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Abstract The propagation of gravitational waves on the
background of a nonperturbative vacuum of a spinor field
is considered. It is shown that there are several distinc-
tive features in comparison with the propagation of plane
gravitational waves through empty space: there exists a
fixed phase difference between the hyy,zz and hyz compo-
nents of the wave; the phase and group velocities of grav-
itational waves are not equal to the velocity of light; the
group velocity is always less than the velocity of light;
under some conditions the gravitational waves are either
damped or absent; for given frequency, there exist two
waves with different wave vectors. We also discuss the
possibility of an experimental verification of the obtained
effects as a tool to investigate nonperturbative quantum field
theories.

1 Introduction

Gravitational waves (GWs) are probably the most suitable
object for studying the deep space (for a review with refer-
ences on the subject see, e.g., Ref. [1]). It is usually assumed
that GWs propagate in a classical vacuum, i.e., in empty
space. But a quantum vacuum possesses the energy associ-
ated with the unavoidable quantum fluctuations of various
fields when the vacuum expectation value of any quantum
field is zero but the expectation value of the square of fluc-
tuations is nonzero.

In this framework, of special interest is to study the ques-
tion of the propagation of GWs in the case where fluctuations
of a quantum spinor field are taken into account. The reason
is that the energy-momentum tensor of a spinor field contains
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the spin connection, which in turn contains first derivatives
of tetrad components with respect to the coordinates. As a
result, the Einstein equations yield the wave equation for a
GW which contains second derivatives of the tetrad compo-
nents on the left-hand side and their first derivatives on the
right-hand side.

Such a situation is a reminder of the propagation of elec-
tromagnetic waves in a continuous conducting medium. The
corresponding wave equation is

� �A − εμ

c2

∂2 �A
∂t2 = γμ

c2

∂ �A
∂t
,

where ε, μ are the dielectric permittivity and magnetic per-
meability, respectively, γ is the electrical conductivity. It is
well known that the above equation describes damped waves.

Comparing both these situations, one may conclude that
the propagation of GWs on the background of the spinor vac-
uum possesses some common features with the propagation
of electromagnetic waves in a conducting medium (notice in
this connection that the introduction of “Ohm’s gravitational
law” into the linearized Einstein equations is discussed in
Ref. [2]). The problem in such studies is that one presum-
ably has to consider a nonperturbative vacuum. The reason is
that any perturbative calculations deal with zero-point quan-
tum vacuum fluctuations of fundamental fields whose energy
turns out to be infinite. This eventually results in a number
of fundamental problems, including ultraviolet divergences
and the well-known “cosmological constant problem” for
the Universe [3]. This motivates one to go beyond the frame-
work of perturbative theories in the hope that the use of the
nonperturbative quantization would allow the possibility of
avoiding these problems [4].

One possible way to consider a nonperturbative vacuum
might be the approach adopted below, which suggests a phe-
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nomenological consideration of a nonperturbative vacuum
of a spinor field. This approach is based on the following
concepts:

(i) We make some physically reasonable assumptions about
expectation values of the spinor field and its dispersion.
Namely, we introduce an ad hoc ansatz for the dispersion
of the spinor field and, evaluating the covariant diver-
gence of the obtained right-hand part of the Einstein
equations, check that the Bianchi identity is satisfied. In
our opinion, this can be considered as some approximate
way to cutoff the infinite system of differential equations
for all Green functions of the nonperturbative quantum
spinor field used in our calculations (for a more detailed
discussion of this question, see Ref. [5]).

(ii) The right-hand side of the Einstein equations contains
first derivatives of the tetrad with respect to the coordi-
nates that is a consequence of the presence of the spin
connection. As will be shown below, the presence of the
derivatives results in a fixed phase difference between
the components of a GW and modification of the disper-
sion relation. Also, under some conditions the damping
of GWs may arise.

Within the framework of this approach, the paper con-
siders the simplest case of a plane GW propagating through
the nonperturbative spinor vacuum. In this case one might
consider such a vacuum as consisting of a spinor con-
densate (a continuous medium) through which the GW
propagates.

