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Abstract In a previous work we formulated a model of
semitransparent dielectric surfaces, coupled to the electro-
magnetic field by means of an effective potential. Here we
consider a setup with two dissimilar mirrors, and we com-
pute exactly the correction undergone by the photon prop-
agator due to the presence of both plates. It turns out that
this new propagator is continuous all over the space and, in
the appropriate limit, coincides with the one used to describe
the Casimir effect between perfect conductors. The amended
Green function is then used to calculate the Casimir energy
between the uniaxial dielectric surfaces described by the
model, and a numerical analysis is carried out to highlight
the peculiar behavior of the interaction between the mirrors.

1 Introduction

The Casimir effect [1–5] has unveiled physical phenomena
so interesting as adhesion and friction [6,7] in nanostructured
devices, as well as the creation of particles by the so-called
dynamic Casimir effect [8], to mention just a few. In all cases,
the physical properties of the materials involved have signif-
icant influence on the observed effects. From the theoretical
point of view, we have at our disposal a set of methods to
deal with processes where realistic properties of the materi-
als must be taken into account. Besides Lifshitz theory [4,5],
which includes the macroscopic dielectric response of the
objects, another outstanding example is the coupling of δ-
type potentials to quantum fields, which have been widely
used to describe semitransparent surfaces in interaction with
the scalar and fermionic fields [4,9–16]. This kind of descrip-
tion for soft boundary conditions and the corresponding pho-
ton propagator, which stem directly from an effective poten-
tial, remained elusive for the electromagnetic field until now,
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b e-mail: febarone@cbpf.br

mainly because of its gauge invariance. The model presented
below overcomes this challenge and recovers the well-known
propagator obtained by Bordag et al. [17], in the limiting case
of perfect conductors.

In a recent paper [18] we have formulated a field theo-
retic description of a single bidimensional dielectric surface,
by adding to the Maxwell Lagrangian an appropriate elec-
tromagnetic potential. The corresponding photon propaga-
tor was computed exactly, leading to the interaction energy
between electric charges and the partially reflective surface.
Here we generalize that potential to two different surfaces,
and we compute the correction undergone by the photon
propagator due to the presence of the plates, without resorting
to ad hoc boundary conditions and in a gauge invariant model.
Although the method used to find the propagator is the same,
such a trivial generalization implies an involved matrix struc-
ture in the calculations, which we describe in detail. Another
interesting analysis for the Casimir force between dissimilar
mirrors can be found in [19].

The amended Green function obtained here allows us
to find the Casimir energy between plates that have their
degree of transparency gauged by a phenomenological con-
stant parameter. The only inputs required to define such a
constant are the electric permittivity and magnetic perme-
ability, so that there is no need to consider any specific model
to describe the real properties of the material boundary in our
particular case.

Specifically, in this work we deal with a vector field
Aμ in (1 + 3) dimensions and space-time metric ημν =
diag (+,−,−,−). The paper is organized as follows. In
Sect. 2 we define an amended Maxwell Lagrangian, adding
a new term suitable to describe two different δ-like partially
reflective surfaces, and we find the change undergone by the
free photon propagator due to the presence of this term. The
interaction between the surfaces is investigated in Sect. 3,
where a numerical analysis is carried out to highlight the
peculiar behavior of the force between the mirrors. The gen-
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eral result obtained turns out to be the exact expression in
integral form for the Casimir energy between the semitrans-
parent mirrors, which is finite in this case. Section 4 is devoted
to our final remarks.

2 The modified photon propagator

In [18], the description of a single partially reflective sur-
face was carried out by adding to the Maxwell Lagrangian
a new term. Making a trivial generalization to two parallel
surfaces located at positions ai = (0, 0, ai ), i = 1, 2, and
ones perpendicular to the x3 axis, the model takes the form

L = − 1

4
(F)2 − 1

2α
(∂ A)2

−
2∑

i=1

μi

4

(
1

2
Sμεμναβ Fαβ

)2

δ(x3 − ai ), (1)

where the normal vector to the surfaces is Sμ = η
μ
3, just

because of the setup adopted for the plates. Obviously it does
not imply any loss of generality.

