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Abstract A concentric charged thin-shell encircling a
Reissner—Nordstrom black hole screens the electric/magnetic
charge completely to match with an external Schwarzschild
black hole. The negative mass thin-shell is shown to be sta-
ble against radial perturbations. It is shown further that by
reversing the roles of inside Reissner—Nordstrom and outside
Schwarzschild geometries the mass of the appropriate shell
becomes positive.

1 Introduction

Black holes are highly localized simplest objects in our cos-
mos that may carry charges (i.e. hairs) of various kinds.
No-hair conjecture [1] refers simply to the degrees of free-
dom other than the well-accepted ones such as mass, elec-
tric/magnetic charge and the angular momentum. Internal
degrees of freedom such as the non-abelian gauge charges
can naturally be added to the abelian electromagnetic charges
to extend the list of hairs for the black holes.

With the advent of surface-layer formalism and thin-
shells in general relativity [2—-8], the question naturally arises
whether the hairs of the black hole can be screened against
external observer at infinity. Thin-shell and its stability in
Schwarzschild black hole spacetime was studied by Brady,
Louko and Poisson in [9] where they have shown that a thin-
shell with positive energy density which satisfies the domi-
nant energy conditions may be stable against a radial pertur-
bation. Nonradial linear oscillations of shells was studied by
Schmidt in [10,11] and inclusion of a cosmological constant
was done by Ishak and Lake in [12]. A generalized study
on thin-shells in vacuum was investigated by Goncalves [13]
and following [9], Lobo and Crawford [14], by considering a
spacetime satisfying the transparency condition, have studied
generic dynamic spherically symmetric thin-shells. Acceler-
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ated shells and the relation between stress-energy and motion
for such layers has been considered by Krisch and Glass in
[15] while the stability of charged thin-shells has been stud-
ied by Eiroa and Simeone [16] and the same authors worked
on thin-shells in 2 4+ 1-dimensions including Born-Infeld
matter sources in the bulk [17]. Very recently stability of
thin-shell interfaces inside compact stars has been worked
out by Pereira, Coelho, and Rueda in [18]. Application of
thin-shell formalism in making dark energy stars has been
considered by Bhara and Rahaman in [19] while the gravita-
tional vacuum star or gravastar, based on the same formal-
ism, has been proposed by Mazur and Mottola in [20] which
was developed further by Visser and Wiltshire in [21] and
the references therein.

Our aim in this study is to apply such a formalism to the
standard Reissner—Nordstrom (RN) black hole which carries
a static electric or magnetic charge. The thin-shell is assumed
concentric with the RN black hole and with a radius greater
than the event horizon of the latter. A toy-model version of our
formalism in 2 4 1-dimensional case was considered before
in connection with the regular Bardeen black hole [22]. The
source of the Bardeen black hole therein was assumed to
be of non-linear electrodynamic origin. In the present prob-
lem the inside spacetime is taken to be RN while the exter-
nal spacetime is Schwarzschild geometry. Application of the
boundary conditions at the thin-shell in between serves to
screen the charge of the internal RN geometry against out-
side. That is, beyond the thin-shell no trace of electric charge
QO of the RN black hole is left. In this sense the thin-shell
acts as a perfect absorber of the electric charge of the RN
black hole. Such a screening process, however, is not with-
out consequences. The imposed boundary conditions fix the
mass/energy and charge of the shell to play its absorbent role.
The energy density o of the thin-shell at equilibrium radius
turns out to be negative, o < 0. This situation is known to
be notorious enough in the topic of wormholes and thin-shell
wormholes [23-28], although it may be considered natural
in the realm of quantum field theory. Once this situation is
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taken for granted we proceed with the stability analysis of
the thin-shell against linear radial perturbations. With per-
turbation, besides the energy density at the equilibrium state
we have emerging pressure tensions satisfying an equation
of state of the form % = w, where P = pressure, 0 =
energy density and w is a constant proportional to the speed
of sound. It turns out that the thin-shell around a RN black
hole which screens its electric/magnetic charge from outside
is stable against radial perturbations. The stability configura-
tion is plotted numerically. We may anticipate that a similar
analysis can naturally be carried out for a black hole car-
rying a Yang—Mills charge. Since these non-abelian gauge
charges are trapped/confined inside nuclei it may lead effec-
tively to a geometrical theory of confinement for fraction-
ally charged fermions. For this purpose, however, the rele-
vant proper boundary conditions should be those of Einstein—
Maxwell-Dirac—Yang—Mills theory, which lies beyond our
scope in this paper. Let us add that the range of applications
for our method seems limitless and for all these, thanks to
the Einstein’s junction equations with tuned sources satisfied
on layers/surfaces.

2 The formalism

Let’s assume that a RN black hole with mass m and total
charge Q sits at the origin of a spherically symmetric space-
time whose event horizon is located at r = r.. A timelike
thin-shell of dust is located at r = a > re with energy
momentum tensor S¥ = diag[o, 0, 0] with respect to an
observer on the shell of line element

ds? = —dt? + a*(2)dQ? (1)

in which 7 is the proper time on the shell and dQ2? is the line
element on S%. Next, we are interested to see the possibility of
having charge of the black hole unseen by a distant observer.
In other words, is it possible to have the spacetime outside
the shell a Schwarzschild black hole with mass M, different
from m, but related to m and Q?