2 Perturbed Einstein equations

To begin with, we want to describe an exact formulation of
the problem of gravitational waves propagation in a spinor
vacuum. Strictly speaking, in describing this physical phe-
nomenon, one needs to consider both a metric and a spinor
field as quantum objects. For the nonperturbative quantiza-
tion, we have to write the following equations (for details,
see Ref. [5]):

R̂āμ − 1

2
êāμ R̂ = � T̂āμ, (1)

γ μ∇μψ̂ − mψ̂ = 0, (2)

where R̂āν and R̂ are, respectively, the operators of the
Ricci tensor and the Ricci scalar; êāμ is the vierbein oper-
ator; T̂μν is the operator of the energy-momentum tensor;
ψ̂ is the operator of the spinor field; ā = 0̄, 1̄, 2̄, 3̄ is
the vierbein index; μ = 0, 1, 2, 3 is the coordinate index;
∇μψ̂ = ∂μψ̂ − 	μψ̂ = ∂μψ̂ + 1

4 ω̂āb̄μγ
āγ b̄ψ̂ is the

covariant derivative for the spinor with the operator of the

spin connection ω̂āb̄μ [6]; γ ā are the Dirac matrices in flat

Minkowski spacetime; � = 8πκ/c4, κ is the gravitational
constant.

As of now, a procedure of solving such an operator set of
equations is unavailable. But we know that the properties of
the operators are determined by all Green functions. For them
we can write down an infinite set of equations (for details,
see Ref. [5]). Such an infinite system of equations can be
solved approximately by cutting it off to obtain a finite set of
equations. Such a cutoff procedure is performed by applying
some physically reasonable arguments.

Similar procedure is well known in modeling turbulence
(see, for example, the textbook of Wilcox [7]). The situa-
tion there is as follows (we follow Ref. [7] in this para-
graph): one can write a statistically averaged version of
the Navier–Stokes equation (the Reynolds-averaged Navier–
Stokes equation) for an averaged velocity. This equation
contains six new unknown functions ρviv j (the Reynolds-
stress tensor, where the overbar denotes statistical aver-
aging). This means that our system is not yet closed. In
quest of additional equations, we have to take moments
of the Navier–Stokes equation. That is, we multiply the
Navier–Stokes equation by a suitable quantity and statis-
tically average the product. Using this procedure, we can
derive a differential equation for the Reynolds-stress ten-
sor. After such procedure we gained six new equations,
one for each independent components of the Reynolds-
stress tensor. However, we have also generated 22 new

unknown functions: ρviv jvk , ∂ui
∂xk

∂u j
∂xk

, ui
∂p
∂x j

+ u j
∂p
∂xi

. This
situation illustrates the closure problem of turbulence the-
ory (let us note that we have a similar problem for a
nonperturbative quantization). Because of the nonlinear-
ity of the Navier–Stokes equation, as we have higher and
higher moments, we generate additional unknown func-
tions at each level. As written in Ref. [7]: “The func-
tion of turbulence modeling is to derive approximations
for the unknown correlations in terms of flow proper-
ties that are known so that a sufficient number of equa-
tions exist. In making such approximations, we close the
system.”

Following this scheme, we can rephrase the last sentence
as applied to a nonperturbative quantization: the approximate
approach for a nonperturbative quantization being suggested
here is to derive approximations for the unknown Green func-
tions using the properties of the quantum system under con-
sideration so that a sufficient number of equations exists.
In making such approximations, we close an infinite set of
equations for the Green functions.

Here we employ some approximation, as described below.
We evaluate the Bianchi identities, instead of solving the

Dirac equation which contains the nonlinear term
〈 ˆ̄ψω̂āb̄μψ̂

〉
.

The presence of this term prevents us from solving the
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operator Dirac equation directly since, as follows from the
above discussion, to do this we have to write an equation

for the term
〈 ˆ̄ψω̂āb̄μψ̂

〉
, and so on ad infinitum. This makes

us use the Bianchi identities instead of the Dirac equation.
Nevertheless, if one wants to continue with calculations in
the next approximation, the Dirac equation will necessarily
appear.

