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Abstract Based on certain assumptions for the expecta-
tion value of a product of the quantum fluctuating metric
at two points, the gravitational and scalar field Lagrangians
are evaluated. Assuming a vanishing expectation value of
the first-order terms of the metric, the calculations are per-
formed with an accuracy of second order. It is shown that
such quantum corrections give rise to modified gravity.

1 Introduction

The problem of quantizing gravity has been debated fre-
quently during the past decades. In doing so, it was estab-
lished that the quantization of Einstein’s general relativity
inevitably results in fundamental problems, such as the per-
turbative nonrenormalizability [1,2]. This represents a moti-
vation to introduce other, more radical approaches to obtain
a quantum theory of gravity, including the consideration of
higher-order theories of gravity, string theory, and loop quan-
tum gravity [3].

One possibility is to reject the perturbative quantization,
as is done, for example, within the framework of loop-space
nonperturbative quantum gravity [4]. On the other hand, in
order to quantize gravity one can try to adopt the nonper-
turbative quantization technique employed by Heisenberg
[5] when considering a nonlinear spinor field theory. The
central idea of this approach is that the description of the
quantum system is achieved by using an infinite set of equa-
tions for all Green’s functions. Based on physically motivated
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arguments, one can introduce a cutoff procedure to obtain a
finite number of equations. Such a procedure is close to the
one used in turbulence modeling [6].

Working within this approach, we here consider the sit-
uation where a quantum metric can be decomposed into a
sum of an averaged (classical) metric gμν and a fluctuating
(quantum) part δgμν . Also, we assume that the Green’s func-
tion of a product of the fluctuating part of the metric can be
approximated in a certain way. Under these assumptions we
calculate the action for the gravitational field and for matter
(in the form of a scalar field) with an accuracy of δg2. We
show that the resulting action represents modified F(R)-type
theories of gravity, which are now widely used in modeling
the present accelerated expansion of the Universe [7].

For the quantum gravitating physical system considered
here, with the decomposition of the metric into classical and
quantum parts, the expectation value of the quantum part
can be taken to be zero or nonzero, based on certain physical
motivations. In the present paper we take it to be zero. This is
in contrast to our previous work [8], where the decomposition
into two parts (classical and quantum) was also performed,
but the expectation value of the quantum part of the metric
was taken to be nonzero. Therefore, we here take the second
variation of the metric into account, as discussed below.

2 Nonperturbative quantization technique

According to Heisenberg’s nonperturbative quantization
technique, the classical fields appearing in the corresponding
field equations are replaced by operators of these fields. For
general relativity, one then has the operator Einstein equa-
tions
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Ĝμν ≡ R̂μν − 1

2
ĝμν R̂ = 8πG

c4 T̂μν, (1)

where all geometric operators R̂μν , R̂ρ
σμν , �̂ρ

μν are defined
in the same way as in the classical case, and differ only in the
replacement of the classical quantities by the corresponding
operators (for details, see Ref. [8]).

Mathematical tools for solving the operator Eq. (1) are
unknown. The only possibility to work with such an operator
equation is to average the Eq. (1) over all possible products
of the metric operators ĝ(x1), . . . , ĝ(xn), and thus obtain an
infinite set of equations for all Green’s functions:

〈
Q

∣∣∣ĝ(x1) · Ĝμν

∣∣∣ Q
〉
= 8πG

c4

〈
Q

∣∣∣ĝ(x1) · T̂μν

∣∣∣ Q
〉
, (2)

〈
Q

∣∣∣ĝ(x1)ĝ(x2)·Ĝμν

∣∣∣Q
〉
= 8πG

c4

〈
Q

∣∣∣ĝ(x1)ĝ(x2) · T̂μν

∣∣∣ Q
〉
,

(3)

· · · = · · · , (4)

〈
Q

∣∣∣the product ofg at different points(x1, . . . , xn) · Ĝμν

∣∣∣Q
〉

= 8πG

c4

〈
Q | the product ofg at different points

(x1, . . . , xn) · T̂μν

∣∣∣ Q
〉
, (5)

where |Q 〉 is a quantum state (for details see Refs. [8,9]).
The exact definitions of a nonperturbative vacuum state | 0〉
and a quantum state | Q〉 are given in Appendix B.

