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Abstract We study massive charged fermionic perturba-
tions in the background of a charged two-dimensional dila-
tonic black hole, and we solve the Dirac equation analyti-
cally. Then we compute the reflection and transmission coef-
ficients and the absorption cross section for massive charged
fermionic fields, and we show that the absorption cross sec-
tion vanishes at the low- and high-frequency limits. However,
there is a range of frequencies where the absorption cross sec-
tion is not null. Furthermore, we study the effect of the mass
and electric charge of the fermionic field over the absorption
cross section.

1 Introduction

In order to find a clue on the Quantum Gravity problem in
spacetime for which D = 4, a very rich model of different
lower-dimensional gravity has been developed. In the partic-
ular case of D = 2, it is well known that the Einstein–Hilbert
action has been used as the gravity sector. However, this
model is locally trivial because the Einstein–Hilbert action
in D = 2 is just a topological invariant (Gauss–Bonnet theo-
rem). If we want to obtain the dynamical degree of freedom,
we need to couple this action with different fields besides the
gravitational one. From this perspective, the dilatonic field
has shown a very rich structure and includes black hole solu-
tions. The dilatonic field naturally arises, for instance, in the
compactifications from higher-dimensional gravity or from
string theory. Two-dimensional dilatonic gravity has black
hole solutions that play an important role and reveal various
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physical aspects such as spacetime geometry, the quantiza-
tion of gravity, and also physics related to string theory [1–
3]. Furthermore, technical simplifications in two dimensions
often lead to exact results, and it is hoped that this might
help to address some of the conceptual problems posed by
quantum gravity in higher dimensions. The exact solvabil-
ity of two-dimensional models of gravity has been a useful
tool for research in black hole thermodynamics [4–9]. Such
lines of research are provided to give deeper understanding
of some key issues, including the microscopic origin of the
black hole entropy [10–12], and the final stages of black
hole evaporation [13–15]. For a review of two-dimensional
dilaton gravity [16], in the specific subject of black hole
physics, there are several studies that have contributed to
understanding the scattering and absorption properties of
waves in black holes. Because the spacetime geometry sur-
rounding a black hole is non-trivial, the Hawking radiation
emitted at the event horizon is modified by this geometry, and
therefore an asymptotic observer measuring the black hole
thermal spectrum will measure a modified spectrum and no
longer the well-known black body thermal spectrum [17].
The factors that modify the emitted spectrum of black holes
are known as greybody factors and can be obtained through
the classical scattering for fields under the influence of a black
hole. Because Hawking radiation is of a quantum nature, the
study of greybody factors allows increases of the semiclas-
sical gravity dictionary, and also gives further steps into the
quantum nature of black holes; for a review of this topic see
[18].

In the present work we study the reflection and trans-
mission coefficients, and the greybody factors of mas-
sive charged fermions fields on the background of two-
dimensional charged dilatonic black holes [1,19]. Greybody
factors for scalar and fermionic field perturbations on the
background of black holes have received much attention.
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In this context, it was shown that for all spherically sym-
metric black holes, the low energy cross section for mass-
less minimally coupled scalar fields is always the area of
the horizon, where the contribution to the absorption cross
section comes from the mode with lowest angular momen-
tum [20–22]. However, for asymptotically AdS and Lifshitz
black holes, it was observed that, at the low-frequency limit,
there is a range of modes with highest angular momen-
tum, which contribute to the absorption cross section in
addition to the mode with lowest angular momentum [23–
26]. Also, it was observed that the absorption cross section
for the three-dimensional warped AdS black hole is larger
than the area, even if the s-wave limit is considered [27].
Recently it has been found that the zero-angular-momentum
greybody factors for non-minimally coupled scalar fields in
four-dimensional Schwarzschild–de Sitter spacetime tends
to zero around the zero-frequency limit [28]. Otherwise, for
fermionic fields, it was shown that the absorption probabil-
ity for bulk massive Dirac fermions in higher-dimensional
Schwarzschild black hole increases with the dimensional-
ity of the spacetime and decreases as the angular momen-
tum increases. For this spacetime, it was also revealed that
the absorption probability depended on the mass of the
emitted field, that is, the absorption probability decreases
or increases depending on the range of energy when the
mass of the field increases. Also, it has been observed that
the absorption probability increases for higher radii of the
event horizon [29]; see for instance [30,31] for the decay
of Dirac fields in higher-dimensional black holes. For fur-
ther reference, massive charged scalar field perturbations of
the Kerr–Newman black hole background were studied in
[32,33], the absorption of photons and fermions by black
holes in four-dimensions in [34], the fermion absorption
cross section of a Schwarzschild black hole in [35], and
charged fermionic perturbations in the Reissner–Nordstrom
anti-de Sitter black hole background in [36]. For higher-
dimensional black hole background see [37,38]. Further-
more, fermionic perturbations on the background of two-
dimensional dilatonic black holes have been studied in which
it was shown that the absorption cross section vanishes
at the low- and high-frequency limits. However, there is
a range of frequencies where the absorption cross section
is not null [39]. Besides, charged fermionic field pertur-
bations have been studied in order to obtain the quasinor-
mal modes and to study the stability of these black holes
[40].