The operator of the energy-momentum tensor of the spinor
field is given by

T̂āb̄ = i

2

[ ˆ̄ψγ(ā∇b̄)ψ̂ − ∇(ā ˆ̄ψγb̄)ψ̂
]

+ηāb̄

(
− i

2
ˆ̄ψγμ∇μψ̂ + i

2
∇μ ˆ̄ψγμψ̂ + m ˆ̄ψψ̂

)
, (3)

where ˆ̄ψγ(ā∇b̄) means the symmetrization over the indices

ā, b̄; m is the mass of the spinor field.
Equations (1) and (2) cannot be solved explicitly, and we

have to use some approximation. First let us write down the
expectation value of these equations:
〈

Q

∣∣∣∣R̂āμ − 1

2
êāμ R̂

∣∣∣∣ Q

〉
= �

〈
Q
∣∣∣T̂āμ

∣∣∣ Q
〉
, (4)

〈
Q
∣∣∣γ μ∇μψ̂ − mψ̂

∣∣∣ Q
〉
= 0, (5)

where | Q〉 is a quantum state describing the propagation
of a GW through a spinor vacuum. Let us note that as
the consequence of (5), the expectation value of the term
in the parentheses of Eq. (3) is exactly zero. Once again,
we emphasize that we cannot use the Dirac equation (5)

to calculate the expectation value of the spinor field
〈
ψ̂
〉
,

since, as mentioned at the beginning of this section, strictly
speaking, in performing such calculations we must also
quantize a metric. In this case the expectation value of the

Dirac equation will contain not only
〈
ψ̂
〉

but also the term〈
ω̂abμψ̂

〉
. Then we will have to write down a new equa-

tion for this Green function, and so on ad infinitum. This
is the main problem encountered in Heisenberg’s nonper-
turbative quantization technique, discussed also in Ref. [5].
To avoid this problem, we employ the aforementioned
approximation.

To solve Eqs. (4) and (5), we assume the following approx-
imations: (a) the vierbein eā

μ and all geometrical quantities
(the Ricci tensor, the Ricci scalar, and the spin connection)
are the classical ones; (b) instead of solving the Dirac equa-
tion (5), we will check the validity of the Bianchi identities
for the right-hand side of the Einstein equations (4) with the

shortened energy-momentum tensor; (c) we consider only
weak GWs.

Within our approximation, we will consider the following
set of equations:

δRāb̄ − 1

2
ηāb̄δR = �

〈
Q
∣∣δ̂T āb̄

∣∣ Q
〉
, (6)

〈
Q
∣∣∣δ̂T

μ
ā

∣∣∣ Q
〉
;μ = 0, (7)

where δRāb̄ and δR are the gravitational wave approxima-
tion for the Ricci tensor and the Ricci scalar, as given below
by Eq. (14). In turn, the right-hand side of Eq. (6) is calcu-
lated in subsequent sections. To simplify the notation we will
hereafter use 〈· · · 〉 instead of 〈Q |· · · | Q〉.

2.1 The left-hand side of the perturbed Einstein equations

According to Ref. [8], let the vierbein perturbation φ b̄
ā be

defined in the following manner:

eā
μ =

(
δā

b̄
− φā

b̄

) 0
e b̄
μ, (8)

e μ
ā =

(
δb̄

ā + φ b̄
ā

) 0
e μ

b̄
, (9)

where
0
e ā
μ is the unperturbed tetrad;

0
e μ

ā is the unperturbed
inverse tetrad; eā

μ is the perturbed tetrad; e μ
ā is the perturbed

inverse tetrad; −φā
b̄

0
e b̄
μ is the perturbation of the tetrad. It

is convenient to work with the covariant tetrad-frame com-
ponents φāb̄ of the tetrad perturbation,

φāb̄ = ηb̄c̄φ
c̄

ā , (10)

where ηāb̄ = diag {+,−,−,−} is the Minkowski metric.
For a single Fourier mode whose wave vector �k is taken to
lie in the x-direction we have

φāb̄ =

⎛
⎜⎜⎝

ψ ∂xw w2̄ w3̄
∂x w̃ �+ ∂2

x h ∂x h2̄ ∂x h3̄
w̃2̄ ∂x h̃2̄ �+ h2̄2̄ h2̄3̄ + ∂x h̃
w̃3̄ ∂x h̃3̄ h3̄2̄ − ∂x h̃ �− h2̄2̄