The constants μi ≥ 0 has dimension of inverse mass in
natural units and are introduced as a measure of the mirrors
degree of transparency, as we will see below. They are phe-
nomenological parameters featured by the optical properties
of the materials, as can be seen from the electric permittivity,
εi j , and inverse magnetic permeability, (μ−1)i j , that stem
from the model:

εi j = δi j +
2∑

k=1

μk

2
δ(x3 − ak)(δ

i1δ j1 + δi2δ j2),

(μ−1)i j = δi j +
2∑

k=1

μk

2
δ(x3 − ak)(δ

i3δ j3). (2)

The first equation in (2) determines the relations between
the principal susceptibilities of the mirrors that are χ11 =
χ22 �= χ33, which show that the model describes two uni-
axial dielectric surfaces. A similar kind of δ-function plates
was analyzed in [20].

Also notice that the derivatives in the last term in (1) are
taken only in the parallel space to the surface because of the
fixed index in the Levi-Civita tensor:
(

1

2
ε3ναβ Fαβ

)2

= ε3αβν ε3ρτ
ν(∂α‖ Aβ)(∂

ρ
‖ Aτ ),

where ∂α‖ = (∂0, ∂1, ∂2, 0).
To find the modified photon propagator due to the presence

of both surfaces, we need to split up the differential operator
of the model (1) into two parts, one corresponding to the usual
photon propagator and the other one corresponding to the
correction term. To this effect and for notational convenience,
let us make the following definitions:

Oμν = O(0)μν + �Oμν,

O(0)μν = ημν�,

�Oμν =
2∑

k=1

μk

2
δ(x3 − ak)

(
η

μν
‖ �‖ − ∂

μ
‖ ∂ν‖

)
, (3)

where η‖μν = ημν + ημ3ην3 and �‖ = ∂α‖ ∂‖α . Thus, by
setting the Feynman gauge (α = 1), the Lagrangian (1) can
be brought to the usual quadratic form in terms of the above
operators,

L = 1

2
AμOμν Aν . (4)

We will also write G(0)μν(x, y) for the free photon prop-
agator, defined by the relation O(0)μν(x)G(0)

νλ (x, y) =
η

μ
λδ

(4)(x − y).
As was done before [18,21], at this point we have to make a

guess about the functional form of the propagator Gμν(x, y)

that inverts the operator Oμν(x). Assuming it can be written
recursively in integral form as

Gμν(x, y) = G(0)
μν (x, y)

−
∫

d4z Gμγ (x, y)�Oγ σ (z)G(0)
σν (z, y), (5)

it can easily be checked that Oμν(x)Gνλ(x, y) = η
μ
λδ

(4)

(x − y).
An exact evaluation of the above propagator can be

achieved transforming the Green function to momenta space
only in the coordinates parallel to the surface. This reduced
propagator, Gμν(x3, y3; p‖), is read off from

Gμν(x, y) =
∫

d3 p‖
(2π)3 Gμν

(
x3, y3; p‖

)
e−i p‖(x‖−y‖), (6)

where we defined pγ
‖ = (p0, p1, p2, 0).

Accordingly, the free reduced propagator is easily found
as

G(0)
μν (x3, y3; p‖) = −ημν

∫
dp3

2π

ei p3(x3−y3)

p2‖ − (p3)2

= ημν

e−σ |x3−y3|

2σ
, (7)

where we defined σ =
√

−p2‖ .

Substituting into (5) the last definition in (3) and trans-
forming the result according to (6), after some straightfor-
ward integrations the reduced modified photon propagator
translates into
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Gμν(x3, y3; p‖) = G(0)
μν

(
x3, y3; p‖

)

+
2∑

i=1

μi

2
Gμγ

(
x3, ai ; p‖

)
p2‖

×
(

η‖γ σ − pγ
‖ p‖σ

p2‖

)
G(0)

σν

(
ai , y3; p‖

)
.