Evidently Eqs. (2)–(5) cannot be solved analytically. Dif-
ferent possibilities to solve them approximately were dis-
cussed in Refs. [8–10]. Note that similar mathematical prob-
lems appear in turbulence modeling, where an infinite set of
equations for all cumulants also arises [6].

Here we use the following strategy for approximate solv-
ing Eqs. (2)–(5): we decompose the metric operator ĝμν

into classical, gμν , and quantum, δ̂gμν , parts and evaluate
the expectation value of the Lagrangian with an accuracy〈(

δ̂g
)2

〉
. This strategy is similar to the one employed in con-

nection with quantum torsion in Ref. [10].

3 Assumptions of the quantum averaging

In accordance with the quantization procedure, a metric in
quantum gravity is an operator ĝμν . Here we consider a sys-
tem for which the following decomposition is approximately
valid:

ĝμν ≈ gμν + δ̂gμν + δ̂2gμν, (6)

where gμν is the classical part of the metric;
〈
Q

∣∣δ̂gμν

∣∣ Q〉 =
0;

〈
Q

∣∣∣δ̂2gμν

∣∣∣ Q
〉

�= 0; | Q〉 is some quantum state; δ̂gμν

and δ̂2gμν are the first- and second-order deviations of the
operator ĝμν . The expression (6) is a quantum variant of the
decomposition of the classical metric (see Ref. [11], p. 129),
where δ̂gμν is the first-order term and δ̂2gμν is the second-

order term. In our quantum case it means that
〈(

δ̂g
)2

〉
≈〈

δ̂2g
〉
.

In Ref. [8] we have considered a physical quantum system
with the decomposition ĝμν = gμν + δ̂gμν , where gμν is the
classical part and δ̂gμν is the quantum part of the metric
with the nonzero vacuum expectation value

〈
δ̂gμν

〉
. Thus the

difference between the physical system of Ref. [8] and the one
of the present paper is that in the first case the final effective
Lagrangian is calculated with accuracy

〈
δ̂gμν

〉 �= 0, and in
the second case the final averaged Lagrangian is calculated

with accuracy
〈(

δ̂gμν

)2
〉

and
〈
δ̂2gμν

〉
.

For our approximate nonperturbative calculations, we
insert the decomposition (6) into the Einstein–Hilbert action

and evaluate it with an accuracy
〈(

δ̂g
)2

〉
≈

〈
δ̂2g

〉
. To do this,

we have to make some assumptions on the 2-point Green’s
function. Namely, we suppose that it can be decomposed as
the product

G2;μν,ρσ (x1, x2) =
〈
Q

∣∣∣̂δgμν(x1) · ̂δgρσ (x2)

∣∣∣ Q
〉
. (7)

It is seen from this expression that G2 should be symmetric
under the permutations μ ↔ ν, ρ ↔ σ , and μ, ν ↔ ρ, σ .
In the subsequent calculations we will use the following
assumptions:

• The Green’s function G2(x1, x2) can be approximately
decomposed as the product of some tensors at the points
x1 and x2:

G2;μν,ρσ (x1, x2) ≈ Pμν(x1)Pρσ (x2). (8)

• Taking into account the symmetry properties noted
above, one can see that there exist the following pos-
sibilities for choosing the tensor Pμν :

– Pμν is proportional to the metric tensor:

Pμν ∝ gμν. (9)

– Pμν is proportional to the Ricci tensor:

Pμν ∝ Rμν

R
. (10)

• The proportionality coefficient in the expressions (9) and
(10) should be some invariant. Consequently, it has to
have the form F(R, RμνRμν, . . .). The coefficient F
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should be very small as gμν → ημν , where ημν is the
Minkowski metric.

