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Abstract We argue that supersymmetry with its well-
known advantages, such as naturalness, grand unification,
and dark matter candidate seems to possess one more attrac-
tive feature: it may trigger, through its own spontaneous vio-
lation in the visible sector, a dynamical generation of gauge
fields as massless Nambu–Goldstone modes during which
physical Lorentz invariance itself is ultimately preserved.
We consider the supersymmetric QED model extended by an
arbitrary polynomial potential of a massive vector superfield
that breaks gauge invariance in the SUSY invariant phase.
However, the requirement of vacuum stability in such a class
of models renders both supersymmetry and Lorentz invari-
ance spontaneously broken. As a consequence, the massless
photino and photon appear as the corresponding Nambu–
Goldstone zero modes in the emergent SUSY QED, and also
a special gauge invariance is simultaneously generated. Due
to this invariance all observable relativistically non-invariant
effects appear to be completely canceled out among them-
selves and physical Lorentz invariance is recovered. Never-
theless, such theories may have an inevitable observational
evidence in terms of the goldstino–photino like state present
in the low-energy particle spectrum. Its study is of spe-
cial interest for this class of SUSY models, which, apart
from some indications of the emergence nature of QED
and the Standard Model, may appreciably extend the scope
of SUSY breaking physics being actively studied in recent
years.

1 Introduction and overview

It has long been believed that spontaneous Lorentz invari-
ance violation (SLIV) may lead to the emergence of mass-
less Nambu–Goldstone (NG) zero modes [1,2], which are
identified with photons and other gauge fields appearing in

a e-mail: j.chkareuli@iliauni.edu.ge

the Standard Model. This old idea [3–5], supported by a
close analogy with the dynamical origin of massless par-
ticle excitations for spontaneously broken internal symme-
tries, has gained new impetus in recent years. On the other
hand, besides its generic implication for the possible origin of
physical gauge fields [6–12] in a conventional quantum field
theory (QFT) framework, there are many different contexts
in the literature where Lorentz violation may stem itself from
string theory [13,14], quantum gravity [15] or any unspec-
ified dynamics at an ultraviolet scale perhaps related to the
Planck scale [16–22]. Though we are mainly focused on the
spontaneous Lorentz violation in QFT, particularly in QED
and the Standard Model, we give below some brief comments
on other approaches and we make clearer the aims and results
of the present work.

1.1 Vector NG bosons in gauge theories. Inactive SLIV

When speaking about SLIV, one important thing to notice
is that, in contrast to the spontaneous violation of internal
symmetries, it seems not to necessarily imply a physical
breakdown of Lorentz invariance. Rather, when appearing
in a gauge theory framework, this may ultimately result in a
non-covariant gauge choice in an otherwise gauge invariant
and Lorentz invariant theory. In substance, the SLIV ansatz,
due to which the vector field develops a vacuum expectation
value (VEV)

〈Aμ(x)〉 = nμM (1)

(where nμ is a properly oriented unit Lorentz vector, n2 =
nμnμ = ±1, while M is the proposed SLIV scale) may
itself be treated as a pure gauge transformation with a gauge
function linear in the coordinates,ω(x) = nμxμM . From this
viewpoint gauge invariance in QED leads to the conversion of
SLIV into gauge degrees of freedom of the massless photon
emerged.
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A good example for such a kind of SLIV, which we call
the “inactive” SLIV hereafter, is provided by the nonlinearly
realized Lorentz symmetry for the underlying vector field
Aμ(x) through the length-fixing constraint

AμAμ = n2 M2. (2)

This constraint in the gauge invariant QED framework was
first studied by Nambu a long ago [23], and in more detail
in recent years [24–28]. The constraint (2) is in fact very
similar to the constraint appearing in the nonlinear σ -model
for pions [29], σ 2 + π2 = f 2

π , where fπ is the pion decay
constant. Rather than imposing it by postulate, the constraint
(2 ) may be implemented into the standard QED Lagrangian
extended by the invariant Lagrange multiplier term

L = LQED − λ
2

(
AμAμ − n2 M2

)
(3)

provided that the initial values for all fields (and their
momenta) involved are chosen so as to restrict the phase
space to values with a vanishing multiplier function λ(x),
λ = 0. Otherwise, as was shown in [30] (see also [27]), it
might be problematic to have a ghost-free QED model with
a positive Hamiltonian.1

One way or the other, the constraint (2) means in essence
that the vector field Aμ develops the VEV (1) and Lorentz
symmetry SO(1, 3) breaks down to SO(3) or SO(1, 2),
depending on whether the unit vector nμ is time-like (n2 > 0)
or space-like (n2 < 0). The point, however, is that, in
sharp contrast to the nonlinear σ -model for pions, the non-
linear QED theory, due to gauge invariance in the starting
Lagrangian LQED, leaves physical Lorentz invariance intact.
Indeed, the nonlinear QED contains a plethora of Lorentz
and C PT violating couplings when it is expressed in terms
of the pure vector NG boson modes (aμ) associated with a
physical photon,

Aμ=aμ + nμ(M
2 − n2a2)

1
2 , nμaμ=0 (a2≡aμaμ),

(4)

including the effective Higgs mode given by the second term
in (4) properly expanded in a power series of a2. However,
the contributions of all these couplings to physical processes
completely cancel out among themselves, as was shown in
the tree [23] and one-loop approximations [24]. Actually,
the nonlinear constraint (2) implemented as a supplemen-
tary condition can be interpreted in essence as a possible

1 Note that this solution with the basic Lagrangian multiplier field λ(x)
vanishing can technically be realized by introducing some additional
Lagrange multiplier term of the type ξλ2, where ξ(x) is a new multi-
plier field. One can now easily confirm that a variation of the modified
Lagrangian L+ ξλ2 with respect to the ξ field leads to the condition
λ = 0, whereas a variation with respect to the basic multiplier field λ
preserves the vector field constraint (2).

gauge choice for the starting vector field Aμ. Meanwhile the
S-matrix remains unaltered under such a gauge convention
unless gauge invariance in the theory turns out to be really
broken (see the next subsection) rather than merely being
restricted by gauge condition (2). A later similar result con-
cerning the inactive SLIV in gauge theories was also con-
firmed for spontaneously broken massive QED [25], non-
Abelian theories [26], and tensor field gravity [28].