(8)

At this point the computation becomes involved because the
above propagator is still defined recursively. It is possible to
circumvent this difficulty exploiting the fact that it depends
on the mirrors positions. In Eq. (8), writing the propagator
from an arbitrary point to the surface position, by setting
y3 = a j , allows us to write the matrix equation

2∑

i=1

Gνσ

(
x3, ai ; p‖

)
(M(i j))

σ
λ = G(0)

νλ

(
x3, a j ; p‖

)
, (9)

where

(M(i j))
σ
λ = ησ

λ δi j

−
2∑

i=1

μi

2
p2‖
(

η‖γ σ − pγ
‖ p‖σ

p2‖

)
G(0)

γ λ (ai , a j ; p‖). (10)

As the right-hand side of Eq. (9) is a well-known function,
we can find the propagator multiplying both sides of this
equation by the inverse of the matrix (M(i j))

σ
λ that can be

computed from its defining property,

2∑

j=1

(M(i j))
σ
λ

(
M−1

( jk)

)λ

τ
= δik ησ

τ . (11)

It can be written appropriately for our purposes as

(
M−1

( jk)

)λ

τ
= ηλ

τ δ jk + B jk

W (p‖)

(
η‖λ

τ − pλ‖ p‖τ

p2‖

)
, (12)

where the elements of the 2 × 2 matrix B are

Bi i = μi p2‖
4σ

− μ1μ2

4

p4‖
4σ 2 (1 − e−2σa),

Bi j = μi p2‖
4σ

e−σa, i �= j, (13)

and where we made the following definitions, for notational
convenience: a = |a1 − a2| and

W (p‖) =
(

1 − μ1 p2‖
4σ

)(
1 − μ2 p2‖

4σ

)

−μ1μ2
p4‖

16σ 2 exp(−2σa). (14)

Multiplying both sides of Eq. (9) by (M−1
( jk))

λ
τ and

redefining the indices, after some algebraic manipulations,

we get the reduced Green function that appears in the right-
hand side of Eq. (8) as a function of the free photon propa-
gator,

Gμγ

(
x3, ai ; p‖

)
=

2∑

j=1

G(0)
μτ

(
x3, a j ; p‖

) (
M−1

( j i)

)τ

γ
. (15)

Substituting the expression (15) in (8) yields

Gμν

(
x3, y3; p‖

)
= G(0)

μν

(
x3, y3; p‖

)

+
2∑

i=1

2∑

j=1

μi

2
G(0)

μτ

(
x3, a j ; p‖

) (
M−1

( j i)

)τ

γ
p2‖

×
(

η‖γ σ − pγ
‖ p‖σ

p2‖

)
G(0)

σν

(
ai , y3; p‖

)
. (16)

Transforming (16) according to (6), we obtain the final
form of the photon propagator due to the presence of the
plates,

Gμν(x, y) =
∫

d3 p‖
(2π)3

[
ημν

e−σ |x3−y3|

2σ

+
2∑

i, j=1

μi

2

e−σ(|x3−ai |+|y3−a j |)

4σ 2

Ti j

W (p‖)
p2‖

×
(

η‖μν − p‖μ p‖ν

p2‖

)]
e−i p‖(x‖−y‖), (17)

where

T =
⎛

⎝ 1 − μ2 p2‖
4σ

μ1 p2‖
4σ

e−σa

μ2 p2‖
4σ

e−σa 1 − μ1 p2‖
4σ

⎞

⎠ . (18)

The propagator (17) is continuous and well defined all
over the space (except when x = y), as can readily be seen.
The first term on its right-hand side is just the usual photon
propagator, G(0)

μν (x, y), the correction comes entirely from
the second one, which we will write �Gμν(x, y), from now
on, namely

�Gμν(x, y) =
∫

d3 p‖
(2π)3

2∑

i, j=1

μi

2

e−σ(|x3−ai |+|y3−a j |)

4σ 2

× Ti j

W (p‖)
p2‖
(

η‖μν − p‖μ p‖ν

p2‖

)

×e−i p‖(x‖−y‖). (19)

It is important to stress the fact that, taking the limiting
case where μ1 = μ2 → ∞, the propagator (17) becomes the
same as the one obtained by Bordag et al. [17], for perfect
conductors. This also clarifies the way the parameters μi

gauge the degree of transparency of the mirrors, i.e., we reach
the limit of perfect conductors when μi → ∞. On the other
hand, taking μ1 = 0 (or μ2 = 0) we get the same photon
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propagator in the presence of a single surface as the one we
obtained in [18]. These are, obviously, the highest demanded
checks to the validity of the model.