• The expectation value
〈
̂δ2gμν

〉
is given by some tensor of

rank two,

〈
̂δ2gμν

〉
= Kμν. (11)

• Analogously to (9) and (10), we assume that

– Kμν can be proportional to the metric tensor:

Kμν ∝ gμν. (12)

– Kμν can be proportional to the Ricci tensor:

Kμν ∝ Rμν

R
. (13)

• Pμν and Kμν can be a linear combination of the metric
and Ricci tensors. For example, they could be Einstein or
Schouten tensors.

• For each quantum state |Q〉 there exists only a single set
of functions F and Kμν .

Thus, we assume that the quantum correlation between fluc-
tuations of the metric at two points can be approximately
described as

G2;μν,ρσ (x1, x2) ≈ [
PμνF(R, RμνR

μν, . . .)
]
x1

· [Pρσ F(R, RμνR
μν, . . .)

]
x2

. (14)

The simplest choice for F is

F = F(R), (15)

which corresponds to F(R)-gravities.

4 Evaluation of the averaged action

We start from the classical Einstein–Hilbert Lagrangian

L = − c2

2	

√−gR, (16)

where 	 = 8πG/c2. We then expand L(g+ δg+ δ2g) into a
Taylor series and subsequently replace the classical quantities
δg, δ2g by quantum ones, δ̂g, δ̂2g,

L̂(g + δ̂g + δ̂2g) ≈ L(g) + δL
δgμν

̂δgμν

+ δ2L
δgμνδgρσ

̂δgμν ̂δgρσ + δ2L
δ2gμν

̂δ2gμν.

(17)

Our next step is to average this Lagrangian over quantum
fluctuations of the metric δgμν . Since in the present paper

we assume that
〈
̂δgμν

〉
= 0 (see Sect. 1 and cf. Ref. [8]

where it was taken to be nonzero), we have

〈
δ2L̂(g)

〉
= δ2L(g)

δgμνδgρσ

〈
̂δgμν ̂δgρσ

〉
+ δ2L

δ2gμν

〈
̂δ2gμν

〉
. (18)

Taking into account the first variation of the Einstein–Hilbert
Lagrangian

δL(g) = − c2

2	

√−g

(
Rμν − 1

2
gμνR

)
δgμν, (19)

we can calculate the second variation as follows:

δ2L(g) = − c2

2	

[(
δ
√−g

) (
Rμν − 1

2
gμνR

)
+ √−gδ

×
(
Rμν − 1

2
gμνR

)]
δgμν + √−g Gμνδ

2gμν, (20)

where Gμν = Rμν − 1
2gμνR is the Einstein tensor. Equation

(20) can be rewritten as

δ2L(g) = − c2

2	

√−g

{[
−1

2

(
Rμν − 1

2
gμνR

)
gαβδgαβ

+ δRμν − R

2
δgμν − 1

2
gμνδR

]
δgμν + Gμνδ

2gμν

}
.

(21)

Now we can calculate an expectation value of the Lagrangian
(17) by replacing all classical quantities δgμν and δ2gμν in
Eq. (21) by the quantum ones, δ̂g

μν
and δ̂2g

μν
(for details see

Appendix A). For simplicity, let us here consider the Ansatz
(9), for which we obtain
〈
L̂(g + δ̂g + δ̂2g)

〉
≈ − c2

2	

√−g
[
R − 2RF(R, . . .)

+3F(R, . . .)∇μ∇μF(R, . . .) + GμνK
μν

]
. (22)

Thus, we see that we have derived a modified gravity theory.
For the simplest choice F(R, . . .) = F(R) and Kμν = 0 we
have F(R)-gravity theory.

Let us now perform similar calculations for the mat-
ter Lagrangian, using the decomposition given by Eqs. (6)
and (7). For simplicity, consider the scalar field φ with the
Lagrange density

Lm = √−gLm = √−g

[
1

2
∇μφ∇μφ − V (φ)

]
. (23)

Its first variation is

δLm =
√−g

2

[∇μφ∇νφ − gμνLm
]
δgμν =

√−g

2
Tμνδg

μν,

(24)
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where Tμν is the energy-momentum tensor. Then the second
variation yields

δ2Lm =
√−g

2

{[(
−gμαgνβ + 1

2
gμνgαβ

)
Lm−gαβ∇μφ∇νφ

]

× δgμνδgαβ + Tμνδ
2gμν

}
. (25)

Using Eqs. (7)–(9) and (11) and replacing again all classical
quantities δgμν and δ2gμν by the quantum ones, we find the

expectation value
〈
Lm + ̂δ2Lm

〉
in the form

〈
Lm + ̂δ2Lm

〉

= √−g

{
1

2
∇μφ∇μφ−[1+2F (R, . . .)] V (φ)+KμνTμν

}
.