⎞
⎟⎟⎠ . (11)

One can introduce the gauge invariant functions � and Wi

� = ψ − ∂t (w + w̃ − ∂t h) , (12)

Wi = wi + w̃i − ∂t

(
hi + h̃i

)
, (13)

where i = 1, 2, 3 are the spacelike world indices. After that
the perturbations of the Einstein tensor are
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δGāb̄ =

⎛
⎜⎜⎜⎜⎜⎝

−2∂2
x� 2∂x�̇ − 1

2∂
2
x Wy − 1

2∂
2
x Wz

2∂x�̇ −2�̈ 1
2∂x Ẇy

1
2∂x Ẇz

− 1
2∂

2
x Wy

1
2∂x Ẇy −2�̈− ∂2

x (� −�)+ �h+ �h×
− 1

2∂
2
x Wz

1
2∂x Ẇz �h× −2�̈− ∂2

x (� −�)− �h+

⎞
⎟⎟⎟⎟⎟⎠
, (14)

where the dot denotes differentiation with respect to τ = ct ;
� = ∂2

∂τ 2 − ∇2 is the d́ Alembertian and h+ and h× are the
two polarizations of gravitational waves,

h+ = hyy = −hzz, h× = hyz = hzy, (15)

and�,Wī , � are vierbein components given by the formulas
(11)–(13).

2.2 The right-hand side of the Einstein equations

To calculate the expectation value of the energy-momentum
tensor of the spinor field, we state the following assumptions
concerning the spinor field:

• The vacuum expectation value of the spinor field is zero:

〈
ψ̂a

〉
= 0. (16)

• The vacuum expectation value of the product of the spinor
field in two points x, y is nonzero:

〈
ψ̂∗

a(x)ψ̂b(y)
〉
= ϒab(x, y) �= 0 (17)

here ψ̂ is the operator of the spinor field; a, b are the
spinor indices; ϒab is the 2-point Green function.

• Every component

|ϒab(x, y)| = const. (18)

• As a consequence of Eq. (18) we have

〈
ψ̂∗

a(x)∂yμψ̂b(y)
〉
= 0. (19)

The energy-momentum tensor contains the following unper-
turbed and perturbed contributions:

T̂āb̄ =
0

T̂ āb̄ +δ̂T āb̄, (20)

where
0

T̂ āb̄ is calculated for unperturbed Minkowski space-
time with zero spin connection, ωāb̄μ = 0. Consequently,

0

T̂ āb̄=
i

2

[ ˆ̄ψγ(ā∂b̄)ψ̂ − ∂(ā
ˆ̄ψγb̄)ψ̂

]
. (21)

According to Eq. (19),
〈

0

T̂ āb̄

〉
= 0. (22)

Its physical meaning is that, since the expectation value of the
energy-momentum tensor in unperturbed Minkowski space-
time is equal to zero, it does not affect the propagation of
GWs. The perturbed energy-momentum tensor is calculated
in Appendix.

3 Gravitational wave propagating on the background
of the spinor vacuum

We consider a GW propagating along the x axis, described
by the Einstein equations (6). It has to be emphasized that
the right-hand side of these equations cannot be calculated by
using a perturbative technique. The reason is that perturbative
calculations give us an infinite energy of zero-point vacuum
fluctuations. This energy acts as a source of gravitational
field and, in general, cannot be excluded by using a renor-
malization procedure [9]. In fact, this is just an imprint of the
well-known problem of the contradiction between gravity
and the perturbative quantum paradigm.

To calculate a nonperturbative expectation value of
〈
T̂āb̄

〉
,

we will use the assumptions about expectation values of the
spinor field and its dispersion as described in the previous
section. In doing so, we will consider a particular case of
GWs for which

� = � = Wi = 0. (23)

Below we consider two different ansätze for the spinor field.

3.1 Case I

For the ansatz

ψ̂ = e−i(ωt−kx)

⎛
⎜⎜⎜⎝

Â
B̂
B̂
Â

⎞
⎟⎟⎟⎠ , (24)
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where ω is the frequency and k is the x-component of the
wave vector.