Our main result, Eq. (17), is a generalization of the prop-
agator used for calculating the interaction between perfect
conductors, and thus it must lead to the correct interaction
energy between semitransparent mirrors with optical prop-
erties described by (2).

As a last comment we point out that we could follow
a similar analysis to deal with different configurations of
semitransparent surfaces. Denoting the space-time coordi-
nates by uμ (not necessarily the cartesian ones), with u0 being
the time coordinate, and taking N semi transparent surfaces
defined by functions f�(u) = 0, � = 1, 2, . . . N , with their
corresponding normal four vector Sμ

(�)(x), we can generalize
the Lagrangian (1) as follows:

L = −1

4
(F)2 − 1

2α
(∂ A)2

−
N∑

�=1

μi

4
Sα(�)(u)Sλ

(�)(u)F∗αβ(u)F∗
λβ(x)δ( f�(u)), (20)

where F∗αβ(u) is the dual to the field strength.
In this case the electric permitivity and inverse magnetic

permeability tensors can be obtained from the formal tensor
expressions

∂L
∂E

= εE,
∂L
∂B

= −μ−1B (21)

and must be considered for each kind of material.
The key point is to choose judiciously the coordinate sys-

tem where each semitransparent surface � can be determined
as a constant coordinate, namely u3 = a�. So that Eq. (20)
reads

L = −1

4
(F)2 − 1

2α
(∂ A)2

−
N∑

�=1

μi

4
Sα(�)(u)Sλ

(�)(u)F∗αβ(u)F∗
λβ(u)δ(u3 − a�).

(22)

In this case the corresponding photon propagator will be
given by the free propagator added by a correction term,
which can be decomposed into the Fourier field modes cor-
responding to the spatial coordinates perpendicular to the
semitransparent surfaces, i.e. u1 and u2. In the case of Eq.
(1), the planar symmetry required the usual cartesian coor-
dinates.

3 Casimir energy

In this section we intend to show how the Casimir energy
between the surfaces described by the model (1) can be com-
puted.

The Hamiltonian density corresponding to the Lagrangian
(1) is1

H = −1

2

[
(∂0 Aμ)(∂0 Aμ) +

3∑

j=1

(∂ j Aμ)(∂ j Aμ)

]

−
2∑

i=1

μi

4
δ(x3 − ai )(∂

ρ Aν)

×
[
Pμν

0ρ(∂0 Aμ) +
3∑

j=1

Pμν
jρ(∂ j Aμ)

]
, (23)

where we defined Pαβρτ = ε3αβν ε ν
3ρτ , for convenience. The

energy is found by integrating the above expression through-
out the space. To make this integration feasible, let us employ
a point-splitting regularization, in order to get

E(μ1, μ2) =
∫

d3x lim
x ′→x

−1

2

[
Oμν −

(
ημν∂0 +

2∑

i=1

μi

2

×δ(x3 − ai )Pμν
0ρ∂ρ

)
(∂0 − ∂ ′

0)

]
iGμν(x ′, x)

= − i

2
ημ

μ

∫
d3x δ(4)(0)

+
∫

d3x lim
x ′→x

i

2

(
ημν∂0 +

2∑

i=1

μi

2
δ(x3 − ai )

×Pμν
0ρ∂ρ

)
(∂0 − ∂ ′

0) Gμν(x ′, x). (24)

Equation (24) is the total energy of the system described
by the model (1). As we are interested only in the interaction
energy between the two plates, we must subtract from the
total energy (24) the free field vacuum energy, E0, that is, the
vacuum energy of the electromagnetic field with no plates. It
can easily be calculated removing the two plates by setting
μ1 = μ2 = 0 in Eq. (24); that is,