(26)

Thus, we see that a nonminimal coupling between the scalar
field and gravity appears. Notice also that in the case of
Kμν �= 0 one can obtain a gravitational theory in which the
derivative of the scalar field φ, appearing in the term Tμν , is
nonminimally coupled to curvature (for cosmological mod-
els with such a coupling; see, e.g., Refs. [12–14]).

5 Conclusion

In the present paper we have considered the case of a quantum
gravitating system when the metric can be decomposed into
classical and quantum parts. For such a system, we have
calculated the gravitational and matter Lagrangians with an
accuracy up to the second variation of the metric. In doing so,
we have decomposed the operator of the metric into a sum of
its expectation value (c-number) and deviations (q-numbers)
from this expectation value.

Based on certain assumptions on the dispersion of quan-
tum fluctuations of the metric, we have shown that:

• Einstein gravity is modified in the spirit of F(R)-gravity
theories.

• Matter is nonminimally coupled to gravity.

In obtaining these results, we have assumed that the expec-

tation value of the product
〈
̂δgμν(x1)̂δgμν(x2)

〉
at two points

x1, x2 can be decomposed into the product of two factors of
some tensor at these two points; see Eqs. (7) and (8).

The proposed model, which takes into account the quan-
tum fluctuations of the metric, provides us with the follow-
ing scheme for the explanation of the present acceleration of
the Universe: the quantum metric → F(R)-gravity → the
accelerated Universe. The model can explain qualitatively the
smallness of the effective 
-term, which comes from small
quantum fluctuations of the metric.

Note that the proposed procedure of quantizing the metric
may be considered as being related to quantum gravity like
the phenomenological Ginzburg–Landau model of supercon-
ductivity is related to the microscopical Bardeen–Cooper–
Schrieffer theory: the proportionality coefficient F(R, . . .)

can be calculated only from the true quantum gravity.
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Appendix A: Variation of geometrical quantities

Following Ref. [15], we here give all formulas concerning
the variation of R, Rμν , and Rμναβ . The variations of the
inverse metric and the Christoffel symbols �

μ
νρ are

δgαβ = −gαρgβσ δgρσ = −hαβ, (A1)

δ�γαβ = 1

2

(∇αhβγ + ∇βhγα − ∇γ hαβ

) + hγρ�
ρ
αβ, (A2)

δ�μ
νρ = 1

2

(∇νδg
μ
ρ + ∇νδg

μ
ρ − ∇μδgν

ρ

)
, (A3)

where gμν and gμν are used to lower and raise indices, and for
brevity, we have introduced hμν = δgμν . Then the variations
of the Riemann and Ricci tensors and the curvature scalar are

δRα
βγ δ = ∇γ δ�α

βδ − ∇δδ�
α
βγ , (A4)

δRαβγ δ = 1

2

[
hαρR

ρ
βγ δ + hβρR

ρ
α γ δ−

(∇δ∇βhγα

+ ∇γ ∇αhδβ − ∇γ ∇βhδα − ∇δ∇αhγβ

) ]
, (A5)

δRαβ = 1

2

[
−∇ρ∇ρhαβ+R σ

α hσβ +R σ
β hσα − 2Rαρβσ h

ρσ

+ ∇α∇ρh
ρ

β + ∇β∇ρh
ρ

α − ∇α∇βh
]
, (A6)

δR = hαβ Rαβ + gαβδRαβ = hαβ Rαβ

−∇α∇αh + ∇α∇βhαβ, (A7)

where h = gαβhαβ and the covariant derivative ∇μ is taken
with respect to the metric g.
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Let us now calculate the expectation values for the case
(9):