The algorithm for calculating the right-hand sides of Eqs.
(6) is as follows. The first step is to evaluate them as classical
quantities using (24) without hats over A, B, and then to
restore the hats: Â, B̂. These calculations give the ā, b̄ �= ȳ, z̄
components of the classical energy-momentum tensor Tāb̄,
which contain only the terms

A∗ B − AB∗ + SV ∗ − S∗V and |A|2 −|B|2 −|S|2 +|V |2 .
(25)

In calculating the components of the energy-momentum ten-
sor, we have used the spinor in the general form ψT =
e−i(ωt−kx)(A, B, V, S). Taking into account the gauge (23),
the left-hand side of the Einstein equations (6) is not zero only
for the yy, zz, yz components. Therefore we have to choose
Â, B̂, Ŝ, V̂ in such a manner that the only nonzero compo-
nents of the energy-momentum tensor would be Tȳ ȳ,z̄ z̄,ȳ z̄ . We
see from (25) that the components Tāb̄, (āb̄ �= ȳ ȳ, z̄ z̄, ȳ z̄) of
the energy-momentum tensor are equal to zero only when

Case I: V = B, S = A; (26)

Case II: B = A, S = V . (27)

In this Section we consider the first case, corresponding to
the ansatz (24), and the second case, corresponding to the
ansatz (43), will be studied in next subsection. We assume
the following values of the 2-point Green functions of the
spinor field ψ :

ϒ = 〈
ψ∗

1ψ2
〉 = 〈

ψ∗
1ψ3

〉 = 〈
ψ∗

4ψ2
〉

= 〈
ψ∗

4ψ3
〉 = 〈

A∗ B
〉 = ϒ1 + iϒ2, (28)

ϒ∗ = 〈
ψ∗

2ψ1
〉 = 〈

ψ∗
2ψ4

〉 = 〈
ψ∗

3ψ1
〉

= 〈
ψ∗

3ψ4
〉 = 〈

B∗ A
〉 = ϒ1 − iϒ2, (29)

with
∣∣ϒ1,2

∣∣ = const. By choosing Â, B̂, Ŝ, V̂ in the form
of (26), the ȳ ȳ, z̄ z̄, and ȳ z̄ components of the energy-
momentum tensor (64) are
〈
̂δTȳ ȳ

〉
= −

〈̂
δTz̄z̄

〉
= 2

(〈
Â∗ B̂ + Â B̂∗〉) ḣ ȳz̄, (30)

〈
̂δTȳz̄

〉
= 2

(〈
Â∗ B̂ + Â B̂∗〉) ḣ ȳ ȳ . (31)

Equations (6) with the gauge (23) and the perturbed compo-
nents of the energy-momentum tensor (30) and (31) give the
following set of equations for the components (15):

h′′̄
y ȳ − ḧ ȳ ȳ = −2�

(〈
Â∗ B̂

〉
+
〈
Â B̂∗

〉)
ḣ ȳz̄, (32)

h′′̄
yz̄ − ḧ ȳz̄ = 2�

(〈
Â∗ B̂

〉
+
〈
Â B̂∗

〉)
ḣ ȳ ȳ, (33)

where the prime denotes differentiation with respect to x , and
the appearance of the derivatives of the components h ȳ ȳ, h ȳz̄

on the right-hand side of these equations is connected with

the presence of the spin connection on the right-hand side of
Einstein’s equations.

We are looking for the x-plane wave solution in the form

h ȳ ȳ = −hz̄z̄ = A1e−i(ωt−kx), (34)

h ȳz̄ = hz̄ ȳ = A2e−i(ωt−kx). (35)

Substituting the solutions (34) and (35) into the wave equa-
tions (32) and (33) and using the expressions (28) and (29),
we obtain the following relations (hereafter we work in nat-
ural units, where h̄ = c = 1):

A1

(
k2 − ω2

)
= −4i�A2ϒ1ω, (36)

A2

(
k2 − ω2

)
= 4i�A1ϒ1ω. (37)