This paper is organized as follows. In Sect. 2, we study
massive charged fermionic perturbations in the background
of two-dimensional dilatonic black holes, and in Sect. 3 we
calculate the reflection and the transmission coefficients, and
the absorption cross section. Finally, our conclusions are in
Sect. 4.

2 Massive charged fermionic perturbations in
two-dimensional charged dilatonic black holes

Let us begin with the effective action of Maxwell-gravity
coupled to a dilatonic field φ [3]:

S = 1

2π

∫
d2x

√−ge−2φ
(

R − 4(∇φ)2 − λ− 1

4
FμνFμν

)
,

(1)

where R is the Ricci scalar, λ is the central charge, and Fμν is
the electromagnetic strength tensor. If we perform the vari-
ation of the metric, gauge, and dilaton field, we obtain the
following equations of motions:

Rμν − 2∇μ∇νφ − 1

2
Fμσ Fσν = 0,

∇ν(e−2φFμν) = 0,

R − 4∇μ∇μφ + 4∇μφ∇μφ − λ− 1

4
FμνFμν = 0. (2)

In order to describe the black hole solution, we considered the
following form of the static metric for charged black holes:

ds2 = − f (r)dt2 + dr2

f (r)
, (3)

in this expression, f (r) = 1 − 2me−Qr + q2e−2Qr , φ =
φ0 − Q

2 r, and Ftr = √
2Qqe−Qr . We used λ = −Q2

because of the asymptotic flatness condition for the spacetime
required. It is well known that m and q (free parameters) are
proportional to the black hole mass and charge, respectively.
The positions of the horizons are given by

r± = 1

Q
ln(m ±

√
m2 − q2), (4)

we can obtain one single horizon solution (r+) if the fol-
lowing condition is fulfilled m2 − q2 � 0, from which it
is straightforward to see that m2 = q2 corresponds to an
extremal case, where r+ = r−. On the other hand, using
the coordinate transformation y = e−Qr yields f (y) =
1 − 2my + q2 y2, where the spatial infinity is now located
at y = 0. We can see that this solution represents the well-
known string-theoretic black hole [1–3]. As is well known,
charged fermionic perturbations on the background of two-
dimensional charged dilatonic black hole are governed by
the Dirac equation,

(γ μ(∇μ + iq ′ Aμ)+ m′)ψ = 0, (5)

where Aμ denotes the electromagnetic potential, q ′ and m′
denote the charge and the mass of the fermionic field ψ ,
respectively, and
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∇μ = ∂μ + 1

2
ωab
μ Jab, (6)

represents the covariant derivative ∇μ. In this last expression
Jab = 1

4 [γa, γb] are the generators of the Lorentz group, and
γ μ are the gamma matrices in curved spacetime. These are
defined by γ μ = eμaγ a, where γ a are the gamma matrices
in flat spacetime. Here, we consider the following represen-
tation for the 2 × 2 gamma matrices:

γ 0 = iσ 2, γ 1 = σ 1, (7)

where σ i are the Pauli matrices. Now, in order to find the
solution to the Dirac equation in this background we use the
diagonal vielbein given by

e0 = √
f (r)dt, e1 = 1√

f (r)
dr, (8)

and from the null torsion condition dea + ωa
b ∧ eb = 0, we

obtain the spin connection

ω01 = f ′(r)
2
√

f (r)
e0. (9)