Remarkably enough, the nonlinear QED model (3) may be
considered in some sense as originating from a conventional
QED Lagrangian extended by vector field potential energy
terms,

L′ = LQED − λ

4

(
AμAμ − n2 M2

)2
(5)

(where λ is a coupling constant) rather than by the Lagrange
multiplier term. This is the simplest example of a theory
sometimes referred to as the “bumblebee” model (see [11,12]
and references therein) where physical Lorentz symmetry
could in principle be spontaneously broken due to the pres-
ence of an active Higgs mode in the model. On the other hand,
the Lagrangian (5) taken in the limit λ → ∞ can formally
be regarded as the nonlinear QED. Actually, both models are
physically equivalent in the infrared energy domain, where
the Higgs mode is considered infinitely massive. However,
as was argued in [30], a bumblebee-like model appears gen-
erally unstable; its Hamiltonian is not bounded from below
unless the phase space sector is not limited by the nonlinear
vector field constraint AμAμ = n2 M2 (2). With this con-
dition imposed, the massive Higgs mode never appears, the
Hamiltonian is positive, and the model is physically equiva-
lent to the constraint-based nonlinear QED (3) with the inac-
tive SLIV, which does not lead to physical Lorentz violation.2

To summarize, we have considered above the standard
QED with vector field constraint (2) being implemented into
the Lagrangian through the Lagrange multiplier term (3).
In crucial contrast to internal symmetry breaking (say, the
breaking of a chiral SU (2)× SU (2) symmetry in the nonlin-
ear σ -model for pions), SLIV caused by a similar σ -model
type vector field constraint, (2), does not lead to physical
Lorentz violation. Indeed, though SLIV induces the vector
Goldstone-like states (4), all observable SLIV effects appear
to be completely canceled out among themselves due to the
generic gauge invariance of QED. We call it the inactive
SLIV in the sense that one may have Goldstone-like states
in a theory but may have not a non-zero symmetry breaking
effect. This is a somewhat new and unusual situation that just
happens with SLIV in gauge invariant theories (and never in
an internal symmetry breaking case). More precisely there

2 Apart from its generic instability, the “bumblebee” model, as we will
see shortly, cannot be technically realized in a SUSY context, whereas
the nonlinear QED model successfully matches supersymmetry.
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are, in essence, two different aspects regarding the inactive
SLIV (different, though related to each other). The first is
the generation of Goldstone modes which inevitably hap-
pens once the nonlinear σ -model type constraint (2) is put
on the vector field. The second is that gauge invariance, even
being restricted by this constraint (interpreted as a gauge
condition), provides a cancelation mechanism for physical
Lorentz violation. As a consequence, emergent gauge the-
ories induced by the inactive SLIV mechanism are in fact
indistinguishable from conventional gauge theories. Their
emergent nature can only be seen when a gauge condition is
taken to be the vector field length-fixing constraint (2). Any
other gauge, e.g. the Coulomb gauge, is not in line with the
emergent picture, since it explicitly breaks Lorentz invari-
ance. As to the observational evidence in favor of emergent
theories, the only way for SLIV to be activated may appear
if gauge invariance in these theories turns out to be broken
in an explicit rather than spontaneous way. As a result, the
SLIV cancelation mechanism does not work any longer and
one inevitably ends up with physical Lorentz violation.

1.2 Activating SLIV by gauge symmetry breaking

Looking for some appropriate examples of physical Lorentz
violation in a QFT framework one necessarily comes across
the problem of proper suppression of gauge non-invariant
high-dimension couplings where such a violation can in prin-
ciple occur. Remarkably enough, for QED type theories with
the supplementary vector field constraint (2) gauge sym-
metry breaking naturally appears only for five- and higher-
dimensional couplings. Indeed, all dimension-four couplings
are generically gauge invariant, if the vector field kinetic term
has a standard FμνFμν and, apart from relativistic invari-
ance, the restrictions related to the conservation of parity,
charge-conjugation symmetry, and fermion number conser-
vation are generally imposed on the theory [31,32]. With
these restrictions taken, one can easily confirm that all pos-
sible dimension-five couplings are also combined by them-
selves in some would-be gauge invariant form provided that
the vector field is constrained by the SLIV condition (2).
Indeed, for charged matter fermions interacting with vector
field such couplings generally amount to

Ldim 5= 1

M Ď∗μψ · Ďμψ+ G

M AμAμψψ , AμAμ=n2 M2.

(6)

Such couplings could presumably become significant at an
ultraviolet scale M, probably close to the Planck scale MP .
They, besides covariant derivative terms, also include an
independent “sea-gull” fermion–vector field term with the
coupling constant G being in general of the order 1. The
main point regarding the Lagrangian (6) is that, while it is
gauge invariant in itself, the coupling constant ě in the covari-

ant derivative Ďμ = ∂μ + i ěAμ differs in general from the
coupling e in the covariant derivative Dμ = ∂μ + ieAμ in
the standard Dirac Lagrangian (3)

LQED = −1

4
FμνFμν + ψ(iγμDμ − m)ψ . (7)

Therefore, gauge invariance is no longer preserved in the total
Lagrangian LQED+ Ldim 5. It is worth noting that, though the
high-dimension Lagrangian part Ldim 5 (6) usually only gives
some small corrections to a conventional QED Lagrangian
(7), the situation may drastically change when the vector field
Aμ develops a VEV and SLIV occurs.

Actually, putting the SLIV parameterization (4) into the
basic QED Lagrangian (7) one obtains the truly emer-
gent model for QED being essentially nonlinear in the
vector Goldstone modes aμ associated with photons. This
model contains, among other terms, the inappropriately large
(while false; see below) Lorentz-violating fermion bilin-
ear −eMψ(nμγ μ)ψ . This term appears when the effective
Higgs mode expansion in Goldstone modes aμ [as is given
in the parametrization (4)] is applied to the fermion cur-
rent interaction term −eψγμAμψ in the QED Lagrangian
(7). However, due to local invariance this bilinear term can
be gauged away by making an appropriate redefinition of
the fermion field ψ → e−ieω(x)ψ with a gauge function
ω(x) linear in coordinates, ω(x) = (nμxμ)M . Meanwhile,
the dimension-five Lagrangian Ldim 5 (6) is substantially
changed under this redefinition, which significantly modi-
fies the fermion bilinear terms

Lψψ = ψ(iγμ∂μ − m)ψ − i�e
M

Mnμψ
←→
∂μ ψ

+[G + (�e)2n2]M
2

M ψψ , (8)

where we retained the notation ψ for the redefined fermion

field and denoted, as usually,ψ
←→
∂μ ψ = ψ(∂μψ)−(∂μψ)ψ .

Note that the extra fermion derivative terms given in (8) are
produced just due to the gauge invariance breaking that is
determined by the electromagnetic charge difference �e =
ě−e in the total Lagrangian LQED+ Ldim 5. As a result, there
appears the entirely new, SLIV inspired, dispersion relation
for a charged fermion (taken with 4-momentum pμ) of the
type

p2
μ
∼=[m f +2δ(pμnμ/n2)]2, m f =

(
m−G

M2

M
)
−δ2n2M,

(9)

given to an accuracy of O(m2
f /M2)with a properly modified

total fermion mass mf . Here δ stands for the small charac-
teristic, positive or negative, parameter δ = (�e)M/M of
physical Lorentz violation that reflects the joint effect as is
given, on the one hand, by the SLIV scale M and, on the
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other hand, by the charge difference �e being a measure of
an internal gauge non-invariance. Notably, the spacetime in
itself still possesses Lorentz invariance, however, fermions
with SLIV contributing into their total mass mf (9) propa-
gate and interact in it in the Lorentz non-covariant way. At
the same time, the photon dispersion relation is still retained
in the order 1/M considered.

So, we have shown in the above that SLIV caused by
the vector field VEV (1), while being superficial in gauge
invariant theory, becomes physically significant for some
high value of the SLIV scale M close to the scale M, which
is proposed to be located near the Planck scale MP . This
may happen even at relatively low energies provided the
gauge non-invariance caused by high-dimension couplings
of the matter and vector fields is not vanishingly small. This
leads, as was demonstrated in [31,32], through special dis-
persion relations appearing for matter, charged fermions, to
a new class of phenomena, which could be of distinctive
observational interest in particle physics and astrophysics.
They include a significant change in the GZK cutoff for UHE
cosmic-ray nucleons, stability of high-energy pions and W
bosons, modification of nucleon beta decays, and some oth-
ers just in the presently accessible energy area in cosmic-ray
physics.

