄ Gαβ ψ〉. Therefore, the scenario
(b) [Eq. (6)] will never be realized if the BV (x1, x2)-function
has the form as in Eq. (7). As a result, the QED gauge invari-
ance of the DY hadron tensor is in question. Indeed, hav-
ing analyzed the hard subprocess in the context of the QED
gauge invariance, we can conclude that only the sum of two
diagrams in Fig. 1a, b ensures the QED gauge invariance
of the hadron tensor. As shown in [16,17], the contribution
of H (a)

μν is associated with the Feynman diagram in Fig. 1a

while the contribution of H (b)
μν is generated by the diagram

presented in Fig. 1b.
Thus, we may infer that the real function BV (x1, x2) in

the form as in Eq. (7) leads to the violation of the QED gauge
invariance of the hadron tensor.

To solve this discrepancy, it is instructive to recall the rea-
son which leads to the representation in Eq. (7). The conclu-
sion that BV is a real function has come from the ambiguity
in the solutions of the differential equation (provided that
A+ = 0):

∂+ Aα
T = G+α

T . (8)

Indeed, the formal solutions of Eq. (8) have the following
forms:

Aμ(z) =
∞∫

−∞
dω−θ(z− − ω−)G+μ(ω−) + Aμ(−∞) (9)

= −
∞∫

−∞
dω−θ(ω− − z−)G+μ(ω−) + Aμ(∞). (10)

From the first glance, Eqs. (9) and (10) seem to be equivalent
each other. However, as we will see below, this is not true.

2 The corresponding δ-functions appearing in the hadron tensor and
expressing the momentum conservation law should also refer to the
hard parts. This statement was argued for in [37] in the context of the
so-called factorization links.

Now, if we insert Eqs. (9) and (10) into Eq. (4) and use
the following parametrization:
〈
p1, S

T |ψ̄(λ1ñ) γ + ñνG
να
T (λ2ñ) ψ(0)|ST , p1

〉

= εα+ST − (p1 p2)

∫
dx1dx2 e

ix1λ1+i(x2−x1)λ2 T (x1, x2),

(11)

we get the following representations:

BV (x1, x2) = δ(x1 − x2)B
V
A(−∞)(x1) + T (x1, x2)

x1 − x2 + iε
,

(12)

= δ(x1 − x2)B
V
A(+∞)(x1) + T (x1, x2)

x1 − x2 − iε
,

(13)

respectively. In Eqs. (12) and (13), the corresponding ±iε
prescriptions arise from the integral representation for the
θ -function:

θ(±x) = ±i

2π

+∞∫

−∞
dk

e−ikx

k ± iε
. (14)

Further, if we suppose that the representations (12) and
(13) are equivalent to each other, we can calculate the plus
and minus combinations of (12) and (13) resulting in

BV (x1, x2) = 1

2
BV (x1, x2) + 1

2
BV (x1, x2)

= 1

2
δ(x1 − x2)

{
BV
A(−∞)(x1) + BV

A(+∞)(x1)
}

+ P
x1 − x2

T (x1, x2) (15)

and

0 = BV (x1, x2) − BV (x1, x2)

= δ(x1 − x2)
{
BV
A(+∞)(x1) − BV

A(−∞)(x1)
}

−2i π δ(x1 − x2)T (x1, x2). (16)

The ambiguity in the solutions of (8) [(12) and (13)] ulti-
mately gives us the standard representation (7) with the real
function BV provided the asymmetric boundary condition
for gluons is given by BV

A(∞)(x) = −BV
A(−∞)(x).

In fact, the representations (12) and (13) are not equivalent
ones [16,17]. To see that, it is necessary to remember that all
axial-type gauges are the particular cases of the most gen-
eral contour gauge (see Appendix A and the text below for
details). Using the contour gauge conception, one can eas-
ily check that the representation (12) belongs to the gauge
[x, −∞] = 1, while the representation (13) belongs to the
gauge [+∞, x] = 1. Therefore, one has no reason whatso-
ever to believe that (12) and (13) are equivalent [for details,
see (A.12), (A.13)], i.e.
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{Eq. (12) �⇒ BV+ (x1, x2)} �= {BV− (x1, x2) ⇐� Eq. (13)}.
(17)

Roughly speaking, it resembles the trivial situation where
two different vectors have the same projection on the cer-
tain direction. In this context, the well-known axial gauge
A+ = 0 can be treated as some type of “projection” which
corresponds to two different “vectors” represented by two
different contour gauges (see Appendix A).

We now consider the QED gauge-invariant hadron ten-
sor for the DY process with the transverse polarization.
In order to understand which contour gauge we need
to deal with, before imposing the condition A+ = 0,
it is necessary to take into account the contributions of
〈p1, ST |ψ̄ γ + A+ ψ |ST , p1〉 in the standard hadron tensor
(see Fig. 1a). Based on the analysis of the γ -structure of
this diagram as shown in [16,17], the Feynman causal pre-
scription in the quark propagator (see Eqs. (2), (6), and (8) of
[16,17]) uniquely leads to the Wilson line in the quark–gluon
correlator:

[−∞−, 0−] = Pexp

⎧
⎨
⎩−ig

0∫

−∞
dz− A+(0, z−, �0T )

⎫
⎬
⎭ . (18)

Equation (18) suggests that we have to use the contour gauge
[−∞−, 0−] = 1. Therefore, the contour gauge defined by
[−∞−, 0−] = 1 destroys the ambiguity, and the function
BV (x1, x2) has to be described by the following representa-
tion (see (A.12) and [16,17] for details):

BV+ (x1, x2) = T (x1, x2)

x1 − x2 + iε
. (19)

As a result, the diagram represented in Fig. 1b [or the hadron
tensor (6)] does contribute to the hadron tensor, and this
together with the first diagram represented in Fig. 1a forms
the gauge-invariant hadron tensor (see Eq. (34) of [16,17]):

Wμν

GI = Wμν

(1) + Wμν

(2)

= − 2

q2 ενST p1 p2
(
xB pμ

1 − yB pμ
2

)
q̄(yB) T (xB, xB).

(20)

From Fig. 1, we can also realize that the representation of
BV (x1, x2) with the complex prescription +i ε in the gluonic
pole, see (A.12), corresponds to the initial state interaction
(ISI) with respect to the hard subprocess. We want to stress
that in the case of DY process we deal with the ISI only as
opposed to the case of the direct photon production which is
studied below.

For the DY process, the ISI generates −2�+k−
2 + iε (see

the diagram in Fig. 1a) in the quark propagator which, in turn,
leads to (1) the contour gauge [−∞−, 0−] = 1 and, then,
to (2) the function BV+ with the certain complex prescription
(A.12). The latter ensures the QED gauge invariance for the

hadron tensor. Schematically, the mentioned logical chain
can be presented as

ISI ⇒ 1

−�+ + iε
⇒ gauge [z−, −∞−] = 1

⇒ T (x1, x2)

x1 − x2 + iε
⇒ GI. (21)

We can see that the prescription in the quark propagator of the
hard part gives information on the contour gauge for gluons
from the soft part. In other words the hard and soft parts are
not fully independent of each other. In spite of this, the DY
hadron tensor has formally been factorized with the math-
ematical convolution, and the parton distributions, such as
the twist-3 function BV (x1, x2), still satisfy the universality
condition. In contrast to the DY process, as we will see in
the next section, the direct photon production tensor is built
with the functions BV (x1, x2), which will not manifest the
universality.