Therefore, choosing the following ansatz for the fermionic
field:

ψ = 1

f (r)1/4
e−iωt

(
ψ1

ψ2

)
, (10)

we obtain the following coupled system of equations:

√
f ∂rψ1 + iω√

f
ψ1 −

√
2iqq ′
√

f
e−Qrψ1 + m′ψ2 = 0

√
f ∂rψ2 − iω√

f
ψ2 +

√
2iqq ′
√

f
e−Qrψ2 + m′ψ1 = 0. (11)

Now, decoupling the above equations we obtain the following
equation for ψ1:

2 f (r)2ψ ′′
1 (r)+ f (r) f ′(r)ψ ′

1(r)

+e−2Qr (4q2q ′2 − 4
√

2eQr qq ′ω + 2e2Qrω2

−2eQr (m′2eQr − √
2iqq ′Q) f (r)

−ieQr (−√
2qq ′ + eQrω) f ′(r))ψ1(r) = 0, (12)

and now performing the transformation y = e−Qr , Eq. (12)
becomes

ψ ′′
1 (y)+

(
1

y
+ 1/2

y − y+
+ 1/2

y − y−

)
ψ ′

1(y)

+
(

A1

y
+ A2

y − y+
+ A3

y − y−

)

× 1

y(y − y+)(y − y−)
ψ1(y) = 0, (13)

where y± are the roots of the function f (y) = 1 − 2my +
q2 y2, which are given by

y± = m ∓√
m2 − q2

q2 , (14)

and the constants A1, A2, and A3 are defined by the expres-
sions

A1 = 1

q2 Q2 (ω
2 − m′2), (15)

A2 = y+(y+ − y−)

⎛
⎝ 1

16
−
(

1

4
− iω

q2 Qy+ (y+ − y−)

+
√

2iq ′

q Q(y+ − y−)

)2
⎞
⎠ , (16)

A3 = −y−(y+ − y−)

⎛
⎝ 1

16
−
(

1

4
+ iω

q2 Qy− (y+ − y−)

−
√

2iq ′

q Q(y+ − y−)

)2
⎞
⎠ . (17)

Additionally, we perform the change of variable z =
(

y−
y+ )(

y−y+
y−y− ), and making the substitution

ψ1(z) = zα(1 − z)βF(z), (18)

in Eq. (13), we obtain the following equation for F(z):

z(1−z)F ′′(z)+(c−(1+a+b)z)F ′(z)−abF(z) = 0, (19)

where

α± = 1

4
±
(

1

4
− i

√
2q ′

Qq(y− − y+)
+ iωy−

Q(y− − y+)

)
, (20)

β± = ± i
√
ω2 − m′2

Q
. (21)

Therefore, as Eq. (19) corresponds to the hypergeometric
equation, its solution is given by

ψ1 = C1zα(1 − z)β2 F1(a, b, c, z)

+ C2z1/2−α(1 − z)β2 F1

× (a − c + 1, b − c + 1, 2 − c, z), (22)

which has three regular singular points at z = 0, z = 1,
and z = ∞. Here, 2 F1(a, b, c; z) denotes the Gauss hyper-
geometric function and C1, C2 are integration constants and

a = 1

2
+ 2α + β + iω

Q
, (23)
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b = β − iω

Q
, (24)

c = 1

2
+ 2α. (25)

Now, imposing boundary conditions at the horizon, i.e., there
are only ingoing waves, and choosing α = α−, implies that
C2 = 0. Thus, the solution for ψ1 reduces to

ψ1 = C1zα(1 − z)β2 F1(a, b, c, z). (26)

Otherwise, in order to find the solution for ψ2, we use
the change of variable defined before, i.e., z = (

y−
y+ )(

y−y+
y−y− ).