However, though one could speculate about some generi-
cally broken or partial gauge symmetry in a QFT framework
[31,32], this seems to be too high a price for an actual Lorentz
violation which may stem from SLIV. What is more: is there
really any strong theoretical reason left for Lorentz invari-
ance to be physically broken, if emergent gauge fields are
anyway generated through the “safe” inactive SLIV models
which recover conventional Lorentz invariance?

1.3 Direct Lorentz non-invariant extensions
of SM and gravity

Nevertheless, it must not be ruled out that physical Lorentz
invariance might be explicitly, rather than spontaneously,
broken at high energies. This has attracted considerable atten-
tion in recent years as an interesting phenomenological pos-
sibility appearing in direct Lorentz non-invariant extensions
of SM [16–22]. They are generically regarded as originating
in a more fundamental theory at some large scale, probably
related to the Planck scale MP . These extensions are in a cer-
tain measure motivated [13,14] by string theory, according
to which an explicit (from a QFT point of view) Lorentz vio-
lation might be in essence a spontaneous Lorentz violation
related to hypothetical tensor-valued fields acquiring non-
zero VEVs in some non-perturbative vacuum. These VEVs
appear effectively as a set of external background constants
so that interactions with these coefficients have preferred
spacetime directions in an effective QFT framework. The full
SM extension (SME) [18–20] is then defined as the effective

gauge invariant field theory obtained when all such Lorentz-
violating vector and tensor field backgrounds are contracted
term by term with SM (and gravitational) fields. However,
without a completely viable string theory, it is not possi-
ble to assign definite numerical values to these coefficients.
Moreover, not to have disastrous consequences (especially
when these coefficients are contracted with non-conserved
currents) one also has to additionally propose that observable
violating effects in the low-energy theory with a laboratory
scale m should be suppressed by some power of the ratio
m/MP , dependent on the dimension of the Lorentz break-
ing couplings. Therefore, one has in this sense a pure phe-
nomenological approach treating the above arbitrary coeffi-
cients as quantities to be bounded in experiments as if they
would simply appear due to explicit Lorentz violation. Actu-
ally, in sharp contrast to the above formulated SLIV in a
pure QFT framework, there is nothing in the SME itself that
requires that these Lorentz-violation coefficients emerge due
to a process of a spontaneous Lorentz violation. Indeed, nei-
ther the corresponding massless vector (tensor) NG bosons
are required to be generated, nor do these bosons have to be
associated with photons or any other gauge fields of SM.

Apart from Lorentz violation in the Standard Model, one
can generally think that the vacuum in quantum gravity may
also determine a preferred rest frame at the microscopic
level. If such a frame exists, it must be very much hidden in
low-energy physics since, as was mentioned above, numer-
ous observations severely limit the possibility of Lorentz-
violating effects for the SM fields [16–22]. However, the
constraints on Lorentz violation in the gravitational sector
are generally far weaker. This allows one to introduce a pure
gravitational Lorentz violation having no significant impact
on the SM physics. An elegant way, close in spirit to our SLIV
model (3, 4), seems to appear in the so-called Einstein-aether
theory [15]. This is in essence a general covariant theory in
which local Lorentz invariance is broken by some vector
“aether” field uμ defining the preferred frame. This field is
similar to our constrained vector field Aμ, apart from that
this field is taken to be unit, uμuμ = 1. It spontaneously
breaks Lorentz symmetry down to a rotation subgroup, just
like as our constrained vector field Aμ does it for a time-like
Lorentz violation. So, they both give a nonlinear realization
of Lorentz symmetry thus leading to its spontaneous violation
and inducing the corresponding Goldstone-like modes. The
crucial difference is that, while modes related to the vector
field Aμ are collected into the physical photon, modes asso-
ciated with the unit vector field uμ (one helicity-0 and two
helicity-1 modes) exist by them own appearing in some effec-
tive SM and gravitational couplings. Some of them might dis-
appear being absorbed by the corresponding spin-connection
fields related to local Lorentz symmetry in the Einstein-aether
theory. In any case, while the aether field uμ can significantly
change the dispersion relations of fields involved, thus lead-
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ing to many gravitational and cosmological consequences
of preferred frame effects, it certainly cannot be a physical
gauge field candidate (say, the photon in QED).

1.4 Lorentz violation and supersymmetry. The present
paper

There have been a few active attempts [33,34] over the
last decade to construct Lorentz-violating operators for mat-
ter and gauge fields in the supersymmetric standard model
through their interactions with external vector and tensor
field backgrounds. These backgrounds, according to the SME
approach [18–20] discussed above, are generated by some
Lorentz-violating dynamics at an ultraviolet scale of order the
Planck scale. As some advantages over the ordinary SME, it
was shown that in the supersymmetric standard model the
lowest possible dimension for such operators is five, just
as we had above in the high-dimensional SLIV case (6).
Therefore, they are suppressed by at least one power of an
ultraviolet energy scale, providing a possible explanation for
the smallness of Lorentz violation and its stability against
radiative corrections. All possible dimension-five and -six
Lorentz-violating operators in the SUSY QED were classi-
fied [34], their properties at the quantum level analyzed, and
their observational consequences in this theory described.
These operators, as was confirmed, do not induce destabi-
lizing D-terms, gauge anomaly, and the Chern–Simons term
for the photons. Dimension-five Lorentz-violating operators
were shown to be constrained by low-energy precision mea-
surements at 10−10–10−5 level in units of the inverse Planck
scale, while the Planck-scale suppressed dimension-six oper-
ators are allowed by the observational data.

Also, the supersymmetric extension has been constructed
of the Einstein-aether theory [35] discussed above. It has
been found that the dynamics of the super-aether is some-
what richer than of its non-SUSY counterpart. In particular,
the model possesses a family of inequivalent vacua exhibit-
ing different symmetry breaking patterns while remaining
stable and ghost free. Interestingly enough, as long as the
aether VEV preserves spatial supersymmetry (SUSY alge-
bra without boosts), the Lorentz breaking does not propagate
into the SM sector at the renormalizable level. The eventual
breaking of SUSY, which must be incorporated in any real-
istic model, is unrelated to the dynamics of the aether. It is
assumed to come from a different source, characterized by
a lower energy scale. However, in spite of its own merits,
a significant final step which would lead to natural accom-
modation of this super-aether model into the supergravity
framework has not yet been done.

