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Abstract Bekenstein has put forward the idea that, in a
quantum theory of gravity, a black hole should have a discrete
energy spectrum with concomitant discrete line emission.
The quantized black-hole radiation spectrum is expected
to be very different from Hawking’s semi-classical predic-
tion of a thermal black-hole radiation spectrum. One natu-
rally wonders: Is it possible to reconcile the discrete quan-
tum spectrum suggested by Bekenstein with the continuous
semi-classical spectrum suggested by Hawking? In order to
address this fundamental question, in this essay we shall
consider the zero-point quantum-gravity fluctuations of the
black-hole spacetime. In a quantum theory of gravity, these
spacetime fluctuations are closely related to the characteris-
tic gravitational resonances of the corresponding black-hole
spacetime. Assuming that the energy of the black-hole radi-
ation stems from these zero-point quantum-gravity fluctu-
ations of the black-hole spacetime, we derive the effective
temperature of the quantized black-hole radiation spectrum.
Remarkably, it is shown that this characteristic temperature of
the discrete (quantized) black-hole radiation agrees with the
well-known Hawking temperature of the continuous (semi-
classical) black-hole spectrum.

One of the most remarkable theoretical predictions of
modern physics is Hawking’s celebrated result that black
holes are not completely black [1]. According to Hawking’s
semi-classical analysis, a black hole is quantum mechani-
cally unstable–it emits continuous thermal radiation whose
characteristic temperature is given by

TH = h̄

8πM
. (1)

Here M is the mass of the Schwarzschild black hole. (We use
gravitational units in which G = c = 1.)

It should be stressed, however, that Hawking’s derivation
of the continuous black-hole radiation spectrum is restricted
to the semi-classical regime: the matter fields are treated
quantum mechanically but the spacetime (and, in particular,

a e-mail: shaharhod@gmail.com

the black hole itself) are treated classically. One therefore
expects to find important new features in the character of
the black-hole radiation spectrum once quantum properties
of the black hole itself are properly taken into account.1 It
is therefore appropriate to regard the Hawking temperature
(1) as the semi-classical (SC) temperature of the continuous
black-hole radiation:

TSC ≡ TH = h̄

8πM
. (2)

The quantization of black holes was first proposed in the
seminal work of Bekenstein [2,3]. The original quantization
procedure was based on the physical observation that the
surface area of a black hole behaves as a classical adiabatic
invariant [2,3]. In the spirit of the Ehrenfest principle [4],
any classical adiabatic invariant corresponds to a quantum
entity with a discrete spectrum, Bekenstein suggested that
the horizon area A of a quantum black hole should have a
discrete spectrum of the form

An = γ h̄ · n; n = 1, 2, 3, . . . . (3)

Here γ is an unknown “fudge” factor which was introduced
in [2,3].

In order to determine the value of the coefficient γ ,
Mukhanov and Bekenstein [5,6] have suggested, in the spirit
of the Boltzmann–Einstein formula in statistical physics
[4], to relate gn ≡ exp[SBH(n)] to the number of black-
hole micro-states that correspond to a particular external
black-hole macro-state. Here SBH is the black-hole entropy,
which is related to its surface area A by the thermodynamic–
geometric relation [1,2]

SBH = A

4h̄
. (4)

1 This state of affairs is reminiscent of atomic spectroscopy: according
to the classical laws of electrodynamics an atom should have a continu-
ous emission spectrum, whereas quantum mechanics dictates a discrete
line emission from the atom.
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The statistical degeneracy [see Eqs. (3) and (4)]

gn ≡ exp[SBH(n)] = exp

(
1

4
γ · n

)
(5)

of the nth black-hole area level has to be an integer for every
integer n. This physical requirement dictates the relation [5,
6]

γ = 4 ln k (6)

for the fudge factor γ , where the unknown constant k should
be an integer.

Determining the specific value of the integer k requires
additional physical input. This physical information emerges
by applying the Bohr correspondence principle [4] to the
discrete resonance spectrum of the black hole [7]. Accord-
ing to the Bohr correspondence principle, transition frequen-
cies at large quantum numbers should equal classical oscilla-
tion frequencies. Namely, the asymptotic energy difference
Mn+1 − Mn between the (n + 1)th and the nth black-hole
quantum levels should be given by the characteristic classical
oscillation frequency of the black hole:

Mn+1 − Mn = h̄ωBH. (7)

It is well known that a Schwarzschild black hole is char-
acterized by a discrete spectrum of gravitational resonances
[8–10] with the fundamental asymptotic frequency [7,11]

MωR = ln 3

8π
. (8)

The emission of a gravitational quantum from the black hole
results in a change �M = h̄ωR [see Eq. (7)] in the black-
hole mass. Using the first-law of black-hole thermodynam-
ics, �A = 32πM�M ,2 one finds the fundamental change
�A = 4 ln 3· h̄ in the Schwarzschild black-hole surface area.
Taking cognizance of Eqs. (3) and (8), one finally obtains the
quantized area spectrum:

An = 4h̄ ln 3 · n; n = 1, 2, 3, . . . . (9)

It is worth emphasizing again that the black-hole area spec-
trum (9) is consistent both with the area-entropy thermo-
dynamic relation (4) for black holes, with the Boltzmann–
Einstein formula (5) in statistical physics, and with the Bohr
correspondence principle (7) [7].