Thus, the second equation of the system (11) can be written
as

ψ ′
2(z)− iω(y− − y+)

(1 − z)(y− − y+z)Q f (z)
ψ2

+
√

2iqq ′y+y−(y− − y+)
(y− − y+z)2 Q f (z)

ψ2

+ m′(y− − y+)
(1 − z)(y− − y+z)

√
f (z)Q

ψ1 = 0. (27)

Now, by using the integrating factor I given by

I = z
− i

2Q
√

m2−q2
(−√

2qq ′+(m+
√

m2−q2)ω)
(1 − z)

iω
Q

= zα(1 − z)
iω
Q , (28)

we integrate Eq. (27) and we obtain the solution

ψ2 = − C1m′

Qzα(1 − z)
iω
Q

∫
z′c−1(1 − z′)a−c−1

2 F1

×(a, b, c, z′)dz′, (29)

which can be written as

ψ2 = −C1m′z 1
2 +α(1 − z)

i
√
ω2−m′2

Q

Q( 1
2 + 2α)

2 F1(a, b + 1, c + 1, z),

(30)

by using the relation

∫
zc−1(1 − z)a−c−1

2 F1(a, b, c, z)dz

= (1 − z)a−czc 2 F1(a, b + 1, c + 1, z)

c
. (31)

3 Reflection coefficient, transmission coefficient,
and absorption cross section

The reflection and transmission coefficients depend on the
behavior of the radial function, at the horizon and at the
asymptotic infinity, and they are defined by

R :=
∣∣∣∣∣
Fout

asymp

F in
asymp

∣∣∣∣∣ ; T :=
∣∣∣∣∣

F in
hor

F in
asymp

∣∣∣∣∣ , (32)

where F is the flux, given by

F = √−gψ̄γ rψ, (33)

where γ r = er
1γ

1, ψ̄ = ψ†γ 0,
√−g = 1, and er

1 =√
f (r), which yields

F = |ψ1|2 − |ψ2|2. (34)

The behavior of the fermionic field ψ at the horizon is given
by Eq. (26) for ψ1 and Eq. (30) for ψ2 in the limit z → 0.
Then, using Eq. (34), we get the flux at the horizon,

F in
hor = |C1|2. (35)

Besides, in order to obtain the asymptotic behavior ofψ1 and
ψ2 we use the Kummer formula [41]:

2 F1(a, b, c, z) = 
(c)
(c − a − b)


(c − a)
(c − b)
2 F1

×(a, b, a + b − c, 1 − z)

+(1 − z)c−a−b
(c)
(a + b − c)


(a)
(b)
2 F1

×(c − a, c − b, c − a − b + 1, 1 − z),

in Eqs. (26) and (30), and by using Eq. (34) we obtain the
flux at the asymptotic region z → 1:

Fasymp = |A1|2 + |A2|2 − |B1|2 − |B2|2, (36)

where

A1 = C1

(c)
(c − a − b)


(c − a)
(c − b)
,

A2 = C1

(c)
(a + b − c)


(a)
(b)
,

B1 = −C1m′

Q


(c)
(c − a − b)


(c + 1 − a)
(c − b)
,

B2 = −C1m′

Q


(c)
(a + b − c)


(a)
(b + 1)
,

where in the last two equations we have used the property

(c+1) = c
(c).Therefore, the reflection and transmission
coefficients are given by

R = |B1|2 + |B2|2
|A1|2 + |A2|2 , (37)

T = |C1|2
|A1|2 + |A2|2 , (38)
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Fig. 1 The reflection coefficient R (solid curve), the transmission coef-
ficient T (dashed curve), R + T (thick curve), and the absorption
cross section σabs (dotted curve) as a function of ω, (1 ≤ ω); for
q = 0.5, q ′ = 1, m = 1, m′ = 1, and Q = 1

and the absorption cross section, σabs, reads

σabs = 1

ω

|C1|2
|A1|2 + |A2|2 . (39)

Now, we perform a numerical analysis of the reflection
coefficient (37), transmission coefficient (38), and absorp-
tion cross section (39) of two-dimensional charged dilatonic
black holes, for charged fermionic fields. In Fig. 1 we show
the behavior of the reflection and transmission coefficients

and the absorption cross section, for charged fermionic fields
for q = 0.5, q ′ = 1, m = 1, m′ = 1, and Q = 1. Essen-
tially, we found that the reflection coefficient is 1 at the
low-frequency limit, that is, ω ≈ m′, whereas for the high-
frequency limit this coefficient is null, the opposite behavior
of the transmission coefficient, with R + T = 1. Also, we
observe that the absorption cross section is null at the low-
and high-frequency limits, but there is a range of frequencies
for which the absorption cross section is not null, and also it
has a maximum value.