We will refer to a soft breaking of the factorization when
the factorization procedure results in the mathematical con-
volution between the finite hard and soft parts, but there is no
universality for the soft functions or the hard and soft parts
are not totally independent.

To conclude this section, let us note that the situation with
the gauge invariance for the DY process (21) is very similar
to what has been discussed for the vector meson electropro-
duction in [38] where the FSI also predetermined the correct
prescription for the spurious gluon pole for the validity of
QCD factorization.

3 Hadron tensor of the direct photon production I:
kinematics and gauge invariance

3.1 Kinematics

In this section, we study the two hadron collisions, where one
of the hadrons possesses the transverse polarization, which
produces the direct photon in the final state in

N (↑↓)(p1) + N (p2) → γ (q) + q(k) + X (PX ). (22)

The gluonic poles are manifest in this process in a similar way
to the Drell–Yan process [28]. We perform our calculations
within a collinear factorization, and it is convenient (see, e.g.,
[37]) to fix the dominant light-cone directions as

p1 =
√

S

2
n∗, p2 =

√
S

2
n, with

n∗
μ = (1/

√
2, 0T , 1/

√
2), nμ = (1/

√
2, 0T , −1/

√
2).

(23)

The hadron momenta p1 and p2 have the plus and minus
dominant light-cone components, respectively. Accordingly,
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the quark and gluon momenta k1 and � lie along the plus dom-
inant direction, while the gluon momentum k2 is along the
minus direction. The final on-shell photon and quark (anti-
quark) momenta can be presented as

q = yB

√
S

2
n − q2⊥

yB
√

2S
n∗ + q⊥,

k = xB

√
S

2
n∗ − k2⊥

xB
√

2S
n + k⊥.

(24)

The Mandelstam variables for the process and subprocess are
defined as

S = (p1 + p2)
2, T = (p1 − q)2, U = (q − p2)

2,

ŝ = (x1 p1 + yp2)
2 = x1yS, t̂ = (x1 p1 − q)2 = x1T,

û = (q − yp2)
2 = yU. (25)

The amplitude of process (22) involves the contributions
from

• the leading (LO) diagrams: two diagrams with a radiation
of the photon before (ALO

1 ) and after (ALO
2 ) the quark–

gluon vertex with the gluon going to the lower blob; see
the right side of Fig. 2;

• the next-to-leading order (NLO) diagrams: eight dia-
grams constructed from the LO diagrams by insertion
of all possible radiations of the additional gluon, which
together with the quark goes to the upper blob, see the
left side of Fig. 2.

We denote the sum of the diagrams as

ALO
1 + ALO

2 +
8∑

i=1

BNLO
i , (26)

which generates the hadron tensor related to the correspond-
ing asymmetry:

dσ↑ − dσ↓ ∼ W =
2∑

i=1

8∑
j=1

ALO
i × BNLO

j . (27)

p2 p2

p1p1

Fig. 2 The Feynman diagram describing the hadron tensor of the direct
photon production

In this work, we mainly dwell on the discussion of the
hadron tensor rather than the asymmetry itself. Diagram-
matically (Fig. 2) the hadron tensor can be presented in the
form of interference between the LO and NLO diagrams:
ALO

i ×BNLO
j . In Fig. 2, the upper blob determines the matrix

element of the twist-3 quark–gluon operator while the lower
blob determines the matrix element of the twist-2 gluon oper-
ator related to the unpolarized gluon distribution.

3.2 Factorization procedure

Since the collinear factorization is our main tool, let us outline
the main stages of factorization. The factorization procedure
contains the following steps:

• the decomposition of loop integration momenta around
the corresponding dominant direction: ki = xi p + (ki ·
p)n + kT within the certain light cone basis formed by
the vectors p and n (in our case, n∗ and n);

• the replacement d4ki �⇒ d4ki dxiδ(xi − ki · n), which
introduces the fractions with the appropriate spectral
properties;

• the decomposition of the corresponding propagator prod-
ucts around the dominant direction:

H(k) = H(xp) + ∂H(k)

∂kρ

∣∣∣∣
k=xp

kTρ + · · · ;

• the use of the collinear Ward identity, if requested by the
approximation needed:

∂H(k)

∂kρ

= Hρ(k, k);

• performing of the Fierz decomposition for ψα(z) ψ̄β(0)

in the corresponding space up to the needed projections.

Notice that, for our purposes, it is enough to limit ourselves
by the first order of the decomposition in the third item. As a
result of this procedure, we should reach the factorized form
for the considered subject; see (2).

3.3 Hadron tensor: QED gauge invariance

At the first item, we want to discuss the QED gauge invariance
of the hadron tensor. To check the QED gauge invariance, it
is sufficient to consider the typical Feynman diagrams H1,
H3, and H5 represented in Fig. 3. For definiteness, we pay
attention to the anti-quark contribution. All our results can
trivially be extended to the quark contribution as well.

Before factorization, the H1 diagram in Fig. 3 leads to the
following expression:
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H1

p1 p1

p2p2

H2

p1 p1

p2p2

H3

p1 p1

p2p2

H4

p1 p1

p2p2

H5

p1 p1

p2p2

H6

p1 p1

p2p2

H7

p1

p2p2

p1

H8

p1

p2p2

p1

H9

p1

p2p2

p1

H10

p1

p2p2

p1

H11

p1

p2p2

p1

H12

p1

p2p2

p1

D1

p1

p2p2

p1

D2

p1

p2p2

p1

D3

p1

p2p2

p1

D4

p1

p2p2

p1

Fig. 3 The typical Feynman diagrams, contributing to the hadron tensor
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W(diag.H1) =
∫

(d4k1) (d4k2) δ(4)(k1 + k2 − k − q)�αβ
g (k2) C2

× v̄(k)ε̂S(k + q)γ α⊥γ −γ
β
⊥

∫
(d4�) S(� + k + q)

× γ
ρ
⊥S(k + q)q̂v(k) �̄

[γ +],ρ
⊥ (k1, �), (28)

where C2 implies the corresponding color factor. Here and in
what follows the coupling constants are not shown explicitly.
In Eq. (28) the gluon (unpolarized) twist-2 parameterizing
function is defined as

�αβ
g (k2) =

∫∑
X

∫
(d4η2) e

−ik2η2 〈p2|Aα(0)|PX 〉

×〈PX |Aβ(η2)|p2〉 = gαβ
⊥ F g(k2), (29)

while the quark–gluon twist-3 parameterizing function is
given by

�̄
[γ +],ρ
⊥ (k1, �) =

∫∑
X

∫
(d4η1) (d4z) e−ik1η1−i�z trD

×〈p1, S
T |ψ(η1)|PX 〉 〈PX |ψ̄(0)γ +Aρ

⊥(z)|ST , p1〉.
(30)