One therefore concludes that, in a quantum theory of grav-
ity, a Schwarzschild black hole has a discrete energy (mass)
spectrum of the form:3

Mn =
√
h̄ ln 3

4π
· n1/2; n = 1, 2, 3, . . . , (10)

2 Here we have used the relation A = 16πM2 for the Schwarzschild
black hole.
3 See footnote 2.

with concomitant discrete line emission [5–7]. In particular,
the radiation emitted by the quantized black hole consists of
gravitational quanta whose frequencies are integer multiples
of the fundamental black-hole frequency

ω0 ≡ (Mn+1 − Mn)/h̄ = ln 3

8πM
. (11)

The quantized (discrete) black-hole radiation spectrum is
obviously different from Hawking’s semi-classical predic-
tion of a thermal (continuous) spectrum.

One naturally wonders: Is it possible to reconcile the dis-
crete quantum spectrum predicted by Bekenstein with the
continuous semi-classical spectrum predicted by Hawking?
In order to address this fundamental question, we first point
out that, in a quantum theory of gravity, the black-hole space-
time is expected to possess a set of zero-point quantum-
gravity fluctuations. It has been suggested [12,13] that these
zero-point fluctuations of the black-hole spacetime (and, in
particular, the quantum-gravity fluctuations of the black-hole
horizon) may enable quanta to tunnel out of the black hole.

We shall now conjecture that these black-hole spacetime
fluctuations are characterized by the fundamental resonance
frequency ω0 [see Eq. (11)] of the black-hole spacetime.
In particular, we propose a physical picture in which the
quantum-gravity fluctuations of the black-hole spacetime
may enable quanta with the appropriate frequencies (the
ones which are in resonance with the fluctuating horizon:
ω0, 2ω0, 3ω0, . . .) to tunnel out of the quantum black hole.

According to this physical picture, the energy of the black-
hole radiation stems from these zero-point quantum-gravity
fluctuations of the black-hole spacetime. The characteristic
quantum temperature, TQ, of the discrete black-hole radia-
tion spectrum may be defined by equating the mean ther-
mal energy of the radiating fields (including their zero-point
quantum energy) with the corresponding energy of an emit-
ted quantum with the characteristic black-hole resonance fre-
quency ω0. Namely,

1

2
h̄ω0 + h̄ω0

eh̄ω0/TQ − 1
= h̄ω0. (12)

Substituting the fundamental black-hole resonance ω0 =
ln 3/8πM [see Eq. (11)] into Eq. (12), one finds that the
characteristic temperature of the quantized (Q) black-hole
radiation spectrum is given by

TQ = h̄

8πM
. (13)

Remarkably, we find here that the characteristic temper-
ature (13) of the discrete (quantized) black-hole radiation
spectrum exactly matches the semi-classical temperature (2)
of the continuous black-hole radiation:

TQ = TSC. (14)
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Summary One of the most important theoretical predic-
tions of modern physics is Hawking’s semi-classical4 result
that black holes are not completely black [1]. In particu-
lar, according to Hawking’s analysis, a Schwarzschild black
hole is expected to emit continuous thermal radiation whose
characteristic semi-classical temperature is given by Eq. (2).
However, Bekenstein [2,3] has put forward the idea that, in
a quantum theory of gravity,5 a quantum black hole should
have a discrete mass spectrum. As a consequence, a quantum
black hole is expected to be characterized by a discrete line
emission.

In the present essay we have proposed a physical mecha-
nism which relates in a natural way the two seemingly dif-
ferent spectra: the discrete black-hole quantum spectrum as
predicted by Bekenstein and the semi-classical continuous
spectrum as predicted by Hawking. The proposed model is
based on the fact that, in a quantum theory of gravity, the
black-hole spacetime is expected to possess a set of zero-
point quantum-gravity fluctuations which are characterized
by the fundamental black-hole resonance frequency (11).
These quantum-gravity fluctuations of the black-hole hori-
zon may enable quanta with the appropriate frequencies (the
frequencies ω0, 2ω0, 3ω0, . . . which are in resonance with
the fluctuating horizon) to tunnel out of the quantum black
hole.

The resulting quantum-gravity black-hole radiation spec-
trum is characterized by a discrete line emission as predicted
by Bekenstein. Remarkably, we have shown here that this
quantized (discrete) black-hole radiation spectrum is charac-
terized by an effective quantum temperature TQ [see Eq. (13)]

4 It is worth emphasizing again that, in Hawking’s original analysis
[1], the matter fields are treated quantum mechanically but the black
hole itself is treated as a classical entity. Thus, Hawking’s analysis is
restricted to the semi-classical regime.
5 In a quantum theory of gravity, the spacetime itself (and, in particular,
the black-hole energy spectrum) should be treated as a quantum entity.

which agrees with the well-known semi-classical Hawking
temperature TH [see Eq. (2)] of the continuous black-hole
radiation spectrum.
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