In contrast, we strictly focus here on a spontaneous
Lorentz violation in an actual gauge QFT framework related
to the Standard Model rather than in an effective low-energy
theory with some hypothetical remnants in terms of external

tensor-valued backgrounds originating somewhere around
the Planck scale. In essence, we try to extend to their super-
symmetric analogs the emergent gauge theories with SLIV
and the associated emergence of gauge bosons as massless
vector Nambu–Goldstone modes studied earlier [6–12] (see
also [24–28]). Generally speaking, it may turn out that SLIV
is not the only reason why massless photons could dynam-
ically appear, if spacetime symmetry is further enlarged. In
this connection, special interest may be in supersymmetry,
as was recently argued in [36]. Actually, the situation is
changed remarkably in the SUSY inspired emergent mod-
els which, in contrast to non-SUSY theories, could naturally
have some clear observational evidence. Indeed, as we dis-
cussed above (Sect. 1.2), ordinary emergent theories admit
some experimental verification only if gauge invariance is
properly broken being caused by some high-dimension cou-
plings. Their SUSY counterparts, and primarily emergent
SUSY QED, generically appear with supersymmetry being
spontaneously broken in a visible sector to ensure stability
of the theory. Therefore, the verification is now related to
the inevitable emergence of a goldstino-like photino state
in the SUSY particle spectrum at low energies, while phys-
ical Lorentz invariance is still left intact.3 In this sense, a
generic source for the massless photon to appear may be
spontaneously broken supersymmetry rather than physically
manifest spontaneous Lorentz violation.

To see how such a scenario may work, we consider the
supersymmetric QED model extended by an arbitrary poly-
nomial potential of a massive vector superfield that induces
the spontaneous SUSY violation in the visible sector. As
a consequence, a massless photino emerges as the fermion
NG mode in the broken SUSY phase, and a photon as a
photino companion, also massless in the tree approxima-
tion (Sect. 2). However, the requirement of vacuum stability
in such a class of models renders Lorentz invariance spon-
taneously broken as well. As a consequence, the massless
photon has now appeared as the vector NG mode, and also
a special gauge invariance is simultaneously generated in
an emergent SUSY QED. This invariance is only restricted
by the supplemented vector field constraint being invari-
ant under supergauge transformations (Sect. 3). Due to this
invariance all observable SLIV effects appear to be com-
pletely canceled out among themselves, and physical Lorentz
invariance is restored. Meanwhile, the photino being mixed
with another goldstino appearing from a spontaneous SUSY
violation in the hidden sector largely appears in the form
of a light pseudo-goldstino, whose physics seems to be of

3 Of course, physical Lorentz violation will also appear if one admits
some gauge non-invariance in the emergent SUSY theory as well. This
may happen, for example, through high-dimension couplings being
supersymmetric analogs of the couplings (6).
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special observational interest (Sect. 4). Finally, we conclude
(Sect. 5).

2 Extended supersymmetric QED

We start by considering a conventional SUSY QED extended
by an arbitrary polynomial potential of a general vector
superfield V (x, θ, θ), which in the standard parametrization
[37–39] has the form

V (x, θ, θ) = C(x)+ iθχ − iθχ + i

2
θθ S − i

2
θθ S∗

−θσμθ Aμ + iθθθλ′ − iθθθλ′ + 1

2
θθθθD′,

(10)

where its vector field component Aμ is usually associated
with a photon. Note that, apart from the conventional photino
field λ and the auxiliary D field, the superfield (10) contains
in general the additional degrees of freedom in terms of the
dynamical C and χ fields and non-dynamical complex scalar
field S (we have used the brief notations, λ′ = λ+ i

2σ
μ∂μχ

and D′ = D+ 1
2�C withσμ = (1,−→σ ) andσμ = (1,−−→σ )).

The corresponding SUSY invariant Lagrangian may be writ-
ten as

L = LSQED +
∑
n=1

bn V n|D (11)

where the terms in this sum (bn are some constants) for the
vector superfield (10) are given through the polynomial D-
term V n|D expansion into the component fields. It can readily
be checked that the first term in this expansion appears to be
the known Fayet–Iliopoulos D-term, while the other terms
only contain bilinear, trilinear, and quadrilinear combination
of the superfield components Aμ, S, λ, and χ , respectively.4

Actually, there appear higher-degree terms only for the scalar
field component C(x). Expressing them all in terms of the C
field polynomial

P(C) =
∑
n=1

n

2
bnCn−1(x) (12)

and its first three derivatives with respect to the C field

P ′ ≡ ∂P

∂C
, P ′′ ≡ ∂2 P

∂C2 , P ′′′ ≡ ∂3 P

∂C3 , (13)

4 Note that all terms in the sum in (11) except the Fayet–Iliopoulos
D-term explicitly break gauge invariance which is then recovered in
the SUSY broken phase (see below). For simplicity, we could restrict
ourselves to the third degree superfield polynomial potential in the
Lagrangian L (11) to eventually have a theory with dimensionless cou-
pling constants in the interactions of the component fields. However,
for the sake of completeness, we will proceed with a general superfield
potential.

one has for the whole Lagrangian L

L = − 1

4
FμνFμν + iλσμ∂μλ+ 1

2
D2 + P

(
D + 1

2
�C

)

+P ′
(

1

2
SS∗ − χλ′ − χλ′ − 1

2
AμAμ

)
+ 1

2
P ′′

×
(

i

2
χχ S − i

2
χχ S∗ − χσμχ Aμ

)
+ 1

8
P ′′′(χχχχ) ,

(14)

where, for more clarity, we still omitted matter superfields in
the model reserving them for Sect. 4. One can see that the
superfield component fields C and χ become dynamical due
to the potential terms in (14) rather than from the properly
constructed supersymmetric field strengths, as appear for the
vector field Aμ and its gaugino companion λ. A very remark-
able point is that the vector field Aμ may only appear with
bilinear mass terms in the polynomially extended Lagrangian
(14). Hence it follows that the “bumblebee” type model men-
tioned above (5) with nontrivial vector field potential contain-
ing both a bilinear mass term and a quadrilinear stabilizing
term can in no way be realized in a SUSY context. Mean-
while, the nonlinear QED model, as will become clear below,
successfully matches supersymmetry.

Varying the Lagrangian L with respect to the D field we
obtain

D = −P(C), (15)

which finally gives the standard potential energy for the field
system considered

U (C) = 1

2
P2 (16)

provided that the other superfield components do not develop
VEVs. The potential (16) may lead to the spontaneous SUSY
breaking in the visible sector if the polynomial P (12) has
no real roots, while its first derivative has,

P �= 0 , P ′ = 0. (17)

This requires P(C) to be an even degree polynomial with
properly chosen coefficients bn in (12), which will force its
derivative P ′ to have at least one root, C = C0, in which the
potential (16) is minimized and supersymmetry is sponta-
neously broken. As an immediate consequence, one can read-
ily see from the Lagrangian L (14) that a massless photino λ
being a Goldstone fermion in the broken SUSY phase make
all the other component fields in the superfield V (x, θ, θ)
including the photon also massless. However, the question
then arises whether this masslessness of the photon will be
stable against radiative corrections since gauge invariance is
explicitly broken in the Lagrangian (14). We show below that
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it could be the case if the vector superfield V (x, θ, θ) would
appear to be properly constrained.