−1

2

(
Rμν − 1

2
gμνR

)
gαβ

〈
̂δgμν̂δgαβ

〉
=2RF2(R, . . .),(A8)

1

2

〈
̂δRμν

̂δgμν
〉
= −3F∇μ∇μF, (A9)

−1

2
R

〈
̂δgμν

̂δgμν
〉
= −2RF2(R, . . .), (A10)

−1

2
gμν

〈
δ̂R̂δgμν

〉
= −2RF2(R, . . .) + 6F∇μ∇μF, (A11)

where we have used the fact

〈(
∇μ

̂δgαβ

)
̂δgρσ

〉
= lim

x2→x1

(∇μ

)
x1

〈
̂δgαβ(x1)̂δgρσ (x2)

〉
.

(A12)

Summing (A8)–(A11) yields

〈̂
δ2L

〉
= c2

	

√−gRF(R, . . .). (A13)

For the case (10), we obtain the following expectation values:

−1

2

(
Rμν − 1

2
gμνR

)
gαβ

〈
̂δgμν̂δgαβ

〉

= −1

2

(
Rαβ R

αβ − 1

2
R2

)
F2

R
, (A14)

1

2

〈
̂δRμν

̂δgμν
〉
= 1

4

[
−F

Rαβ

R

(
∇ρ∇ρ

FRαβ

R

)

+ 2Rσ
α Rσβ R

αβ F2

R
− 2Rαρβσ R

ρσ Rαβ F2

R2

+2F
Rαβ

R
∇α∇ρ

(
F
Rρ

β

R

)
− F

Rαβ

R
∇α∇βF

]
, (A15)

−1

2
R

〈
̂δgμν

̂δgμν
〉
= − F2

2

Rαβ Rαβ

R
, (A16)

−1

2
gμν

〈
δ̂R̂δgμν

〉
= − F2

2

Rαβ Rαβ

R
+ F

2
∇α∇αF

− F

2

(
∇α∇βF

Rαβ

R

)
. (A17)

Summing (A14)–(A17), we have

〈̂
δ2L

〉
= −c2

	

{
−3

2
F2 Rαβ Rαβ

R
+F

Rαβ

R

[
1

2
∇α∇ρ

(
F
Rρ

β

R

)

− 1

4
∇ρ∇ρ

(
F
Rαβ

R

)
− 1

4
∇α∇βF

]

− F

2
∇α∇β

(
F
Rαβ

R

)
+ 1

2
Rσ

α Rσβ R
αβ F2

R

− 1

2
Rαρβσ R

ρσ Rαβ F2

R2 + F

2
∇ρ∇ρF + F2R2

4

}
. (A18)

Appendix B: Nonperturbative vacuum: discussion and
definitions

In perturbative quantum field theories a vacuum is defined
by using an annihilation operator â as

â
∣∣ 0

〉 = 0. (B1)

This definition explicitly uses the notion of quantum and con-
sequently cannot be used for the definition of a nonperturba-
tive vacuum. Physically, the difference between perturbative
and nonperturbative vacua is the following: the perturbative
vacuum is a sea of virtual quanta that appear and annihilate
everywhere and always; the nonperturbative vacuum is sim-
ilar to a stormy sea with random waves (fluctuating fields)
on it.

We give the following definition of a nonperturbative vac-
uum for gravity (here we work with tetrads):

1. The expectation value of tetrad operators êaμ at any point
xμ should satisfy the following relation:

〈
0

∣∣êaμ(xρ)êaν(x
ρ)

∣∣ 0
〉 = ημν, (B2)

where ημν is the Minkowski metric.
2. For some combinations of indices a, b, μ, ν the 2-point

Green’s function of tetrad operators êaμ is nonzero,

Gab
2;ρ,σ

(
xρ, xσ

) =
〈
0

∣∣∣êaμ(xρ)êbν(x
σ )

∣∣∣ 0
〉
�= 0. (B3)

2. The dispersion of the metric at any point xμ is nonzero,

〈
0

∣∣∣∣
(
êaμ(xρ)êaν(x

ρ) − ημν

)2
∣∣∣∣ 0

〉
�= 0. (B4)

Thus, the definition of a nonperturbative vacuum for
gravity is obtainedby combining the set of equations for
all Green’s functions (B6)–(B11) with the constraints
(B2)–(B4).