We now carry out the standard factorization procedure and,
after some algebra, obtain the following expression:

W(diag.H1) = −2
∫

dx1 dy δ(4)(x1 p1 + yp2 − k − q)F g(y) C2

×v̄(k)ε̂
γ +

2x1 p1 + iε
γ −

∫
dx2

γ +

2x2 p1 + iε
γ

ρ
⊥

× γ −

2yp2 + iε
q̂v(k)�̄[γ +],ρ

⊥ (x1, x2), (31)

where

�̄
[γ +],ρ
⊥ (x1, x2) =

∫∑
X

∫
(dλ1) (dλ2) e

−i x1λ1−i(x2−x1)λ2

×trD 〈p1, ST|ψ(λ1n)|PX〉
×〈PX |ψ̄(0)γ +Aρ

⊥(λ2n)|ST , p1〉
= ερ+ST −(p1 p2) B

V (x1, x2). (32)

In the diagrams H1, H3, and H5, we deal with the FSI with
respect to the hard part. Therefore, the BV -function has the
representation as in (A.13) (cf. [16,17]), i.e.

BV− (x1, x2) ≡ BV
FSI(x1, x2) = T (x1, x2)

x1 − x2 − iε
. (33)

In a similar way to the preceding section, we have to restore
the path in the Wilson line with A+-fields in the quark–gluon
correlators which appear in the diagrams H1, H3, and H5
in Fig. 3. After straightforward calculations, we derive the
Wilson line in the form [+∞−, z−], which suggests us to
use the representation (A.13) for our BV -function.

The contribution of H5 diagram in Fig. 3 is equal to zero
due to the fact that the photon momentum has the dominant

minus light-cone component and, therefore, the γ -structure
gives (γ −)2 = 0.

We now calculate the hadron tensor term associated with
the H3 diagram in Fig. 3; it reads

W(diag.H3) = −2
∫

dx1 dy δ(4)(x1 p1 + yp2 − k − q)F g(y) C2

× v̄(k)ε̂
γ +

2x1 p1 + iε
γ −q̂

∫
dx2

γ −

−2yp2 + iε

× γ +

2x2 p1 + iε
γ

ρ
⊥v(k) �̄

[γ +],ρ
⊥ (x1, x2), (34)

where the BV -function is also given by the representation
(33) or (A.13).

After some γ -algebra, we can check that the contribution
of (34) is equal to the contribution of (31) but with an opposite
sign. Therefore, the sum of all contributions gives us zero (we
recall that the second diagram contribution is equal to zero
itself) i.e.

W(diag.H1) + W(diag.H3) + W(diag.H5) = 0. (35)

In fact, the identity (35) reflects the QED gauge invariance
for the hadron tensor. We emphasize that the QED gauge
invariance occurs owing to the same complex prescriptions
in the definitions of BV -function (Eq. 33). In turn, the same
complex prescriptions emanate from the FSI presented in H1,
H3, and H5 of Fig. 3. Finally, using a similar logical chain
to the DY process, we can write

FSI ⇒ 1

�+ + iε
⇒ gauge [+∞−, z−] = 1

⇒ T (x1, x2)

x1 − x2 − iε
⇒ QED GI. (36)

We would like to emphasize that the concrete sign of
the gluonic pole prescription is not so crucial for the QED
gauge invariance because here we deal with only one type
of interaction which is the FSI (this distinguishes the case
of QCD gauge invariance which is considered below). It is
more important to have the same prescriptions in all glu-
onic poles. In other words, from the point of view of contour
gauge, we may use the same wrong +iε prescription in the
representation of BV -function for diagrams H1, H3, and H5
depicted in Fig. 3. But this wrong prescription still leads
to QED gauge invariance. However, after calculation of the
imaginary parts for the corresponding asymmetry, the wrong
prescription definitely plays a negative role.

3.4 Hadron tensor: QCD gauge invariance

We are now in a position to dwell on the QCD gauge invari-
ance of the hadron tensor for the direct photon production. To
check this invariance, we have to consider four typical dia-
grams H1, H5, D1, and H9, depicted in Fig. 3, which come
from the corresponding ξ -process (see [39]). Notice that the
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gluon enters in the quark–gluon correlator as an internal field.
For the QCD gauge invariance, we have to assume that all
charged particles are on-shell, i.e. we deal with the phys-
ical gluons only. The substantial differences between this
case and a pure perturbative Compton scattering case are
discussed in Appendix B.

To write down the Ward identity, we need to replace the
gluon transverse polarization εTα by the gluon longitudinal
momentum �Lα in the quark–gluon correlator:

�̄
[γ +],ρ
⊥ (k1, �) = −

∫
(d4η1) e

−ik1η1 ε
ρ
T

× 〈p1, S
T |ψ̄(0)γ +ψ(η1) a

+(�)|ST , p1〉
εT →�L�⇒ −

∫
(d4η1) e

−ik1η1 �
ρ
L 〈p1, S

T |ψ̄(0)γ +ψ(η1) a
+(�)|ST , p1〉,

(37)

where a+(�) stands for the gluon creation operator. The sum-
mation over the intermediate states is not shown explicitly.
Notice that the parametrization of this correlator through the
BV -function stays unchanged.

Consider now the contribution of the H1 diagram in Fig.
3 to the hadron tensor. Before going further, it is instructive
to begin with the gluon loop integration corresponding to the
mentioned diagram. We have

∫
(d4�)S(� + k + q)�̂L〈. . . a+(�) . . .〉, (38)

where we do not explicitly write the operators which are
irrelevant at the moment [cf. (37)]. After factorization, we
obtain
∫

dx2

∫
(d4�)δ(x2 − x1 − �n)S(� + k + q)�̂L 〈. . . a+(�) . . .〉

=
∫

dx2S(x2 p1 + yp2) (x2 − x1) p̂1

∫
(d4�)δ(x2 − x1 − �n)

×〈. . . a+(�) . . .〉, (39)

where we decompose the hard part around the dominant
direction and put �L = (x2−x1)p1, which is actually dictated
by the γ -structure and the momentum conservation. Using
all these, we get the following expression:

W(diag.H1)

= −2
∫

dx1 dy δ(4)(x1 p1 + yp2 − k − q)Fg(y) C2

×v̄(k)ε̂
γ +

2x1 p1 + iε
γ −

∫
dx2

(x2 − x1)γ
+γ −

2x2 + iε

γ +

2x1 p1 + iε
ε̂∗v(k)

×
{
(−)

∫
(dλ1) e

−i x1λ1 〈p1, S
T |ψ̄(0)γ +ψ(λ1n)

×
∫

(d4�)δ(x2 − x1 − �n) a+(�)|ST , p1〉
}

, (40)

where

(−)

∫
(dλ1) e

−i x1λ1 〈p1, S
T |ψ̄(0)γ +ψ(λ1n)

×
∫

(d4�)δ(x2 − x1 − �n)a+(�)|ST , p1〉 = BV (x1, x2).

(41)

It can be seen, however, that this diagram does not contribute
to the Ward identity. Indeed, after calculation of the imagi-
nary part we get the factor (x2 − x1) in the numerator of (40)
which goes to zero owing to δ(x2 − x1) from �mBV (x1, x2).