3 Constrained vector superfield

3.1 Instability of superfield polynomial potential

Let us first analyze the possible vacuum configurations for the
superfield components in the polynomially extended QED
case taken above. In general, besides the “standard” poten-
tial energy expression (16) determined solely by the scalar
field component C(x) of the vector superfield (10), one also
has to consider other field component contributions into the
potential energy. A possible extension of the potential energy
(16) seems to appear only due to the pure bosonic field con-
tributions, namely due to the couplings of the vector and
auxiliary scalar fields, Aμ and S, in (14)

U = 1

2
P2 + 1

2
P ′(AμAμ − SS∗), (18)

rather than due to the potential terms containing the superfield
fermionic components.5 It can immediately be seen that these
new couplings in (18) can make the potential unstable since
the vector and scalar fields mentioned may in general develop
any arbitrary VEVs. This happens, as emphasized above, due
the fact that their bilinear term contributions are not properly
compensated by appropriate four-linear field terms, which
are generically absent in a SUSY theory context.

For more details we consider the extremum conditions for
the entire potential (18) with respect to all fields involved:
C , Aμ, and S. They are given by the appropriate first partial
derivative equations

U ′C = P P ′ + 1
2 P ′′(AμAμ − SS∗) = 0,

U ′Aμ = P ′Aμ = 0, U ′S = −P ′S∗ = 0,
(19)

where all the VEVs are denoted by the corresponding field
symbols (supplied below with the lower index 0). One can
see that there can occur a local minimum for the potential
(18) with the unbroken SUSY solution.6

C = C0, P(C0) = 0, P ′(C0) �= 0 ; Aμ0 = 0, S0 = 0 (20)

with the vanishing potential energy

U s
min = 0, (21)

5 Actually, this restriction is not essential for what follows and is taken
just for simplicity. Generally, the fermion bilinears involved could also
develop VEVs.
6 Hereafter by P(C0) and P ′(C0) are meant the C field polynomial P
(12) and its functional derivative P ′ (13) taken in the potential extremum
point C0.

provided that the polynomial P (12) has some real root
C = C0. Otherwise, a local minimum with the broken SUSY
solution can occur for some other C field value (though
denoted by the same letter C0)

C = C0, P(C0) �= 0, P ′(C0) = 0;
Aμ0 �= 0, S0 �= 0, Aμ0 Aμ0 − S0S∗0 = 0. (22)

In this case one has the non-zero potential energy

Uas
min =

1

2
[P(C0)]2, (23)

as directly follows from the extremum equations (19) and
potential energy expression (18).

However, as shown by the standard second partial deriva-
tive test, the fact is that the local minima mentioned above are
minima with respect to the C field VEV (C0) only. Actually,
for all three fields VEVs, the potential (18) has indeed saddle
points with “coordinates” indicated in (20) and (22), respec-
tively. For testing convenience this potential can be rewritten
in the form

U = 1
2 P2 + 1

2 P ′g��′B�B�′,

g��
′ = diag (1,−1,−1,−1,−1,−1)

(24)

with only two variable fields C and B�, where the new field
B� unifies the Aμ and S field components, B� = (Aμ, Sa)

(� = μ, a; μ = 0, 1, 2, 3; a = 1, 2).7 The complex S field
is now taken in a real basis, S1 = (S + S∗)/

√
2 and S2 =

(S − S∗)/ i
√

2, so that the “vector” B� field has one time
and five space components. As a result, one finally comes to
the following Hessian 7×7 matrix [being in fact the second-
order partial derivatives matrix taken in the extremum point
(C0, Aμ0, S0) (20)]:

H(U s) =
[ [P ′(C0)]2 0

0 P ′(C0)g��
′

]
,

|H(U s)| = −[P ′(C0)]8 .
(25)

This matrix clearly has the negative determinant |H(U s)|,
as is indicated above, which confirms that the potential defi-
nitely has a saddle point for the solution (20). This means the
VEVs of the Aμ and S fields can take in fact any arbitrary
value making the potential (18, 24) to be unbounded from
below in the unbroken SUSY case that is certainly inacces-
sible.

One might think that in the broken SUSY case the situ-
ation would be better since due to the conditions (22) the
B� term completely disappears from the potential U (18, 24)
in the ground state. Unfortunately, the direct second partial

7 Interestingly, the B� term in the potential (24) possesses the acciden-
tal SO(1, 5) symmetry. This symmetry, though it is not shared by kinetic
terms, appears in fact to be stable under radiative corrections since the S
field is non-dynamical and, therefore, can always be properly arranged.
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derivative test in this case is inconclusive, since the determi-
nant of the corresponding Hessian 7 × 7 matrix appears to
vanish,

H(Uas) =
[

P(C0)P ′′(C0) P ′′(C0)g��
′
B�′

P ′′(C0)g��
′
B�′0

]
,

|H(Uas)| = 0 .

(26)

Nevertheless, since in general the B� term can take both
positive and negative values in small neighborhoods around
the vacuum point (C0, Aμ0, S0) where the conditions (22) are
satisfied, this point also turns out to be a saddle point. Thus,
the potential U (18, 24) appears generically unstable both in
the SUSY invariant and the SUSY broken phase.

3.2 Stabilization of vacuum by constraining vector
superfield

The only possible way to stabilize the ground states (20) and
(22) seems to seek the proper constraints on the superfield
component fields (C , Aμ, S) themselves rather than on their
expectation values. Indeed, if such (potential bounding) con-
straints are physically realizable, the vacua (20) and (22) will
be automatically stabilized.

In a SUSY context a constraint can only be put on the entire
vector superfield V (x, θ, θ) (10), rather than individually on
its field components. Actually, we can constrain our vector
superfield V (x, θ, θ) by analogy with the constrained vector
field in the nonlinear QED model [see (3)]. This will be done
again through some invariant Lagrange multiplier coupling
simply adding its D term to the above Lagrangian (11, 14)

Ltot = L+ 1

2
�(V − C0)

2|D , (27)

where �(x, θ, θ) is some auxiliary vector superfield, while
C0 is the constant background value of the C field for which
the potential U (16) vanishes as is required for the supersym-
metric minimum or has some non-zero value corresponding
to the SUSY breaking minimum (17) in the visible sector.
We will consider both cases simultaneously using the same
notation C0 for either of the potential minimizing the values
of the C field.

Note first of all, that the Lagrange multiplier term in (27)
has in fact the simplest possible form that leads to some
nontrivial constrained superfield V (x, θ, θ). The alternative
minimal forms, such as the bilinear form �(V − C0) or tri-
linear one�(V 2−C2

0 ), appear to be too restrictive. One can
easily confirm that they eliminate most component fields in
the superfield V (x, θ, θ) including the physical photon and
photino fields, which is definitely inadmissible. As to the
appropriate non-minimal high linear multiplier forms, they
basically lead to the same consequences as follow from the
minimal multiplier term taken in the total Lagrangian (27).