In addition, in Fig. 2 we show the behavior of the absorp-
tion cross section for different (positive and negative) values
of q, where we observe that the absorption cross section is
null at the low- and high-frequency limit, but there is a range
of frequencies for which the absorption cross section is not
null, and also it has a maximum value. Also, we observe in
Figs. 2, 3, and 4 that for qq ′ > 0 the absorption cross section
decreases when qq ′ increases, due to the electric repulsion.
However, for qq ′ < 0 we found that the absorption cross sec-
tion does not depend on the value of qq ′.Also, we observe in
Fig. 5 that the absorption cross section increases if the mass
of the fermionic field increases; however, beyond a certain
value of the frequency, the absorption cross section is con-
stant and null for the high-frequency limit. On the other hand,
in Fig. 6, we plot the absorption cross section for different
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Fig. 2 The absorption cross section σabs (dotted curve) as a function ofω, (1 ≤ ω); for q ′ = −1, m = 3.5, m′ = 1, Q = 1, and q = 0.5, 1.5, 2, 3
for the left figure, and q = −0.5,−2.5,−3.2,−3.4 for the right figure
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Fig. 3 The absorption cross section σabs (dotted curve) as a function of ω, (1 ≤ ω); for m = 3.5, m′ = 1, Q = 1, q = −1.5, and q ′ = 0, 1, 2, 3
for the left figure, and q ′ = 0,−2.5,−3,−3.4 for the right figure
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Fig. 4 The absorption cross section σabs (dotted curve) as a function ofω, (1 ≤ ω); for q = 1.5, m = 3.5, m′ = 1, Q = 1, and q ′ = 0, 2.5, 3, 3.4
for the left figure, and q ′ = 0,−1,−2,−3 for the right figure
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Fig. 5 The absorption cross section σabs (dotted curve) as a function
of ω; for q = 0.5, q ′ = 1, m = 1, Q = 1, and m′ = 1, 2, 3
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Fig. 6 The absorption cross section σabs (dotted curve) as a function
of ω; for q = 0.5, q ′ = 1, m′ = 1, Q = 1, and m = 1, 2, 3, 4

values of m and we observe that it does not depend on the
mass of the black hole. Finally, we observe that the absorp-
tion cross section increases if Q decreases; see Fig. 7.

4 Conclusions

In this work we have studied massive charged fermionic per-
turbations on the background of two-dimensional charged
dilatonic black holes, and we have computed the reflection
and transmission coefficients, and the absorption cross sec-

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q 7

Q 4

Q 2.5

Q 1.5

Fig. 7 The absorption cross section σabs (dotted curve) as a function
of ω, (1 ≤ ω); for q = 0.5, q ′ = 1, m = 1, m′ = 1, and Q =
1.5, 2.5, 4, 7

tion, and we have shown numerically that the absorption
cross section vanishes at the low- and high-frequency lim-
its. Therefore, a wave emitted from the horizon, with low or
high frequency, does not reach infinity and is totally reflected,
since the fraction of particles penetrating the potential bar-
rier vanishes; however, we have shown that there is a range
of frequencies where the absorption cross section is not null.
The reflection coefficient is 1 at the low-frequency limit and
null for the high-frequency limit, demonstrating a behavior
opposite to the transmission coefficient, with R + T = 1.
It is worth mentioning that these results, greybody factors,
are consistent with other geometries of dilatonic black holes
[39,42,43]. Also, we have studied the effect of the electric
charge of the fermionic field over the absorption cross sec-
tion, and we have observed different behaviors depending on
the sign and the value of the product of the charges ∝ qq ′.
That is, for qq ′ > 0 we have found that the absorption
cross section decreases when qq ′ increases, due to the elec-
tric repulsion. However, for qq ′ < 0 we have found that the
absorption cross section does not depend on the value of qq ′,
and for this case we obtain the same value of the absorption
cross section as for the case q ′ = 0. Also, we have found
that the absorption cross section increases if the mass of the
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fermionic field increases; however, beyond a certain value of
the frequency, the absorption cross section is constant. Also,
we have found that the absorption cross section for massive
charged fermionic fields in a charged two-dimensional dila-
tonic black hole does not depend on the mass of the black
hole.
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