E0 = E(μ1 = 0, μ2 = 0) = − i

2
ημ

μ

∫
d3x δ(4)(0)

+
∫

d3x lim
x ′→x

i

2
ημν∂0(∂0 − ∂ ′

0) G(0)
μν (x ′, x). (25)

Thus the remaining energy is

E(μ1, μ2) − E0

= i

2

∫
d3x lim

x ′→x
ημν∂0(∂0 − ∂ ′

0)

�Gμν(x ′, x) + i

2

∫
d3x lim

x ′→x

2∑

i=1

μi

2
δ(x3 − ai )

× Pμν
0ρ∂ρ(∂0 − ∂ ′

0) Gμν(x ′, x). (26)

1 It is obtained with the Legendre transform of (1).
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By the same token, we also need to remove the self-energies
E1 and E2 of the plates themselves; they are

Ei = E(μi �= 0, μ j = 0) − E0

=
∫

d3x i lim
x ′→x

[
ημν∂2

0 �G(i)
μν(x ′, x)

+ μ1

2
δ(x3 − ai )Pμν

0ρ∂0∂
ρGμν(x ′, x)

]
, (27)

where �G(i)
μν(x ′, x) stands for the correction term in the

propagator (17), in the absence of the plate corresponding
to μ j ; i.e. �G(1)

μν (x ′, x) = �Gμν(x ′, x;μ1, μ2 = 0) and

�G(2)
μν (x ′, x) = �Gμν(x ′, x;μ1 = 0, μ2).

The energy we are interested in reads Eint = [E(μ1, μ2)−
E0]− E1 − E2. Using (25), (26) and (27) it assumes the form

Eint =
∫

d3x i lim
x ′→x

[
∂2

0 ημν
(
�Gμν(x ′, x;μ1, μ2)

−�G(1)
μν (x ′, x) − �G(2)

μν (x ′, x)
)

+
2∑

i=1

μi

2
δ(x3 − ai )

(
∂2

0 η
μν
‖ − ∂0∂

μ
‖ η0ν

)

×
(
�Gμν(x ′, x) − �G(i)

μν(x ′, x)
)]

. (28)

After a long calculation, in which we rotate to Euclidean
space and transform the result to spherical coordinates, we
need a last coordinate transformation, σa → u, to put the
above expression into a form suitable for numerical analysis.
Dividing by the area of the plates, A = ∫

d2x‖, the final
result is

Eint = Eint

A

= 1

3π2a3

∫ ∞

0
du u4

[
− μ1

2u(4a+uμ1)
− μ2

2u(4a+uμ2)

+ (μ1 + μ2) + μ1μ2
2a u

[
1 − (1 + u)e−2u

]

8uaH(u)

]

+ 1

3π2a3

∫ ∞

0
du u4

[
− μ2

1

4a(4a + uμ1)

− μ2
2

4a(4a + uμ2)

+ (μ2
1 + μ2

2) + (μ1 + μ2)(
u
4a μ1μ2)

16a2 H(u)

+
μ1μ2

(
2 − u

4a (μ1 + μ2)
)

e−2u

16a2 H(u)

]
(29)

Fig. 1 Interaction energy as a function of the distance, Eq. (29), for
similar plates, μ = μ1 = μ2. From left to right, μ = 0.4 (point-dashed
line), μ = 1 (dashed line) and μ → ∞ (solid line). This last one stands
for perfectly conducting plates

where

H(u) =
(

1 + μ1

4a
u

)(
1 + μ2

4a
u

)

−μ1μ2

16a2 u2 exp(−2u). (30)

The finite energy density per unit of area (29) is the exact
result in integral form for the interaction energy between
uniaxial mirrors, with electromagnetic properties described
by the relations (2). As expected, in the limit μ1 = μ2 →
∞, this energy becomes the usual Casimir energy between
perfect conductor plates. Its behavior as a function of the
distance a can be seen in Fig. 1, where we show a plot of
Eq. (29) for three different values of μ when the plates are
equal; that is, when μ = μ1 = μ2. Also note that, for a fixed
value of the distance a, the energy increases monotonically
as μ increases, and that it is always negative, featuring an
attractive force.