Further, calculation of the H5 diagram, presented in
Fig. 3, gives us

W(diag.H5)

=
∫

dx1 dy δ(4)(x1 p1 + yp2 − k − q)F g(y) C2

×v̄(k)ε̂
γ +

2x1 p1 + iε
γ − ε̂∗

×
∫

dx2
γ +γ −γ +

2x2 p1 + iε
v(k) BV (x1, x2), (42)

while the contribution of the D1 diagram in Fig. 3 takes the
form

W(diag.D1)

= −
∫

dx1 dy δ(4)(x1 p1 + yp2 − k − q)F g(y) C1

×v̄(k)ε̂
γ +

2x1 p1 + iε
γ −γ +γ − γ +

2x1 p1 + iε
ε̂∗ v(k)

×
∫

dx2 BV (x1, x2). (43)

Finally, the contribution of the H9 diagram with the three-
gluon vertex, see Fig. 3, reads

W(diag.H9)

= −4 i
∫

dx1 dy δ(4)(x1 p1 + yp2 − k − q)F g(y) C3

×v̄(k)ε̂
γ +

2x1 p1 + iε
γ − γ +

2x1 p1 + iε
ε̂∗ v(k)

×
∫

dx2
x2 − x1

2(x2 − x1) + iε
BV (x1, x2). (44)

We now turn to the contour gauge. First of all, based on our
previous discussions we notice that even a fleeting glance
is sufficient to anticipate the corresponding prescriptions for
the BV -functions in (42)–(44). The H5 diagram in Fig. 3 cor-
responds to the FSI and, therefore, the function BV− should
appear here. On the other hand, the D1 and H9 diagrams in
Fig. 3 correspond to the ISI which leads to the function BV+ .
Performing the explicit calculations (see also [16,17]), we
can arrive at the conclusion mentioned above by restoring
the Wilson lines in the quark–gluon correlators of the men-
tioned diagrams. The Wilson line [+∞−, z−] enters in the
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hadron tensor represented by the H5 diagram in Fig. 3, while
the Wilson line [z−, −∞−], appears in the hadron tensor
represented by the D1 and H9 diagrams in Fig. 3.

We sum all contributions and get the following final
expression:

∑
N=H1,H5,D1,H9

W(diag.N)

= C2

8x1
γ +γ −γ +γ −γ +

∫
dx2

BV− (x1, x2)

x2

+ C1

8x2
1

γ +γ −γ +γ −γ +
∫

dx2B
V+ (x1, x2)

+ iC3

4x2
1

γ +γ −γ +
∫

dx2
(x2 − x1)BV+ (x1, x2)

x2 − x1 + iε
(45)

where the function BV− is represented by (A.13) or (33), and
the function BV+ is given by (A.12) or

BV+ (x1, x2) ≡ BV
ISI(x1, x2) = T (x1, x2)

x1 − x2 + iε
. (46)

We now calculate the imaginary part and, ultimately, we
derive the QCD Ward identity in the form

C2 − C1 − iC3 = −[ta, tb] tb ta + i f abctc tb ta ≡ 0. (47)

We want to stress that the identity (47) occurs provided only
the presence of the different complex prescriptions in gluonic
poles dictated by the final or ISIs:

FSI ⇒ 1
�++iε ⇒ gauge [+∞−, z−] = 1 ⇒ T (x1,x2)

x1−x2−iε

ISI ⇒ 1
−�++iε ⇒ gauge [z−, −∞−] = 1 ⇒ T (x1,x2)

x1−x2+iε

⎫
⎬
⎭

⇒ QCDGI. (48)

We emphasize the principal differences (see details in
Appendix B) between the considered case and the proof of
the QCD gauge invariance for the perturbative Compton scat-
tering amplitude with the physical gluons in the initial and
final states. The latter does not need any external condition
such as the presence of gluon poles.

Thus, the situation which we discuss is again absolutely
similar to that one which has been described in [38] for the
dijet production. From (48), it is seen that the different dia-
grams correspond to the different contour gauges and, con-
sequently, to the different functions, BV± , which parametrize
the hadronic matrix element forming the soft part. In this con-
text, we also have a soft breaking of factorization because,
first, it spoils the universality principle and, second, the glu-
onic pole prescriptions in the soft part are traced to the causal
prescriptions in the hard part. At the same time, we can use
the replacement [38]

T (x1, x2)

x1 − x2 − iε
= T (x1, x2)

x1 − x2 + iε
+ 2π i δ(x1 − x2)T (x1, x2)

(49)

and finally get the same function BV+ for all diagrams (in
other words, we can use the same contour gauge for all dia-
grams). However, it contains the additional δ(x1 − x2)-term
which may lead to the collinear factorization violation in the
same manner as in [38]. The full analysis of this case will be
implemented in our forthcoming work.

4 Hadron tensor of the direct photon production II:
new contributions

In this section we calculate the full expression for the hadron
tensor, which involves both the standard and the new con-
tributions to the gluon pole terms. The full expression for
the hadron tensor related to the case we are discussing can
be split into two groups: (1) the first type of contributions
corresponds to the diagrams H1–H12 depicted in Fig. 3 and,
before factorization, takes the following form:

W(diag.H) =
∫

d3 �q
(2π)32E

d3�k
(2π)32ε

CH

×
∫

(d4k1)(d
4k2)δ

(4)(k1 + k2 − q − k)�αβ
g (k2)

×
∫

(d4�)�
[γ +], ρ
⊥ (k1, �) H

αβ,ρ(k1, k2, �), (50)

and (2) the second type of contributions, given by the dia-
grams D1–D4 in Fig. 3, can be presented as

W(diag.D) =
∫

d3 �q
(2π)32E

d3�k
(2π)32ε

CD

×
∫

(d4k1)(d
4k2)δ

(4)(k1 + k2 − q − k)

×�αβ
g (k2) trD

[
�(1)(k1) dαβ(k1, k2)

]
. (51)

In Eqs. (50) and (51), the corresponding coefficient func-
tions are denoted by Hαβ,ρ(k1, k2, �) and Dαβ(k1, k2). The
unpolarized twist-2 gluon distribution �g(k2) and the twist-3

quark distribution �
[γ +],ρ
⊥ (k1, �) are defined in the standard

forms; see (29) and (30). The twist-3 quark distribution which
appears in the diagrams D1–D4 presented in Fig. 3 is given
by

�(1)(k1) = γ +γ
ρ
⊥ γ −

2k+
1 + iε

∫
(d4η1) e

ik1η1

×〈p1, S
T |ψ̄(0)γ +Aρ

⊥(0)ψ(η1)|ST , p1〉, (52)

where the sum over the corresponding intermediate states
is implied. We now perform the factorization procedure for
Eqs. (50) and (51), and we obtain
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dW(diag.H) = d3 �q
(2π)32E

∫
d3�k

(2π)32ε
δ(2)(�k⊥ + �q⊥) CH

×
∫

dx1dyδ(x1 − xB) δ(y − yB)
2

S
Fg(y) gαβ

⊥

×
∫

dx2 �
[γ +], ρ
⊥ (x1, x2) Hαβ,ρ(x1, x2) (53)

for the first type of contributions, and

dW(diag.D) = d3 �q
(2π)32E

∫
d3�k

(2π)32ε
δ(2)(�k⊥ + �q⊥) CD

×
∫

dx1dyδ(x1 − xB) δ(y − yB)

× 2

S
F g(y) gαβ

⊥ trD
[
�(1)(x1) dαβ(x1)

]
(54)

for the second type of contributions.
To simplify our calculations without losing generality, we

may choose the frame where q2⊥ � S. The Mandelstam
variable defined for the subprocess, û, is a small variable
and can be neglected. It means that the Bjorken fraction yB
becomes independent of xB , and one can write yB = −T/S
(due to ŝ + t̂ + û = 0).