From them one can immediately read off

A2 = ±i A1 = A1e±i π2 . (38)

This means that the phase difference between ȳ ȳ, z̄ z̄ and
ȳ z̄ components of the GW is ±π/2. In turn, the dispersion
relation is

k2 = ω2 ± 4�ϒ1ω. (39)

Thus, we see that there are two GWs with different wave
vectors for the same frequency ω. But for the case k =√
ω2 − 4�ϒ1ω a situation may occur where the GW does

not exist. This happens if

ω < 4�ϒ1. (40)

The phase velocity of the GW is given by

vp = ω

k
=
√

1

1 ± 4�ϒ1
ω

�= 1 (41)

(recall that v is measured in units of c). We see that there are
two branches: one with vp < 1 and the other with vp > 1.

The group velocity of the GW is

vg = dω

dk
=
√

1 ± 4�ϒ1
ω

1 ± 2�ϒ1
ω

�= 1. (42)

It is interesting that if �ϒ1
ω

	 1 then vg ≈ 1. It is also seen
that the group velocity vg < 1 for any value of �ϒ1/ω and
for any sign of ϒ1.

3.2 Case II

In this section we consider the following ansatz for the spinor
field:
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ψ̂ = e−i(ωt−kx)

⎛
⎜⎜⎜⎝

Â
Â
V̂
V̂

⎞
⎟⎟⎟⎠ , (43)

where
〈
Â Â∗

〉
,
〈
V̂ V̂ ∗

〉
are taken to be constant in accordance

with the assumption (18).
For the ansatz (43), we assume the following values of the

2-point Green functions of the spinor field ψ :
〈
ψ∗

1ψ2
〉 = 〈

ψ1ψ
∗
2

〉 = 〈
ψ∗

1ψ1
〉

= 〈
ψ∗

2ψ2
〉 =

〈
Â∗ Â

〉
= ϒ1, (44)

〈
ψ∗

3ψ4
〉 = 〈

ψ∗
4ψ3

〉 = 〈
ψ∗

3ψ3
〉

= 〈
ψ∗

4ψ4
〉 =

〈
V̂ ∗V̂

〉
= ϒ2, (45)

with
∣∣ϒ1,2

∣∣ = const. By choosing Â, B̂, Ŝ, V̂ in the form of
(27), the ȳ ȳ, z̄ z̄ and ȳ z̄ components of the energy-momentum
tensor (64) are
〈
̂δTȳ ȳ

〉
= −

〈̂
δTz̄z̄

〉
= 2

[(〈
Â Â∗

〉
−
〈
V̂ V̂ ∗

〉)
h ′̄

yz̄

+
(〈

Â Â∗
〉
+
〈
V̂ V̂ ∗

〉)
ḣ ȳz̄

]
, (46)

〈
̂δTȳz̄

〉
= −2

[(〈
Â Â∗

〉
−
〈
V̂ V̂ ∗

〉)
h ′̄

y ȳ

+
(〈

Â Â∗
〉
+
〈
V̂ V̂ ∗

〉)
ḣ ȳ ȳ

]
. (47)

Substituting these expressions into Eq. (6) and taking into
account the gauge (23), we have the following set of equa-
tions for the components (15):

h′′̄
y ȳ − ḧ ȳ ȳ = −2�

[(〈
Â Â∗

〉
−
〈
V̂ V̂ ∗

〉)
h ′̄

yz̄

+
(〈

Â Â∗
〉
+
〈
V̂ V̂ ∗

〉)
ḣ ȳz̄

]
, (48)

h′′̄
yz̄ − ḧ ȳz̄ = 2�

[(〈
Â Â∗

〉
−
〈
V̂ V̂ ∗

〉)
h ′̄

y ȳ

+
(〈

Â Â∗
〉
+
〈
V̂ V̂ ∗

〉)
ḣ ȳ ȳ

]
. (49)

The algorithm for calculating the right-hand sides of these
equations is the same as that for the case I from Sect. 3.1. The
appearance of the derivatives of the components hyy, hyz on
the right-hand side of these equations, as before, is connected
with the presence of the spin connection on the right-hand
side of Einstein’s equations.