Writing down its invariant D term through the component
fields, one finds

�(V − C0)
2|D

= C�

[
C̃ D′ +

(
1

2
SS∗ − χλ′ − χλ′ − 1

2
AμAμ

)]

+χ�
[
2C̃λ′ + i(χ S∗ + iσμχ Aμ)

]

+χ�[2C̃λ′ − i(χ S − iχσμAμ)]

+1

2
S�

(
C̃ S∗ + i

2
χχ

)
+ 1

2
S∗�

(
C̃ S − i

2
χχ

)

+2Aμ�(C̃ Aμ − χσμχ)+ 2λ′�(C̃χ)+ 2λ
′
�(C̃χ)

+1

2
D′�C̃2 (28)

where

C�, χ�, S�, Aμ�, λ
′
� = λ� +

i

2
σμ∂μχ�,

D′� = D� + 1

2
�C� (29)

are the component fields of the Lagrange multiplier super-
field �(x, θ, θ) in the standard parametrization (10) and C̃
stands for the difference C(x)−C0. Varying the Lagrangian
(27) with respect to these fields and properly combining their
equations of motion

∂Ltot

∂
(
C�, χ�, S�, Aμ�, λ�, D�

) = 0 (30)

we find the constraints which appear to be put on the V
superfield components

C = C0, χ = 0, AμAμ = SS∗. (31)

Again, as before in non-SUSY case (3), we only take a solu-
tion with initial values for all fields (and their momenta) cho-
sen so as to restrict the phase space to vanishing values of
the multiplier component fields (29), which will provide a
ghost-free theory with a positive Hamiltonian.8

Remarkably, the constraints (31) do not touch on the
physical degrees of freedom of the superfield V (x, θ, θ)
related to the photon and photino fields. The point is, how-
ever, that apart from the constraints (31), one has the equa-
tions of motion for all fields involved in the basic super-
field V (x, θ, θ). With vanishing multiplier component fields
(29), as was proposed above, these equations appear in
fact as extra constraints on components of the superfield

8 As in the non-supersymmetric case discussed above (see footnote1),
this solution with all vanishing components of the basic Lagrangian
multiplier superfield �(x, θ, θ) can be reached by introducing some
extra Lagrange multiplier term.
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V (x, θ, θ). Indeed, the equations of motion for the fields
C , S and χ obtained by the corresponding variations of the
total Lagrangian L (14) turned out to be, respectively,

P(C0)P
′(C0) = 0, S(x)P ′(C0) = 0, λ(x)P ′(C0) = 0

(32)

where the basic constraints (31) emerging at the potential
extremum point C = C0 have also been used. One can imme-
diately see now that these equations turn out to become triv-
ial identities in the broken SUSY case, in which the factor
P ′(C0) in each of them appears to be identically vanished,
P ′(C0) = 0 (22). In the unbroken SUSY case, in which
the potential (16) vanishes instead, i.e. P(C0) = 0 (20),
the situation is drastically changed. Indeed, though the first
equation in (32) still automatically turns into an identity at
the extremum point C(x) = C0, the other two equations
require that the auxiliary field S and photino field λ have to
be identically vanishing as well. This causes in turn the pho-
ton field to vanish, according to the basic constraints (31).
Besides, the D field component in the vector superfield is
also vanished in the unbroken SUSY case according to (15),
D = −P(C0) = 0. Thus, one is ultimately left with a triv-
ial superfield V (x, θ, θ), which only contains the constant C
field component C0, and that is unacceptable. So, we have
to conclude that the unbroken SUSY fails to provide stabil-
ity of the potential (18) even by constraining the superfield
V (x, θ, θ). In contrast, in the spontaneously broken SUSY
case extra constraints do not appear at all, and one has a phys-
ically meaningful theory; this is what we basically consider
in what follows.

Actually, substituting the constraints (31) into the total
Lagrangian Ltot (27, 14) we eventually come to the emergent
SUSY QED appearing in the broken SUSY phase

Lem

tot = −
1

4
FμνFμν + iλσμ∂μλ+ 1

2
D2 + P(C0)D,

AμAμ = SS∗ (33)

supplemented by the vector field constraint as its vacuum
stability condition. Remarkably, for the constrained vector
superfield involved, we have

V̂ (x, θ, θ) = C0 + i

2
θθ S − i

2
θθ S∗

−θσμθ Aμ + iθθθλ− iθθθλ+ 1

2
θθθθD,

(34)

we have the almost standard SUSY QED Lagrangian with
the same states—photon, photino and an auxiliary scalar D
field—in its gauge supermultiplet, while another auxiliary
complex scalar field S gets only involved in the vector field
constraint. The linear (Fayet–Iliopoulos) D-term with the
effective coupling constant P(C0) in (33) shows that the
supersymmetry in the theory is spontaneously broken, due

to which the D field acquires the VEV, D = −P(C0). Tak-
ing the non-dynamical S field in the constraint (31) to be
some constant background field (for a more formal discus-
sion, see below) we come to the SLIV constraint (2) which we
discussed above regarding an ordinary non-supersymmetric
QED theory (Sect. 1). As is seen from this constraint in (33),
one may only have the time-like SLIV in a SUSY framework
but never the space-like one. There also may be a light-like
SLIV, if the S field vanishes.9 So, any possible choice for
the S field corresponds to the particular gauge choice for the
vector field Aμ in an otherwise gauge invariant theory.

3.3 Constrained superfield: a formal view

We conclude this section by showing that the extended
Lagrangian Ltot (27, 14), underlying the emergent QED
model described above, as well as the vacuum stability con-
straints on the superfield component fields (31) appearing
due to the Lagrange multiplier term in (27) are consistent
with supersymmetry. The first part of this assertion is some-
what immediate, since the Lagrangian Ltot, aside from the
standard supersymmetric QED part LSQED (11), only con-
tains D-terms of various vector superfield products. They
are, by definition, invariant under conventional SUSY trans-
formations [37–39], which for the component fields (10) of
a general superfield V (x, θ, θ) (10) are written as

δξC = iξχ − iξχ, δξχ = ξ S + σμξ(∂μC + i Aμ),
1

2
δξ S = ξλ+ σμ∂μχ,

δξ Aμ = ξ∂μχ + ξ∂μχ + iξσμλ− iλσμξ,

δξλ = 1

2
ξσμσνFμν + ξD,

δξ D = −ξσμ∂μλ+ ξσμ∂μλ. (35)

However, there may still be left a question as to whether
supersymmetry remains in force when the constraints (31)
on the field space are “switched on”, thus leading to the
final Lagrangian Lem

tot (33) in the broken SUSY phase with
both dynamical fields C and χ eliminated. This Lagrangian
appears similar to the standard supersymmetric QED taken
in the Wess–Zumino gauge, except that the supersymmetry
is spontaneously broken in our case. In both cases the pho-
ton stress tensor Fμν , the photino λ, and the non-dynamical
scalar D field form an irreducible representation of the super-
symmetry algebra [the last two lines in (35)]. Nevertheless,
any reduction of the component fields in the vector superfield
is not consistent in general with the linear superspace version

9 Indeed, this case, first mentioned in [23], may also mean spontaneous
Lorentz violation with a non-zero VEV < Aμ > = (M̃, 0, 0, M̃) and
Goldstone modes A1,2 and (A0 + A3)/2 −M̃ . The “effective” Higgs
mode (A0− A3)/2 can then be expressed through Goldstone modes so
as the light-like condition A2

μ = 0 to be satisfied.
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of supersymmetry transformations, whether it is the Wess–
Zumino gauge case or our constrained superfield V̂ (34).
Indeed, a general SUSY transformation does not preserve
the Wess–Zumino gauge: a vector superfield in this gauge
acquires some extra terms when being SUSY transformed.
The same occurs with our constrained superfield V̂ as well.
The point, however, is that in both cases a total supergauge
transformation,