Using the well-known Darmois—Israel formalism [2,3]
one may consider two pseudo Riemannian manifolds M
and M, with identical timelike boundaries located at r = a
with spherically symmetric line elements

1

dsf = — fi(rde* + dr? + r?dQ?,
: fi(r)
2 2
forrfaandfl(r)zl——m—i—Q—z )
r r

and

1
ds? = — fo(r)dt®> + ——dr? 4 r2dQ?,
? f2(r)
oM

forr >aand fo(r)=1— — 3)
r

@ Springer

in which m and Q are the mass and charge of the inner black
hole while M is a constant to be identified. By gluing these
manifolds from their boundaries we construct a complete
manifold M. The hypersurface boundaries used for gluing
is given by (1) and the Israel junction conditions imposes
(c=G=1

K — ks = —8x S/ )

Here kl.j =K ij @ _k l’ (D is the effective extrinsic curvature
tensor of the shell with K l] @ and K l.] M on each side of the

shell and k = kl’f is the extrinsic curvature scalar of the shell.
In brief

92xV 9x® dxP
k0 = a2 (o Tl (%)
J dyidy/ ay' ay/
with
a, F
a2 — 4 (©)

Y
&PV, FogF

the normal 4-vector on the sides of the shell given by the
surface F' = r — a = 0. We note that x* € {¢, r, 0, ¢} while
vl e {r,0,¢} and 3, = axiu For the static thin-shell, the
explicit calculation admits

o (Vi-VR) =0 ™
and

2fh+af; 2fit+af] _
l6way/fr  16ma/fi

in which a prime stands for the derivative with respect to r
and all functions are calculated at r = a. In order to have the
second condition satisfied we must have

®)

 ate—m)
" (@—m)+ (re —m)

©))

in which r. is the event horizon of the RN black hole given
by

re =m ++/m? — Q2. (10)

Having M, one can find o of the thin-shell which is given by
1 < Ja —re
o=—-——
drra \ /(a —m) + (re — m)
Ja(a —2m) —re(re — 2m)>

a

Y
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Herein, due to the fact that a > re and m < ro < 2m, o
remains real but negative. Therefore the shell is like a bubble
of exotic matter. The amount of total exotic matter can be
found as

2 pm OO
Q= / / / o8(r —a)s/—gdrdodep = dralo
0 0 JO

__( a/a —re
 \Vla=—m)F e —m)

— \/a(a —2m) —re(re — 2m)> .
(12)

In terms of m, M and Q we find

Q=—J/(m—A)(m+A—-2M), (13)

in which A = \/m? — Q2. Let’s remark that at the extremal
limits one finds

lim M =m, lim Q=0, (14)
0—0 0—0

which implies the absence of the thin-shell and

lim M =0, lim Q=-m=-0. 15
Jim M=0. fim @=-m=-0 15
Hereo = — 5 = —ﬁ which is nothing but the mass

density over the surface area of the thin-shell with the same
mass and charge of the black hole. It should be added that the
charge of the spherical thin-shell must be the negative (— Q)
of the black hole charge. This can be verified as follows.

The electric potential of the Reissner—Nordstrom black
hole, up to a gauge transformation can be expressed appro-
priately by

1 1

A=0Q (— — —) ®(a — r)dr. (16)
roa

Note that ® (a — r) is the unit step function defined by

Oa—r=1L r=a 17)
— 10, r>a-

Accordingly, the Maxwell 2-form is

F Q ®

= 20— rdt ndr (18)

with its dual 2-form

*F = Qsin0O(a — r)dd A de. (19)

The sourceful Maxwell equation takes the form

d('F) =" (20)

with the current density 3-form

*j=—0sin68(a —r)dr AdO Ade 2D
in which §(a — r) stands for the Dirac delta function on the
shell.

The integral of *j yields the charge on the shell as

_1 * 3
_Q_E/']'

This verifies that beyond the spherical thin-shell charge does
not exist, justifying the Schwarzschild metric.

To conclude this section we would like to express our
variables and quantities in terms of m. By introducing ;- = «,

(22)

and S—; = ¢ we find

M_ a1 —¢€ (23)
m _a—l—i—«/l—e’
Q 1 —J/T—€)va?2 —2a +¢
a__(1-V1-9 24)
m a—14+J1T—€
and

Va2 —2a+¢€ 1—1—¢
om = — . , (25)

dro a—14+41—¢

with0 < € < 1l and 1 + /1 — € < «. These allow us to
set the quantity m to unity without losing the generality of
the problem. In the same line we remark that the location
of horizon (i.e., the horizon observed by a distant frame) is
given by

241 —
FomoM=m—N1 "€ (26)
a—14+4/1—€
The latter clearly shows that f—ne = ai‘h— Vi/_le: < « which

implies that the event horizon is located inside the shell with
respect to a distant observer.