The next stage is to determine the type of the twist-3 func-
tion BV (x1, x2) which is related to certain complex prescrip-
tions in the gluon poles according to the way described in the
preceding sections. The correct definition of the BV (x1, x2)-
function should be implemented for each of diagrams. Also,
it is instructive to notice that the diagrams H1–H8 would not
possess the gluon poles in the case where the function BV

is assumed to be a real one. However, this is not true in our
case.

After computing the corresponding traces and performing
some simple algebra within the frame we are choosing, it
turns out that the only nonzero contributions to the hadron
tensor come from the diagrams H1, H7, D4, and H10:

dW(diag.H1) = d3 �q
(2π)32E

∫
d3�k

(2π)32ε
δ(2)(�k⊥ + �q⊥) C2

×
∫

dx1dyδ(x1 − xB) δ(y − yB)Fg(y)

×
∫

dx2
2S2 x1 y2

[x2yS + iε][x1yS + iε]2
εq⊥+S⊥−

p+
1

×BV− (x1, x2), (55)

dW(diag.H7) = d3 �q
(2π)32E

∫
d3�k

(2π)32ε
δ(2)(�k⊥ + �q⊥) C1

×
∫

dx1dyδ(x1 − xB) δ(y − yB)Fg(y)

×
∫

dx2
(−2)S T x1 (y − 3yB)

[x2T + iε][x1T + iε]2
εq⊥+S⊥−

p+
1

×BV+ (x1, x2), (56)

dW(diag.D4) = d3 �q
(2π)32E

∫
d3�k

(2π)32ε
δ(1)(�k⊥ + �q⊥) C1

×
∫

dx1dyδ(x1 − xB) δ(y − yB)
2

S
Fg(y)

×2S2 x1 (y − 2yB)

[x1T + iε]2
εq⊥+S⊥−

2x1 p
+
1 + iε

∫
dx2

×BV+ (x1, x2), (57)

and

dW(diag.H10) = d3 �q
(2π)32E

∫
d3�k

(2π)32ε
δ(2)(�k⊥ + �q⊥) C3

×
∫

dx1dyδ(x1 − xB) δ(y − yB)Fg(y)

×
∫

dx2
2T (x1 − x2)(2T + Sy)

[x1T + iε][x2T + iε][(x1 − x2)yS + iε]
× εq⊥+S⊥−

p+
1

BV+ (x1, x2). (58)

Here, C1 = C2
F Nc, C2 = −CF/2, C3 = CF Nc CA/2. The

other diagram contributions disappear owing to the following
reasons: (1) the γ -algebra gives (γ −)2 = 0; (2) the common
pre-factor T + yS goes to zero, (3) the diagrams H2 and H5
cancel each other.

Analyzing the results for the diagrams H1, H7, D4, and
H10 [see Eqs. (55)–(58)], we see that

dW(diag.H1) + dW(diag.H7) + dW(diag.D4)

= dW(diag.H10). (59)

In other words, similar to the Drell–Yan process, the new
(“non-standard”) contributions generated by the diagrams
H1, H7, and D4 result again in the factor of 2 compared to
the “standard” diagram H10 contribution to the correspond-
ing hadron tensor. This is our principal result.

5 Conclusions

In this work, we explore both the QED and the QCD gauge
invariance of the hadron tensor for the direct photon produc-
tion in two hadron collision where one of the hadrons is trans-
versely polarized. We present the important details related to
the use of the contour gauge for the Drell–Yan process with
essential transverse polarizations. We study the effects which
lead to the soft breaking of factorization through the QED
and QCD gauge invariance.

We show that the contour gauges for gluon fields play the
crucial role for our study. The contour gauge belongs to the
class of non-local gauges that depends on the path connect-
ing two points in the correlators. It turns out, in the cases
which we consider, the prescriptions for the gluonic poles
in the twist-3 correlators are dictated by the prescriptions in
the corresponding hard parts in a similar manner to the DY
process considered in [16,17].
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For the direct photon production, we demonstrate that
the prescriptions in the gluonic pole contributions differ
from each other, depending upon the initial or FSIs in the
related diagrams. We stress that the different prescriptions
are needed to ensure the QCD gauge invariance. This situ-
ation has been treated as a soft breaking of the universality
condition, resulting in factorization breaking. Besides, the
presence of the complex prescriptions in the gluonic pole
contributions allow the extra diagrams to contribute nontriv-
ially to the hadron tensor.

We find that the “non-standard” new terms, which exist
in the case of the complex twist-3 BV -function with the cor-
responding prescriptions, do contribute to the hadron ten-
sor exactly as the “standard” term known previously. This is
another important result of our work. We also observe that
this is exactly similar to the case of the Drell–Yan process
studied in [16,17].
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Appendix A: BV (x1, x2)-function within the contour
gauge

In this appendix we give some details regarding the use of the
contour gauge. The solution of the QED gauge-invariance
problem for the DY hadron tensor can be found by using
the contour gauge conception (see, for example, [16,17,40–
42]). Here, we would like to demonstrate that there is no an
ambiguity in the integral representation of the gluon fields
through the strength tensor [Eqs. (9) and (10)]. It is important
to note that the axial gauge condition, A+ = 0 (as well as
the Fock–Schwinger gauges) is actually a particular case of
the most general contour gauge where the Wilson line with
an arbitrary path determines the gauge transformations. The
contour gauge was the subject of very intense studies many
years ago. The significance of the use of the contour gauge is
that the quantum gauge theory becomes free from the Gribov
ambiguities.

Let us briefly discuss the main items of the contour gauge
conception. To describe this class of gauges, it is instruc-
tive to assume the geometrical interpretation of gluons where
the gluon field is a connection of the principal fiber bundle
P(R4,G, π) (here, R4 implies the base where the principal

fiber bundle is determined, G denotes the group defined on
the given fiber and π is a transformation of the base R

4 into
the fiber bundle P). Each element g(x) of the fiber, with the
help of the gluon field Aα , defines the gauge-transformed
field:

Ag
μ(x) = g−1(x)Aμ(x)g(x) + i

g
g−1(x)∂μg(x). (A.1)

The set of these fields for all g(x) forms the orbit of the gauge-
equivalent fields. It is well known that in order to quantize
the system of the gauge fields, one has to choose the only
element of each orbit. In contrast to the usual way, we first
fix an arbitrary point (x0, g(x0))

3 in the fiber. Then, we define
two directions: one of them in the base, the other in the fiber.
The direction in the base R

4 is nothing else than the tangent
vector of a curve which goes through the given point x0.
At the same time, the direction in the fiber can be uniquely
determined as the tangent subspace which is related to the
parallel transition. After following this procedure, one can
uniquely define the point in the fiber bundle.