V → V + i(�−�∗), (36)

where � is a chiral superfield gauge transformation param-
eter, can always restore the superfield initial form. Actually,
the only difference between these two cases is that whereas
the Wess–Zumino supergauge leaves the ordinary gauge free-
dom untouched, in our case this gauge is unambiguously
fixed in terms of the above vector field constraint (31). How-
ever, this constraint remains under the supergauge transfor-
mation (36) applied to our superfield V̂ (34). Indeed, the
essential part of this transformation which directly acts on
the constraint (31) has the form

V̂ → V̂ + iθθF − iθθF∗ − 2θσμθ∂μϕ, (37)

where the real and complex scalar field components,ϕ and F ,
in the chiral superfield parameter � are properly activated.
As a result, the vector and scalar fields, Aμ and S, in the
supermultiplet V̂ (34) transform as

Aμ→ A′μ = Aμ − ∂μ(2ϕ), S→ S′ = S + 2F . (38)

It can be immediately seen that our basic Lagrangian Lem

tot
(33), being gauge invariant and containing no scalar field S,
is automatically invariant under either of these two transfor-
mations individually. In contrast, the supplementary vector
field constraint (31), though it also turned out to be invariant
under the supergauge transformations (38), but only if they
are made jointly. Indeed, for any choice of the scalar ϕ in (38)
there can always be found such a scalar F (and vice versa)
that the constraint remains invariant,

AμAμ = SS∗ → A′μA′μ = S′S′∗. (39)

In other words, the vector field constraint is invariant under
supergauge transformations (38) but not invariant under an
ordinary gauge transformation. As a result, in contrast to
the Wess–Zumino case, the supergauge fixing in our case
will also lead to the ordinary gauge fixing. We will use this
supergauge freedom to reduce the S field to some constant
background value and find the final equation for the gauge
function ϕ(x). So, for the parameter field F chosen in such

a way to have

S′ = S + 2F = Meiα(x) , (40)

where M is some constant mass parameter (and α(x) is an
arbitrary phase), we end by (39) in

(Aμ − 2∂μϕ)(A
μ − 2∂μϕ) = M2 , (41)

which is precisely our old SLIV constraint (2) being varied
by the gauge transformation (38). Recall that this constraint,
as was thoroughly discussed in the Introduction (Sect. 1.1),
only fixes the gauge (which such a gauge function ϕ(x) has
to satisfy), rather than that it physically breaks gauge invari-
ance. Notably, in contrast to the non-SUSY case where this
constraint was merely postulated, it now follows from the
vacuum stability and supergauge invariance in the emergent
SUSY QED. Besides, this constraint, as mentioned above,
may only be time-like (and light-like if the mass parameter
M is taken to be zero). When such inactive time-like SLIV is
properly developed one ends with the essentially nonlinear
emergent SUSY QED, in which the physical photon arises
as a three-dimensional Lorentzian NG mode (just as is the
case in non-SUSY for the time-like SLIV; see Sect. 1.1).

To finalize, it was shown that the vacuum stability con-
straints (31) on the allowed configurations of the physical
fields in a general polynomially extended Lagrangian (27)
appear entirely consistent with supersymmetry. In the bro-
ken SUSY phase one eventually comes to the standard SUSY
QED type Lagrangian (33) being supplemented by the vector
field constraint which is invariant under supergauge trans-
formations. One might think that, unlike the gauge invariant
linear (Fayet–Iliopoulos) superfield term, the quadratic and
higher order superfield terms in the starting Lagrangian (27)
would seem to break gauge invariance. However, this fear
proves groundless. Actually, as was shown above, this break-
ing amounts to the gauge fixing determined by the nonlinear
vector field constraint (39). It is worth noting that this con-
straint formally follows from the SUSY invariant Lagrange
multiplier term in (27) for which the phase space is required
to be restricted to vanishing values of all the multiplier com-
ponent fields (29). The total vanishing of the multiplier super-
field provides the SUSY invariance of such restrictions. Any
non-zero multiplier component field left in the Lagrangian
would immediately break supersymmetry and, even worse,
would eventually lead to ghost modes in the theory and a
Hamiltonian unbounded from below.

4 Broken SUSY phase: photino as pseudo-goldstino

Let us now turn to matter superfields, which have not yet been
included in the model. In their presence spontaneous SUSY
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breaking in the visible sector, which fundamentally underlies
our approach, might be phenomenologically ruled out by the
well-known supertrace sum rule [37–39] for actual masses
of quarks and leptons and their superpartners.10 However,
this sum rule is acceptably relaxed when taking into account
large radiative corrections to the masses of the supersymmet-
ric particles, which, according to the proposal, stem from the
hidden sector. This is just what one may expect in conven-
tional supersymmetric theories with the standard two-sector
paradigm, according to which SUSY breaking entirely occurs
in a hidden sector; then this spontaneous breaking is medi-
ated to the visible sector by some indirect interactions whose
nature depends on a particular mediation scenario [37–39].
The emergent QED approach advocated here requires some
modification of this idea in such a way that, while the hidden
sector is largely responsible for spontaneous SUSY breaking,
supersymmetry can also be spontaneously broken in the vis-
ible sector, which ultimately leads to a double spontaneous
SUSY breaking pattern.

We may suppose, just for uniformity, only D-term SUSY
breaking both in the visible and hidden sectors.11 Prop-
erly stated, our supersymmetric QED model may be further
extended by some extra local U ′(1) symmetry which is pro-
posed to be broken at the very high-energy scale M ′ (for
some appropriate anomaly mediated scenarios, see [40] and
references therein). It is natural to think that due to the decou-
pling theorem all effects of the U ′(1) are suppressed at ener-
gies E << M ′ by powers of 1/M ′ and only the D′-term
of the corresponding vector superfield V ′(x, θ, θ) remains
in essence when going down to low energies. Actually, this
term with a proper choice of messenger fields and their cou-
plings naturally provides the MSU SY order contributions to
the masses of the scalar superpartners.

As a result, the simplified picture discussed above (in
Sects. 2 and 3) is properly changed: a strictly massless
fermion eigenstate, the true goldstino ζg , should now be some
mix of the visible sector photinoλ and the hidden sector gold-
stino λ′

ζg = 〈D〉 λ+
〈
D′

〉
λ′√

〈D〉2 + 〈D′〉2
, (42)

where 〈D〉 and
〈
D′

〉
are the corresponding D-component

VEVs in the visible and hidden sectors, respectively. Another

10 Note that an inclusion of direct soft mass terms for scalar superpart-
ners in the model would mean in general that the visible SUSY sector is
explicitly, rather than spontaneously, broken, which could immediately
invalidate the whole idea of the massless photons as the zero Lorentzian
modes triggered by the spontaneously broken supersymmetry.
11 In general, both D- and F-type terms can be simultaneously used in
the visible and hidden sectors (usually just F-term SUSY breaking is
used in both sectors [37–39]).

orthogonal combination of them may be referred to as the
pseudo-goldstino ζpg ,

ζpg =
〈
D′

〉
λ− 〈D〉 λ′√
〈D〉2 + 〈D′〉2

. (43)

In the supergravity context, the true goldstino ζg is eaten
through the super-Higgs mechanism to form the longitudi-
nal component of the gravitino, while the pseudo-goldstino
ζpg gets some mass proportional to the gravitino mass from
supergravity effects. Due to the large soft masses required to
be mediated, one may generally expect that SUSY is much
stronger broken in the hidden sector than in the visible one,〈
D′

〉
>> 〈D〉, which means in turn that the pseudo-goldstino

ζpg is largely the photino λ,

ζpg 
 λ . (44)

These pseudo-goldstonic photinos seem to be of special
observational interest in the model, which, apart from some
indication of the QED emergence nature, may shed light
on SUSY breaking physics. The possibility that the super-
symmetric Standard Model visible sector might also spon-
taneously break SUSY, thus giving rise to some pseudo-
goldstino state, was also considered, though in a different
context, in [41,42].