Again, we are looking for the x-plane wave solution in the
form (34) and (35). Substituting them into the wave equations
(48) and (49) and taking into account (44) and (45), we obtain
the following relations:

A1

(
k2 − ω2

)
= 2i�A2 [k (ϒ1 − ϒ2)− ω (ϒ1 +ϒ2)] ,

(50)

A2

(
k2 − ω2

)
= −2i�A1 [k (ϒ1 −ϒ2)− ω (ϒ1 +ϒ2)] ,

(51)

which immediately give

A2 = ±i A1 = A1e±i π2 . (52)

That is, the phase difference between ȳ ȳ, z̄ z̄ and ȳ z̄ compo-
nents of the GW is again ±π/2, as in the case I. In turn, the
dispersion relation takes the form

k2 ± 2�k (ϒ1 − ϒ2)+
[
−ω2 ∓ 2�ω (ϒ1 +ϒ2)

]
= 0. (53)

Here we have two cases:

(1) For A2 = i A1, the wave vector is

k+,1,2 = −� (ϒ1 − ϒ2)

±
√
�2 (ϒ1 −ϒ2)

2 + ω2 + 2�ω (ϒ1 +ϒ2).

(54)

(2) For A2 = −i A1, the wave vector is

k−,1,2 = � (ϒ1 −ϒ2)

±
√
�2 (ϒ1 −ϒ2)

2 + ω2 − 2�ω (ϒ1 +ϒ2) .

(55)

Thus, we see that in both cases there are two GWs with
different wave vectors for the same frequency ω. But in the
second case a situation may occur where the GW is damped.
This happens if

ω2 − 2�ω (ϒ1 +ϒ2)+ �2 (ϒ1 −ϒ2)
2 < 0, (56)

and the GW becomes damped when ω lies in the region

�
(√
ϒ1 − √

ϒ2

)2
< ω < �

(√
ϒ1 + √

ϒ2

)2
. (57)

Let us consider the simplest case, when ϒ1 = ϒ2 = ϒ . In
this case

k±,1,2 = ±
√
ω2 ± 4�ωϒ, (58)

and for the sign (−) a situation may occur where the GW
does not exist. For this case the phase and group velocities of
the GWs will be the same as those in the case I from Sect. 3.1.
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4 Bianchi identities

Now check the Bianchi identities for Eq. (6),

〈
δ̂T

μ
ā

〉
;μ =

∂
〈
δT̂ μ

ā

〉

∂xμ
= 0. (59)

Here we took into account that the covariant derivative
(· · · );μ is calculated in Minkowski spacetime. For the case I
we have the following expression for δ̂T

μ
ā :

δ̂T
μ

ā =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 −4ϒ1ḣ ȳz̄ 4ϒ1ḣ ȳ ȳ

0 0 4ϒ1ḣ ȳ ȳ 4ϒ1ḣ ȳz̄

⎞
⎟⎟⎠ (60)

with ϒ1 taken from Eqs. (28) and (29).
For the case II we have

δ̂T
μ

ā =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 −2
[
(ϒ1 − ϒ2) h ′̄

yz̄ + (ϒ1 +ϒ2) ḣ ȳz̄

]
2
[
(ϒ1 − ϒ2) h ′̄

y ȳ + (ϒ1 + ϒ2) ḣ ȳ ȳ

]

0 0 2
[
(ϒ1 −ϒ2) h ′̄

y ȳ + (ϒ1 +ϒ2) ḣ ȳ ȳ

]
2
[
(ϒ1 − ϒ2) h ′̄

yz̄ + (ϒ1 +ϒ2) ḣ ȳz̄

]

⎞
⎟⎟⎟⎟⎟⎠

(61)

with ϒ1,2 given by Eqs. (44) and (45). For both cases one
can show by direct calculation that

∂
〈
δT̂ μ

ā

〉

∂xμ
= 0. (62)

It is interesting that in both cases operations of evaluat-
ing the covariant derivative and the quantum averaging com-
mutate. To show this, let us calculate the averaged Bianchi
identities
〈(
δ̂T

μ
ā

)
;μ

〉
=
〈
∂δ̂T

μ
ā

∂xμ
+ 	μνμδ̂T

ν
ā − ωc̄

āν δ̂T
ν

c̄

〉

=
〈
∂δ̂T

μ
ā

∂xμ

〉
=
∂
〈
δT̂ μ

ā

〉

∂xμ
= 0. (63)

Here we took into account that both the unperturbed Christof-
fel symbols 	αβγ = 0 and the unperturbed spin connection
ωāb̄μ = 0, since they are calculated for Minkowski space-
time.