Another interesting feature shows up when we consider
plates with different values of μi . In this case, we can find
two different setups for which their respective curves cor-
responding to the interactions between the mirrors intercept
each other. This behavior can be observed in Fig. 2, where we
plot the force between two different sets of parallel mirrors,
one of which have different values of μi for each plate. In
that situation, the pair of similar plates (μ1 = μ2) has the
strongest interaction at small distances, but a weaker attrac-
tion than the set of dissimilar plates (μ1 �= μ2) at greater
distances.

This point can also be understood in Fig. 3, where we plot
the difference of the forces corresponding to the two pairs of
mirrors in Fig. 2.

123



3113 Page 6 of 7 Eur. Phys. J. C (2014) 74:3113

Fig. 2 The force between two different pairs of plates as a function
of the distance a, in natural units: μ1 = μ2 = 0.4 (dashed line = F1),
μ1 = 0.5 and μ2 → ∞ (solid line = F2)

Fig. 3 The difference of the forces (F = F1 − F2) between the two
pairs of mirrors in Fig. 2, as a function of the distance a

4 Final remarks

As we saw above, the description of uniaxial dielectric
boundaries was successfully formulated by means of elec-
tromagnetic potentials. We also showed that the modifi-
cation undergone by the photon propagator due to these
boundaries can be found exactly, and that this new prop-
agator reduces to the well-known one for perfect mirrors,
in the appropriate limit. With the amended Green func-
tion, we obtained the interaction energy between the plates.
The integral describing this interaction could not be solved
exactly, but it was written in a form suitable for numer-
ical analysis. The graphic of the energy as a function

of the distance exhibited the expected behavior for sim-
ilar mirrors, and an interesting peculiarity for dissimilar
ones.

The Casimir energy for soft boundaries has recently been
studied in [20,22], by means of different methods. The results
of these references are apparently disparate but, as a matter
of fact, since those works are dealing with different kinds
of dielectrics, they are not supposed to match in general.
In [20] the authors address a broader class of dielectrics,
starting off by defining their dielectric permittivity and mag-
netic permeability that are both directly proportional to a
δ-function, in contrast to the relations (2). On the other
hand, although they do not identify which kind of mate-
rial correspond to their boundary conditions, in [22] the
authors couple an external potential to the Maxwell action
similar to the the one we used in Eq. (1), which naturally
leads to the same optical properties described in (2). Also in
[22], the Casimir energy is found by means of the deriva-
tive expansion of the Casimir energy, without resorting to
the modification undergone by the photon propagator since
the photon field is integrated out. Their energy leads to the
same interaction between the plates as the one obtained
from (29), corroborating in this way the form of the prop-
agator (17). This can be checked by considering Eq. (64)
of reference [22], which is a divergent expression for the
Casimir energy, substituting λL and λR by μ1/2 and μ2/2,
respectively, and performing an integration by parts. The
result is still a divergent quantity, but its derivative with
respect to the distance a, which gives the Casimir force, is
exactly the same one as obtained from the expression (29)
above.

A no less important aspect of the method exposed in this
work is that the electromagnetic properties of each δ-function
surface is entirely dictated by a constant parameter, and the
only inputs needed to define completely this constant are
the electric permittivity and the magnetic permeability of the
material. This feature saves the computations from difficul-
ties related to specific models used to describe each kind of
material, providing us with a direct gauge invariant calcula-
tion method.

The model seems to be suitable to study the dispersion
forces between charges and multipoles distributions as exter-
nal sources [23,24] within a dielectric cavity or near dielec-
tric surfaces [25]. Another interesting point that can be raised
from these results is the possibility of a more comprehensive
description to include different materials by means of electro-
magnetic potentials. It can be achieved with a generalization
of the model (1), in such a way that the constraint (2) does
not hold anymore. The inclusion of free charges in the model
is another challenge that deserves attention, although in this
case the dispersion related to the conductivity of the material
may entail a much more laborious treatment. We hope we
will soon be able to report on the results of these researches.
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