Interestingly enough, our polynomially extended SQED
Lagrangian (11) is not only SUSY invariant but also gener-
ically possesses a continuous R-symmetry U (1)R [37–39].
Indeed, vector superfields always have zero R-charge, since
they are real. Accordingly, it follows that the physical field
components in the constrained vector superfield V̂ (34) trans-
form as

Aμ→ Aμ, λ→ eiαλ, D→ D (45)

and so have R charges 0, 1, and 0, respectively. Along with
that, we assume a suitable R-symmetric matter superfield
setup as well making a proper R-charge assignment for
basic fermions and scalars (and messenger fields) involved.
This will lead to the light pseudo-goldstino in the gauge-
mediated scenario. Indeed, if the visible sector possesses an
R-symmetry which is preserved in the course of mediation
the pseudo-goldstino mass is protected up to the supergrav-
ity effects which violate an R-symmetry. As a result, the
pseudo-goldstino mass appears proportional to the gravitino
mass, and, eventually, the same region of parameter space
simultaneously solves both gravitino and pseudo-goldstino
overproduction problems in the early universe [42].

Apart from cosmological problems, many other sides of
new physics related to pseudo-goldstinos appearing through
the multiple SUSY breaking were also studied recently (see
[41–46] and references therein). The point, however, is that
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there have been exclusively used non-vanishing F-terms as
the only mechanism of the visible SUSY breaking in the
models considered. In this connection, our pseudo-goldstonic
photinos solely caused by non-vanishing D-terms in the vis-
ible SUSY sector may lead to somewhat different obser-
vational consequences. One of the most serious differences
may be related to the Higgs boson decays when the present
SUSY QED is further extended to the supersymmetric Stan-
dard Model. For the cosmologically safe masses of pseudo-
goldstino and gravitino (� 1keV , as typically follows from
the R-symmetric gauge mediation) these decays are appre-
ciably modified. Actually, the dominant channel becomes
the conversion of the Higgs boson (say, the lighter CP-
even Higgs boson h0) into a conjugated pair of correspond-
ing pseudo-sgoldstinos φpg and φ pg (being superpartners of
pseudo-goldstinos ζpg and ζ pg , respectively),

h0 → φpg + φ pg , (46)

once it is kinematically allowed. This means that the Higgs
boson will dominantly decay invisibly for F-term SUSY
breaking in a visible sector [42]. By contrast, for the D-term
SUSY breaking case considered here the roles of pseudo-
goldstino and pseudo-sgoldstino are just played by photino
and photon, respectively, which could enhance the standard
two-photon decay channel of the Higgs boson even some-
what. In the light of the recent discovery of the Higgs-like
state [47,48] just through its visible decay modes, the F-term
SUSY breaking in the visible sector seems to be disfavored
by data, while the SUSY breaking D-term is not in trouble
with them.

5 Concluding remarks

It is well known that spontaneous Lorentz violation in general
vector field theories may lead to an appearance of massless
Nambu–Goldstone modes, which are identified with photons
and other gauge fields in the Standard Model. Nonetheless,
it may turn out that SLIV is not the only reason for emergent
massless photons to appear, if the spacetime symmetry is
further enlarged. In this connection, special interest may be in
supersymmetry and its possible theoretical and observational
relation to SLIV.

To see how such a scenario may work we have consid-
ered supersymmetric QED model extended by an arbitrary
polynomial potential of a general vector superfield V (x, θ, θ)
whose pure vector field component Aμ(x) is associated with
a photon in the Lorentz invariant phase. Gauge non-invariant
couplings other than potential terms are not included into
the theory. For the theory in which gauge invariance is not
required from the outset this is in fact the simplest gen-
eralization of a conventional SUSY QED. This superfield

potential (18) is turned out to be generically unstable unless
SUSY is spontaneously broken. However, it appears not to
be enough. To provide an overall stability of the potential
one additionally needs the special direct constraint being put
on the vector superfield itself that is made by an appropri-
ate SUSY invariant Lagrange multiplier term (27). Remark-
ably enough, when this term is written in field components
it leads precisely to the nonlinear σ -model type constraint of
type (2) which one has in the non-SUSY case. So, we come
again to the picture, which we called the inactive SLIV, with
a Goldstone-like photon and special (SLIV restricted) gauge
invariance providing the cancelation mechanism for physi-
cal Lorentz violation. But now this picture follows from the
vacuum stability and supergauge invariance in the extended
SUSY QED rather than being postulated as is in the non-
SUSY case. This allows one to think that a generic trigger
for massless photons to dynamically emerge happens to be
spontaneously broken supersymmetry rather than physically
manifested Lorentz non-invariance.

In more exact terms, in the broken SUSY phase one even-
tually comes to the almost standard SUSY QED Lagrangian
(33) possessing some special gauge invariance emerged. This
invariance is only restricted by the gauge condition put on
the vector field, AμAμ = |S|2, which appears to be invariant
under supergauge transformations. One can use this super-
gauge freedom to reduce the non-dynamical scalar field S to
some constant background value so as to eventually come
to the nonlinear vector field constraint (2). As a result, the
inactive time-like SLIV is properly developed, thus leading
to essentially nonlinear emergent SUSY QED in which the
physical photon arises as a three-dimensional Lorentzian NG
mode. So, figuratively speaking, the photon passes through
three evolution stages being initially the massive vector field
component of a general vector superfield (14), then the three-
level massless companion of an emergent photino in the
broken SUSY stage (17) and finally a generically massless
state as an emergent Lorentzian mode in the inactive SLIV
stage (31).

As to an observational status of emergent SUSY theories,
one can see that, as in an ordinary QED, physical Lorentz
invariance is still preserved in the SUSY QED model at
the renormalizable level and can only be violated if some
extra gauge non-invariant couplings [being supersymmetric
analogs of the high-dimension couplings (6)] are included
into the theory. However, one may have some specific obser-
vational evidence in favor of the inactive SLIV even in the
minimal (gauge invariant) supersymmetric QED and Stan-
dard Model. Indeed, since as mentioned above the vacuum
stability is only possible in spontaneously broken SUSY
case, this evidence is related to an existence of an emer-
gent goldstino–photino type state in the SUSY visible sector.
Being mixed with another goldstino appearing from a spon-
taneous SUSY violation in the hidden sector this state largely
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turns into the light pseudo-goldstino. Its study seem to be of
special observational interest for this class of models that,
apart from some indication of an emergence nature of QED
and the Standard Model, may appreciably extend the scope
of SUSY breaking physics being actively studied in recent
years. We may return to this important issue elsewhere.
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