Further, solving the parallel transport equation which is
defined on the fiber as

dxα(v)

dv
Dαg(x(v)) = 0, (A.2)

one can find the solution in terms of the Wilson line:

g(x) = Pexp

⎧
⎪⎨
⎪⎩
ig

∫

P(x0,x)

dω · A(ω)

⎫
⎪⎬
⎪⎭
g(x0), (A.3)

where the points x0 and x are connected by the path P. The
starting point x0 is usually fixed, i.e. x0 is independent on
x . Here, g(x0) is chosen to be equal to unity.4 Note that
the fixing of g(x) ensures a unique choice of the element
in the orbit. Inserting (A.3) into (A.1), one can see that the
field Ag

μ(x) is completely determined by the form of the path
which connects the starting and final points. Moreover, using
(A.1) and (A.3), one obtains the property

Pexp

⎧
⎨
⎩ig

x∫

x0

dω · Ag(ω)

⎫
⎬
⎭

= g−1(x)Pexp

⎧
⎨
⎩ig

x∫

x0

dω · A(ω)

⎫
⎬
⎭ g(x0). (A.4)

Inserting Eq. (A.3) into Eq.(A.1) (we recall that the point x0

is fixed), we arrive at

3 We assume that the subspace in the surroundings of an arbitrary point
belonging to the fiber can be trivialized. That means we can introduce
the co-ordinate of the point (x, g(x)).
4 The discussion regarding the choice of x0 can be found in [40–42].
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Ag
μ(x) =

∫

P(x0,x)

dzα
∂zβ
∂xμ

g−1(z)Gαβ(z|A) g(z)

=
∫

P(x0,x)

dzα
∂zβ
∂xμ

Gαβ(z|Ag), (A.5)

where

Gαβ(z|Ag) ≡ Gg
αβ(z) = g−1(z)Gαβ(z|A) g(z). (A.6)

The contour gauge condition demands that g(x) is equal to
unity for all x belonging to the base, i.e.

[x, x0] def= Pexp

⎧
⎨
⎩ig

x∫

x0

dω · A(ω)

⎫
⎬
⎭ = 1, ∀x ∈ R

4. (A.7)

Therefore, within the contour gauge, the field Ag
μ [see (A.5)]

becomes

Ac.g.
μ (x) =

∫

P(x0,x)

dzα
∂zβ
∂xμ

Gαβ(z|A), (A.8)

i.e. the gluon field Ag
μ is a linear functional of the tensor

Gμν . Let us briefly comment on the choice of the bound-
ary conditions for the gluons. As is pointed out in [40], the
starting point x0 of the path P(x0, x) [see (A.8)] is not well
defined by construction. In turn, this leads to the presence
of the so-called residual gauge transformation. To avoid this
ambiguity, it is natural to fix the uncertainty in Eq. (A.8) by
Aμ(x0) = 0. In other words, the starting point is fixed, and
it is independent from the destination of the path P(x0, x).

It is easy to see that the representations (9) and (10) (or
the representations (12) and (13)) can be derived from (A.8)
by fixing of the path P(x0, x) as a straight line connecting
the point x with ∓∞, respectively. In fact, it means that
the representations (12) and (13) correspond to two different
contour gauges and give us two different representations for
two different functions BV− (x1, x2) and BV+ (x1, x2). These
two representations are associated with the final and ISIs
[Eqs. (33) and (46)].

Moreover, in order to get a concrete representation for
gluons within the axial gauge, we can explicitly parametrize
the straight line between the points x and ±∞ along the
“minus” light-cone direction n−:

xα(s)
∣∣∣
±∞
x

= xα ± nα lim
ε→0

1 − e−εs

ε

∣∣∣
+∞
0

. (A.9)

Then, using Eq. (A.8), one gets

Aax±
μ (x) = ∓ nα

∞∫

0

ds Gαμ(x ± ns) e−εs
∣∣∣
ε→0

. (A.10)

Based on the contour gauge, the representations (A.10) deter-
mine two different contour gauges: Aax+

μ (x) corresponds to

the straight line between x and +∞, and Aax−
μ (x) corre-

sponds to the line between −∞ and x . Moreover, their pro-
jections on the light-cone vector n− are the same:

n · Aax±(x) = A+ = 0. (A.11)

Thus, we can conclude that the r.h.s. of (12) and (13)
correspond to the different functions BV± (x1, x2):

BV+ (x1, x2) = δ(x1 − x2)B
V
A(−∞)(x1) + T (x1, x2)

x1 − x2 + iε
for the gauge [x, −∞] = 1, (A.12)

BV− (x1, x2) = δ(x1 − x2)B
V
A(+∞)(x1) + T (x1, x2)

x1 − x2 − iε
for the gauge [+∞, x] = 1. (A.13)

It is clear that these two representations cannot be equiva-
lent. Also, it is reasonable to assume the zeroth boundary
conditions for the gluons to be BV

A(±∞) = 0, which is in
agreement with Refs. [16,17,40–42]. Note that the functions
BV± do not possess a certain property under the time-reversal
transformation. This property becomes a well-defined one
only after calculation of the imaginary part for the hadron
tensor.

We thus have no the ambiguity in the solutions of (8). As a
result, the BV -function has a nontrivial imaginary part which
contributes to H (b)

μν needed for the gauge-invariant set.

AppendixB:Comparisonwith theperturbativeCompton
scattering amplitude

In this appendix, we discuss an essential difference between
the QCD gauge invariance for the “perturbative” Compton
amplitude, 〈q(k)g(�)|S |g(k2)q(k1)〉, and the “nonperturba-
tive” analog of Compton amplitude, 〈X (PX )q(k)|S |g(k2)

A(P)〉, where one of gluons is included in the loop integra-
tion (see Figs. 4, 5).

B.1: QCD gauge invariance of the perturbative Compton
amplitude

We first consider the “perturbative” Compton amplitude rep-
resented in Fig. 4.

To prove the QCD gauge invariance, we assume that all
gluons are physical ones with the transverse polarizations.
The first diagram in Fig. 4 gives us

Aαβ(dia.1) = (−i)g ū(k)γβ

k̂1 + k̂2

(k1 + k2)2 + iε
γα t

a tb u(k1),

A(dia.1) = Aαβ(dia.1)ε⊥
α ε∗⊥

β . (B.1)

To check the gauge invariance with respect to, for example,
the physical gluon with momentum �, we have to replace the
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Fig. 4 Compton diagrams
without the blob (the
“perturbative” case)

l

k

k2

k1

l

k1

k

k2

k1

l
k2

k

given polarization vector ε∗⊥
β on the momentum �β , provided

� · ε∗⊥ = 0, in the amplitude (B.1). We have

A(dia.1) = (−i)g ū(k)�̂
k̂1 + k̂2

(k1 + k2)2 + iε
ε̂⊥ ta tb u(k1).