5 Conclusions

We have considered the process of propagation of GWs on the
background of the nonperturbative vacuum of spinor fields.

Using the simplifying assumptions from Sect. 2.2, it was
shown that there are several distinctive features in compari-
son with the propagation of GWs through empty space:

• There exists a fixed phase difference of ±π/2 between
components hyy,zz and hyz .

• The phase and group velocities of GWs are not equal
to the velocity of light. Moreover, the group velocity is
always less than the velocity of light.

• The components hyy,zz and hyz exist together only.
• Depending on the properties of the spinor vacuum, the

damping of GWs may occur for some frequencies ω of
the spinor field, or no GW may exist.

• For given frequency ω, there exist two waves with differ-
ent wave vectors k.

All features mentioned above can in principle be verified
after the experimental detection of GWs. Then the simplest

test will be to verify the existence of the phase difference. In
addition, one might expect that GWs could be a fruitful tool
for studying nonperturbative quantum field theories.
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Appendix: Perturbed energy-momentum tensor

The perturbed component of the energy-momentum tensor
is calculated as follows:

δ̂T āb̄ = − i

2
ˆ̄ψ
[
γ(āδ	b̄) + δ	(āγb̄)

]
ψ̂, (64)

where the perturbed spinor connection is

δ	ā = δ
(
e μ

ā 	μ
) = −1

4

(
δe μ

ā ωb̄c̄μ + e μ
ā δωb̄c̄μ

)
γ b̄γ c̄,

(65)
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where the spin connection 	μ = − 1
4ωāb̄μγ

āγ b̄. The per-

turbed vierbein δe μ
ā is

δe μ
ā =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 h ȳ ȳ h ȳz̄

0 0 hz̄ ȳ hz̄z̄

⎞
⎟⎟⎟⎟⎠
. (66)

Using the standard definitions of the covariant derivative of
a spinor, ∇μ, and the spin connection, 	μ,ωāb̄μ,

∇μψ = ∂ψ

∂xμ
− 	μψ, (67)

	μ = −1

4
ωāb̄μγ

āγ b̄, (68)

ωāb̄μ = −e α
ā e β

b̄
�αβμ (69)

with

�αβγ = eāα�
ā
βγ − eāβ�

ā
αγ − eāγ �

ā
αβ, (70)

�ā
αβ = 1

2

(
∂eā

μ

∂xν
− ∂eā

ν

∂xμ

)
, (71)

one can obtain the perturbed spin connection

δωāb̄μ = −δe α
ā e β

b̄
�αβμ − e α

ā δe β

b̄
�αβμ − e α

ā e β

b̄
δ�αβμ

(72)

with

δ�αβγ = δeāα�
ā
βγ + eāαδ�

ā
βγ − δeāβ�

ā
αγ

− eāβδ�
ā
αγ − δeāγ �

ā
αβ − eāγ δ�

ā
αβ, (73)

δ�ā
αβ = 1

2

(
∂δeā

μ

∂xν
− ∂δeā

ν

∂xμ

)
. (74)

Here �αβγ and δ�αβγ are the unperturbed and perturbed
Ricci coefficients; �ā

αβ and δ�ā
αβ are the unperturbed and

perturbed anholonomy coefficients; δωāb̄μ are the perturbed
spin connection.

Substituting (66) into (72) and taking into account (73)
and (74), we have

δωt̄ ȳ y = δωx̄ ȳ y = −δωt̄ z̄z = −δωx̄ z̄z = ḣ ȳ ȳ, (75)

δωt̄ z̄ y = δωx̄ z̄ y = δωt̄ ȳz = δωx̄ ȳz = ḣ ȳz̄ . (76)
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