3 Stability analysis

As we have shown in the previous section, one can consider a
thin-shell of exotic dust surrounding a RN black hole which
screens the electric charge of the black hole. The resulting
solution from a distant observer will be a Schwarzschild black
hole with a new effective mass. In this section we shall inves-
tigate the stability of such a thin-shell. To do so let’s consider
the radius of the shell to be a function of t the proper time
on the shell. By using the Israel formalism we find

Gzﬁ(\/fl-i-dz—\/fz-i-dz)

27)
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and

2 167 \ [/ fr +a?

We note that although for the static equilibrium we assumed
P = 0 in the dynamic regime, P may not be zero as the
matter is not at rest any more. Therefore while we consider
the relation between M and other parameters given by (9)
i.e., dictated by static equilibrium, in the dynamic case we
adopt g—g = w in which o is a real constant. The energy
conservation, on the other hand, imposes

2+ f]
- . 28
\/f1+d2> 28)

Sj =0 (29)

in which for i = 7 one finds

o' = -2+ P) (30)
a

. /_ d
with = 3

As aresult from Eq. (27) we find a one dimensional equa-
tion of motion for the dynamical shell given by [16]

@’ 4+ V@) =0 (31)

in which

%;02+_ﬁ-+fé (fi — f)?

V =
@ 2 eanZde?

(32)
We must add that in (31), 0 = o (a) is a function of a — the
radius of the shell after perturbation — which is no longer the
same as its equilibrium value, say op = o (a = ap) which is
given by

47m

()

In order to have the thin-shell stable against a radial perturba-
tion, Eq. (32) must admit an oscillatory motion which means
that at the equilibrium point (say at a = ag) where V (ap) =
V'(ap) = 0and V" (ap) > 0.InFig. 1 we plot V" (agp) for the
specific value of m = 1.0 and Q = 0.2. As one observes in
the region with @ > 0 the thin-shell is stable while otherwise
it occurs for w < 0. Let’s add also that, @ = cons. yields

P =w(o —ogp) (34)

which in turn implies that with o > og/o < opand w > 0, to
have the shell stable, the pressure must be negative/positive
after the perturbation. We add that this behavior is not only
for the specific value of m and Q.

As a final remark we comment that our formalism allows
to interchange the roles of inner and outer spacetimes. That
means this time the inner spacetime is Schwarzschild while

@ Springer
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Fig. 1 A plot of V/ = 0 at a = ap in terms of a(= ap) and w for
m = 1.0and Q = 0.1,0.3,0.5,0.9. The region with V"’ > 0 which
is the stability zone is also indicated by S. The effect of charge on
stability/instability is clearly seen

the outer one is the RN We have

ds? = — fi(r)de® + e )dr + r2dQ2,
2M
forr <aand fi(r)=1— — (35)
r
and
ds3 = — fo(r)de* + e )dr +r2dQ?,
Q2
forr >aand fo(r)=1— — + (36)

Obviously the thin-shell of radlus r = a carries the charge
0 to make the charge of the external RN geometry. Follow-
ing the foregoing analysis we conclude that M, m and Q
are related as given in Eq. (22) while the energy density is
positive now given by

Va2 —2a+e 1—-+/1—¢
o= 5 37
drmo a—14+J/1—¢

in which € and « are as before and consequently 2 > 0. In
this case the charge distribution lies on the spherical shell
at r = a. The new thin-shell is also stable against a radial
perturbation with an equation of state g—g = w > 0 asin the
other case.

4 Conclusion

Although in the present study we investigated the erasure of
a RN black hole charge to the external world through junc-
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tion conditions imposed on a contrived outer thin-shell the
method seems more generic, apt for more general central
objects. We have shown, for instance, that the roles of inner
RN and outer Schwarzschild geometries is reversible with a
positive mass on the shell. Not to mention, a counter-rotating
cylindrical shell may absorb the rotational hair of a black hole
to turn it into a static one. The question may be raised: can
naturally formed absorber shells, thin or thick in cosmology
hide/screen the reality from our telescopes? If yes, then the
effect of screening becomes as important as the lensing of
light while passing near massive heavenly objects. No doubt
this may revise our ideas of black holes and their no-hair
theorem. More interestingly this may pave the way toward a
geometrical description of quark confinement provided the
boundary conditions are modified to cover the Dirac and
Yang-Mills fields. Naturally this takes us away from clas-
sical physics into the realm of gravity coupled QCD. Let us
add that hiding of charge by geometrical structures has been
considered before for example in [29]. Therein with cited ref-
erences, it has been shown that non-linear contributions (see
for instance [30,31]) in an effective theory beyond standard
Einstein—-Maxwell plays crucial roles. Finally we must admit
that the negative mass of the thin, stable layer encountered
in the formalism remains to be our concern.

It should also be supplemented that the extremal RN case
with m = Q(e = 1) with the flat space (M = 0) inside
constitutes a particular case. The energy density of the thin-
shell which becomes a bubble now takes the form

o= @1 (38)

T dama
From a different approach the similar problem was con-
sidered also in [32]. It follows that such a bubble in an
extremal RN spacetime becomes stable against perturbations
described above. As a final remark let us add that our results
have holographycal implications which may be investigated
further.
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