(B.2)

Using the momentum conservation, k1 + k2 = k+ �, and the
corresponding equations of motion, Eq. (B.2) reduces to the
following form:

A(dia.1) = (−i)g ū(k) [k̂1 + k̂2 + k̂]
× k̂1 + k̂2

(k1 + k2)2 + iε
ε̂⊥ ta tb u(k1)

= ū(k) ε̂⊥ ta tb u(k1). (B.3)

In a similar way, we can get the contribution of the second
diagram presented in Fig. 4. It reads

A(dia.2) = (−i)g ū(k) ε̂⊥ k̂1 − �̂

(k1 − �)2 + iε
�̂ tb ta u(k1)

= − ū(k) ε̂⊥ tb ta u(k1). (B.4)

Therefore, the sum of these two diagrams gives us the color
commutator:

A(dia.1) + A(dia.2) = (−i)g ū(k) ε̂⊥ [ta, tb] u(k1). (B.5)

In the Feynman gauge,5 the third diagram in Fig. 4 contributes
as (here we again replace the transverse gluon polarization
on the gluon momentum: ε∗⊥ → �)

A(dia.3) = ig ū(k) γσ tc u(k1)
1

(k − k1)2 + iε
i f acb

×Vασβ(−k2; k − k1; �)ε⊥
α �β, (B.6)

where

Vασβ(−k2; k − k1; �) = gασ (k − k1 + k2)β

+gσβ(� − k + k1)α − gαβ(k2 + �)σ .

(B.7)

Making use of ε⊥ · � = ε∗⊥ · � = 0 and

(k − k1 + k2) · �

(k − k1)2 = k2 · �

(k2 − �)2 = −1, (B.8)

we obtain

A(dia.3) = i2g f abcū(k)ε̂⊥ tc u(k1). (B.9)

5 For this discussion, the type of gauge is really not important.
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Fig. 5 Compton diagrams with
the blob (the “nonperturbative”
case)
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PxP
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k1+l

l

k2

k

The sum of all three diagrams leads to

A(dia.1) + A(dia.2) + A(dia.3) = 0, (B.10)

which ensures the QCD gauge invariance. In the case of the
“perturbative” Compton amplitude with physical gluons, the
momentum conservation, δ(4)(k1 + k2 − � − k), and the on-
shellness of all external particles play important roles for
checking of the gauge invariance.

B.2: QCD gauge invariance of the nonperturbative
Compton scattering amplitude

In order to get the diagrams in Fig. 5, we now attach the
nonperturbative blobs to the diagrams in Fig. 4.

In contrast to the “perturbative” Compton amplitude, the
gluon with momentum, �, with respect to which we check
the gauge invariance, is included in the loop integration. As
a result, the momentum conservation for the subprocess has
the form k1 + k2 = k.

Let us focus on two diagrams in Fig. 5 which are enough
to demonstrate how the color commutator contribution can
be formed. Both diagrams are given by

〈X (PX )q(k)|S |g(k2)A(P)〉
= ū(k)ε⊥

α

∫
(d4ξ)(d4η)e−ik2ξ+ikη〈PX | δ2

S

δψ̄(η)δAα(ξ)
|P〉

∣∣∣
ψ=···=A=0

.

(B.11)

The first diagram in Fig. 5 contributes as

B(dia.1) = ū(k)
∫

(d4�)γβ S(� + k)ε̂⊥

×
∫

(d4η)e−i�η〈PX |Aβ(η) ta tb ψ(0)|P〉.(B.12)

This expression corresponds to the amplitude before factor-
ization and, therefore, the quark with k1 +� and gluon with �

are off-shell. Next, we apply the factorization procedure and
derive the following expression for the first diagram contri-
bution (here we use the light-cone basis presented above):

B(dia.1)

= ū(k)
∫

dx2(x2 − x1)n̂∗S
(
(x2 − x1)n∗ + k

)
ε̂⊥ ta tb u(x2n

∗)

×〈PX |a+(
(x2 − x1)n∗)

b−(x2n
∗)|P〉 (B.13)

or

B(dia.1) = ū(k)
∫

dx2γ
− γ +ε̂⊥ ta tb u(x2n

∗)

×〈PX |a+(
(x2 − x1)n

∗)b−(x2n
∗)|P〉, (B.14)

where we replace the transverse gluon polarization vector
by the gluon momentum (x2 − x1)n∗. In Eq. (B.14), we use
the Fourier transformations for the quark and gluon fields.
a+ and b− denote the gluon creation and quark annihilation
operators, respectively.

In a similar manner, we consider the second diagram con-
tribution of Fig. 5. Before factorization, we have

B(dia.2) = ū(k)ε̂⊥S(k1)

∫
(d4�)�̂ tb ta u(k1 + �)

×〈PX |a+(�)b−(k1 + �)|P〉. (B.15)

Having applied the factorization procedure, we derive the
following expression:

B(dia.2) = ū(k)
∫

dx2ε̂
⊥γ − γ + tb ta u(x2n

∗)

×〈PX |a+(
(x2 − x1)n

∗)b−(x1n
∗)|P〉. (B.16)

Analyzing Eqs. (B.14) and (B.16), one can see that in order
to form the color commutator combination we have to insist
on the “external” conditions which actually emanate from
the presence of gluon poles. Indeed, if the gluon poles are
present, the amplitude B(dia.1) is accompanied by the factor
of iπδ(x2 − x1). At the same time, the amplitude B(dia.2)

has the factor of −iπδ(x2 − x1) according to the FSI and ISI
prescriptions; see (48).

Thus, to check the QCD gauge invariance, the case of the
“perturbative” Compton amplitude with the physical gluons
in the initial and final states does not need the external con-
dition for the presence of gluon poles. It is sufficient to use
only the momentum conservation, k1 + k2 = � + k, and the
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equations of motion for the initial and final quarks. At the
same time, in order to demonstrate the QCD gauge invari-
ance for the case represented in Fig. 5 where one of the gluon
momenta belongs to the loop integration, the existence of the
gluon poles with the corresponding FSI and ISI prescriptions
must be included.