In order to obtain the set of equations for all Green’s func-
tions, we use the operator Einstein equations

R̂μν − 1

2
ĝμν R̂ = 	 T̂μν. (B5)

The equations for all Green’s functions, which follow from
the operator equation, are
〈
0

∣∣∣∣
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ 0

〉

= 	
〈
0

∣∣∣T̂μν

∣∣∣ 0
〉
, (B6)
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〈
0

∣∣∣∣êa1
α1

(
xμ

1

) ·
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ 0

〉

= 	
〈
0

∣∣∣êa1
α1

(
xμ

1

) · T̂μν

∣∣∣ 0
〉
, (B7)

〈
0

∣∣∣∣êa1
α1

(
xμ

1

) · êa2
α2

(
xμ

2

) ·
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ 0

〉

= 	
〈
0

∣∣∣êa1
α1

(
xμ

1

) · êa2
α2

(
xμ

2

) · T̂μν

∣∣∣ 0
〉
, (B8)

· · · = · · · , (B9)〈
0

∣∣∣∣êa1
α1

(
xμ

1

)
. . . êanαn

(
xμ
n

) ·
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ 0

〉

= 	
〈
0

∣∣∣êa1
α1

(
xμ

1

)
. . . êanαn

(
xμ
n

) · T̂μν

∣∣∣ 0
〉
, (B10)

· · · = · · · , (B11)

with the constraints (B2)–(B4).
Equations (B6)–(B11) are partial differential equations for

all Green’s functions. The solution of this set of equations
with the constraints (B2)–(B4) gives us all Green’s functions
describing a vacuum state in quantum gravity. The knowledge
of all Green’s functions is identical to knowing the properties
of the operators êaμ and the vacuum quantum state | 0〉.

In the same way, we can define the quantum state | Q〉:
The quantum state | Q〉 and the properties of the operators
êaμ are defined through all Green’s functions satisfying the
set of equations
〈
Q

∣∣∣∣
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ Q
〉

= 	
〈
Q

∣∣∣T̂μν

∣∣∣ Q
〉
, (B12)

〈
Q

∣∣∣∣êa1
α1

(
xμ

1

) ·
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ Q
〉

= 	
〈
Q

∣∣∣êa1
α1

(
xμ

1

) · T̂μν

∣∣∣ Q
〉
, (B13)

〈
Q

∣∣∣∣êa1
α1

(
xμ

1

) · êa2
α2

(
xμ

2

) ·
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ Q
〉

= 	
〈
Q

∣∣∣êa1
α1

(
xμ

1

) · êa2
α2

(
xμ

2

) · T̂μν

∣∣∣ Q
〉
, (B14)

· · · = · · · , (B15)〈
Q

∣∣∣∣êa1
α1

(
xμ

1

)
. . . êanαn

(
xμ
n

) ·
[
R̂μν − 1

2
ĝμν R̂

]

x=xν

∣∣∣∣ Q
〉

= 	
〈
Q

∣∣∣êa1
α1

(
xμ

1

)
. . . êanαn

(
xμ
n

) · T̂μν

∣∣∣ Q
〉
, (B16)

· · · = · · · (B17)

Let us emphasize that for the definition of the quantum state
| Q〉 we do not use the constraints (B2)–(B4).

Finally, let us address the procedure of quantum averaging.
In quantum mechanics, this procedure is carried out by the
integration:

〈
L̂
〉
=

∫
ψ∗ L̂ψdV . (B18)

For the nonperturbative quantization, this procedure is not
obvious. To define a quantum average for an operator, or some
product of operators, we first have to solve the set of Eqs.
(B12)–(B17). Then, among the obtained Green’s functions,
we find the required quantum average.
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