References

1. P.A.M. Guichon, M. Vanderhaegen, Prog. Part. Phys. 41, 125
(1998)

2. X. Ji, J. Phys. G24, 1181 (1998)
3. B. Pire, O.V. Teryaev, in Proceeding of 13th International Sym-

posium on High Energy Spin Physics, Protvino, 8–12 Sept 1998.
arXiv:hep-ph/9904375

4. I.V. Anikin, B. Pire, O.V. Teryaev, Phys. Rev. D 62, 071501 (2000).
arXiv:hep-ph/0003203

5. A.V. Belitsky, D. Mueller, L. Niedermeier, A. Schafer, Nucl. Phys.
B 593, 289 (2001). arXiv:hep-ph/0004059

6. M. Penttinen, M.V. Polyakov, A.G. Shuvaev, M. Strikman, Phys.
Lett. B 491, 96 (2000). arXiv:hep-ph/0006321

7. A.V. Efremov, O.V. Teryaev, Sov. J. Nucl. Phys. 39, 962 (1984).
[Yad. Fiz. 39, 1517 (1984)]

8. A. Efremov, V. Korotkiian, O. Teryaev, Phys. Lett. B 348, 577
(1995)

9. A.V. Efremov, O.V. Teryaev, Phys. Lett. B 150, 383 (1985)
10. J.W. Qiu, G. Sterman, Phys. Rev. Lett. 67, 2264 (1991)
11. D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003).

arXiv:hep-ph/0303034
12. J.C. Collins, Phys. Lett. B 536, 43 (2002). arXiv:hep-ph/0204004
13. A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003).

arXiv:hep-ph/0208038
14. J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004).

arXiv:hep-ph/0408249
15. I.O. Cherednikov, N.G. Stefanis, Nucl. Phys. B 802, 146 (2008).

arXiv:0802.2821 [hep-ph]
16. I.V. Anikin, O.V. Teryaev, Phys. Lett. B 690, 519 (2010).

arXiv:1003.1482 [hep-ph]
17. I.V. Anikin, O.V. Teryaev, J. Phys. Conf. Ser. 295, 012057 (2011).

arXiv:1011.6203 [hep-ph]
18. D. Boer, J.W. Qiu, Phys. Rev. D 65, 034008 (2002).

arXiv:hep-ph/0108179

19. G. Re Calegari, P.G. Ratcliffe, Eur. Phys. J. C 74, 2769 (2014).
arXiv:1307.5178 [hep-ph]

20. B. Pire, J.P. Ralston, Phys. Rev. D 28, 260 (1983)
21. R.D. Carlitz, R.S. Willey, Phys. Rev. D 45, 2323 (1992)
22. A. Brandenburg, D. Mueller, O.V. Teryaev, Phys. Rev. D 53, 6180

(1996). arXiv:hep-ph/9511356
23. A.P. Bakulev, N.G. Stefanis, O.V. Teryaev, Phys. Rev. D 76, 074032

(2007). arXiv:0706.4222 [hep-ph]
24. A.V. Radyushkin, Phys. Rev. D 80, 094009 (2009).

arXiv:0906.0323 [hep-ph]
25. M.V. Polyakov, JETP Lett. 90, 228 (2009). arXiv:0906.0538 [hep-

ph]
26. S.V. Mikhailov, N.G. Stefanis, Mod. Phys. Lett. A 24, 2858 (2009).

arXiv:0910.3498 [hep-ph]
27. A. Brandenburg, S.J. Brodsky, V.V. Khoze, D. Mueller, Phys. Rev.

Lett. 73, 939 (1994). arXiv:hep-ph/9403361
28. N. Hammon, O. Teryaev, A. Schafer, Phys. Lett. B 390, 409 (1997).

arXiv:hep-ph/9611359
29. D. Boer, P.J. Mulders, O.V. Teryaev. arXiv:hep-ph/9710525
30. D. Boer, P.J. Mulders, O.V. Teryaev, Phys. Rev. D 57, 3057 (1998).

arXiv:hep-ph/9710223
31. O.V. Teryaev, RIKEN Rev. 28, 101 (2000)
32. P.G. Ratcliffe, O. Teryaev, Mod. Phys. Lett. A 24, 2984 (2009).

arXiv:0910.5348 [hep-ph]
33. H.G. Cao, J.P. Ma, H.Z. Sang, Commun. Theor. Phys. 53, 313

(2010). arXiv:0901.2966 [hep-ph]
34. J. Zhou, F. Yuan, Z.T. Liang, Phys. Rev. D 81, 054008 (2010).

arXiv:0909.2238 [hep-ph]
35. J.P. Ma, Q. Wang, Eur. Phys. J. C 37, 293 (2004).

arXiv:hep-ph/0310245
36. V. Barone, A. Drago, P.G. Ratcliffe, Phys. Rep. 359, 1 (2002).

arXiv:hep-ph/0104283
37. I.V. Anikin, O.V. Teryaev, Phys. Part. Nucl. Lett. 6, 3 (2009).

arXiv:hep-ph/0608230
38. V.M. Braun, D.Y. Ivanov, A. Schafer, L. Szymanowski, Nucl. Phys.

B 638, 111 (2002). arXiv:hep-ph/0204191
39. N.N. Bogolyubov, D.V. Shirkov, Introduction to the theory of quan-

tized fields. Intersci. Monogr. Phys. Astron. 3, 1 (1959)
40. S.V. Ivanov, G.P. Korchemsky, A.V. Radyushkin, Yad. Fiz. 44, 230

(1986). [Sov. J. Nucl. Phys. 44, 145 (1986)]
41. S.V. Ivanov, G.P. Korchemsky, Phys. Lett. B 154, 197 (1985)
42. S.V. Ivanov, Fiz. Elem. Chast. Atom. Yadra 21, 75 (1990)

123

http://arxiv.org/abs/hep-ph/9904375
http://arxiv.org/abs/hep-ph/0003203
http://arxiv.org/abs/hep-ph/0004059
http://arxiv.org/abs/hep-ph/0006321
http://arxiv.org/abs/hep-ph/0303034
http://arxiv.org/abs/hep-ph/0204004
http://arxiv.org/abs/hep-ph/0208038
http://arxiv.org/abs/hep-ph/0408249
http://arxiv.org/abs/0802.2821
http://arxiv.org/abs/1003.1482
http://arxiv.org/abs/1011.6203
http://arxiv.org/abs/hep-ph/0108179
http://arxiv.org/abs/1307.5178
http://arxiv.org/abs/hep-ph/9511356
http://arxiv.org/abs/0706.4222
http://arxiv.org/abs/0906.0323
http://arxiv.org/abs/0906.0538
http://arxiv.org/abs/0910.3498
http://arxiv.org/abs/hep-ph/9403361
http://arxiv.org/abs/hep-ph/9611359
http://arxiv.org/abs/hep-ph/9710525
http://arxiv.org/abs/hep-ph/9710223
http://arxiv.org/abs/0910.5348
http://arxiv.org/abs/0901.2966
http://arxiv.org/abs/0909.2238
http://arxiv.org/abs/hep-ph/0310245
http://arxiv.org/abs/hep-ph/0104283
http://arxiv.org/abs/hep-ph/0608230
http://arxiv.org/abs/hep-ph/0204191

	New contributions to gluon poles in direct photon production
	Abstract 
	1 Introduction
	2 Getting started: case of Drell–Yan process
	3 Hadron tensor of the direct photon production I: kinematics and gauge invariance
	3.1 Kinematics
	3.2 Factorization procedure
	3.3 Hadron tensor: QED gauge invariance
	3.4 Hadron tensor: QCD gauge invariance

	4 Hadron tensor of the direct photon production II: new contributions
	5 Conclusions
	Acknowledgments
	Appendix A: BV(x1,x2)-function within the contour gauge
	Appendix B: Comparison with the perturbative Compton scattering amplitude
	B.1: QCD gauge invariance of the perturbative Compton amplitude
	B.2: QCD gauge invariance of the nonperturbative Compton scattering amplitude

	References




