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Abstract We consider a gravitating system consisting of
a scalar field minimally coupled to gravity with a self-
interacting potential and a U(1) nonlinear electromagnetic
field. Solving analytically and numerically the coupled sys-
tem for both power-law and Born–Infeld type electrodynam-
ics, we find charged hairy black hole solutions. Then we
study the thermodynamics of these solutions and we find
that at a low temperature the topological charged black hole
with scalar hair is thermodynamically preferred, whereas the
topological charged black hole without scalar hair is thermo-
dynamically preferred at a high temperature for power-law
electrodynamics. Interestingly enough, these phase transi-
tions occur at a fixed critical temperature and do not depend
on the exponent p of the nonlinear electrodynamics.
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1 Introduction

Hairy black holes are interesting solutions to Einstein’s the-
ory of gravity and also to certain types of modified gravity
theories. The first attempts to couple a scalar field to gravity
was done in an asymptotically flat spacetime finding hairy
black hole solutions [1–3], but it was realized that these solu-
tions were not physically acceptable as the scalar field was
divergent on the horizon and stability analysis showed that
they were unstable [4]. Also, asymptotically flat black holes
with scalar field minimally coupled to gravity were found
in [5,6], which evade the no hair theorems by allowing par-
tially negative self-interacting potential, which is in conflict
with the dominant energy condition. Some of these solutions
were found to be stable for some parameter range [6]. On the
other hand, by introducing a cosmological constant, hairy
black hole solutions with a minimally coupled scalar field
and a self-interaction potential in asymptotically dS space
were found, but unstable [7,8]. Also, a hairy black hole con-
figuration was reported for a scalar field non-minimally cou-
pled to gravity [9], but a perturbation analysis showed the
instability of the solution [10,11]. In the case of a negative
cosmological constant, stable solutions were found numer-
ically for spherical geometries [12,13] and an exact solu-
tion in asymptotically AdS space with hyperbolic geome-
try was presented in [14]. A study of general properties of
black holes with scalar hair with spherical symmetry can be
found in Ref. [15]. Further hairy solutions were reported in
[16–24] with various properties. Furthermore, charged hairy
solutions were also found, for instance in [25], a topological
black hole dressed with a conformally coupled scalar field
and electric charge was studied. An electrically charged black
hole solution with a scalar field minimally coupled to grav-
ity and electromagnetism was presented in [26]. Recently,
for a gravitating system consisting of a scalar field mini-
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mally coupled to gravity with a self-interacting potential and
U(1) electromagnetic field, exact charged hairy black hole
solutions with the scalar field which is regular outside the
event horizon have been found in [27–29]. Also, new hairy
black hole solutions, boson stars and numerical rotating hairy
black hole solutions were discussed [30–35], as well as time-
dependent hairy black holes [36,37]. For a review of hairy
black holes we refer the reader to [38].

In this work, we extend our previous work [20,27] and we
consider a gravitating system consisting of a scalar field min-
imally coupled to gravity with a self-interacting potential and
U(1) nonlinear electromagnetic field. Then we obtain black
hole solutions for power-law and Born–Infeld type electro-
dynamics and we study the thermodynamics and the phase
transitions between hairy charged black holes dressed with a
scalar field and no hairy charged black holes, focusing on the
effects of the nonlinearity of the Maxwell source. The interest
in nonlinear electrodynamics arises with the order to elimi-
nate the problem of the infinite energy of the electron by Born
and Infeld [39]. Also, nonlinear electrodynamics emerges
in the modern context of the low-energy limit of heterotic
string theory [40–42], and it plays an important role in the
construction of regular black hole solutions [43–48]. Some
black holes/branes solutions in a nonlinear electromagnetic
field have been investigated for instance in [49–56] and refer-
ences therein. The thermodynamics of Einstein–Born–Infeld
black holes with a negative cosmological constant was stud-
ied in [57] and for a power-law electrodynamic in [58], where
the authors showed that a set of small black holes are locally
stable by computing the heat capacity and the electrical per-
mittivity. The thermodynamics of Gauss–Bonnet black holes
for a power-law electrodynamic was studied in [59]. On
the other hand, higher dimensional black hole solutions to
Einstein-dilaton theory coupled to Maxwell field were found
in [60,61] and black hole solutions to Einstein-dilaton the-
ory coupled to Born–Infeld and power-law electrodynamics
were found in [62,63].

The phase transitions have been of great interest since
the discovery of a phase transition by Hawking and Page
in a four-dimensional Schwarzschild AdS background [64].
Witten [65] has extended this four-dimensional transition
to arbitrary dimension and provided a natural explanation
of a confinement/deconfinement transition on the bound-
ary field theory via the AdS/CFT correspondence. However,
phase transitions have recently garnered a great deal of atten-
tion motivated mainly by the relationship between the phase
transitions and holographic superconductivity [66,67] in the
context of the AdS/CFT correspondence. Furthermore, the
effects of nonlinear electrodynamics on the properties of the
holographic superconductors have recently been investigated
[68–77]. It is well known that these phase transitions can
be obtained by considering black holes as states in a same
grand canonical ensemble and by comparing the free energy

associated with each of them. Therefore, it is necessary to
find the conserved charge of the theory. It is worth men-
tioning that the phase-transition phenomena have been ana-
lyzed and classified by exploiting Ehrenfest’s scheme [78–
81]. Another point of view to study phase transitions is to
consider Bragg–Williams’ construction of a free energy func-
tion [82]. Also, it was shown that if the space is flat, then the
Reissner–Nordström black hole is thermodynamically pre-
ferred, whereas if the space is AdS the hairy charged black
hole is thermodynamically preferred at a low temperature
[27].

The work is organized as follows. In Sect. 2 we present the
general formalism. Then we derive the field equations and
we find hairy black hole solutions. In Sect. 3 we study the
thermodynamics of our solutions and in Sect. 4 we present
our conclusions.

2 Four-dimensional black holes with scalar hair
in nonlinear electrodynamics

The four-dimensional Einstein–Hilbert action with a scalar
field minimally coupled to curvature having a self-interacting
potential V (φ) in the presence of a nonlinear electromagnetic
field is

I =
∫

d4x
√−g

(
1

2κ
R + L(F2) − 1

2
gμν∇μφ∇νφ − V (φ)

)
,

(1)

where κ = 8πG, with G the Newton constant and L(F2)

an arbitrary function of the electromagnetic invariant F2 =
FαβFαβ . The resulting field equations from the above action
are

Rμν − 1

2
gμνR = κ(T (φ)

μν + T (F)
μν ), (2)

where the energy-momentum tensors T (φ)
μν and T (F)

μν for the
scalar and electromagnetic fields are

T (φ)
μν = ∇μφ∇νφ − gμν

[
1

2
gρσ ∇ρφ∇σ φ + V (φ)

]
,

T (F)
μν = gμνL(F2) − 4

dL(F2)

dF2 F λ
μ Fνλ, (3)

respectively. Using Eqs. (2) and (3) we obtain the equivalent
equation

Rμν − κ
(
∂μφ∂νφ + gμνV (φ)

) = κ

(
−4

dL(F2)

dF2 F α
μ Fνα

+ 2gμνF
2 dL(F2)

dF2 − gμνL(F2)

)
. (4)

Now, if we consider the following metric ansatz:

ds2 = − f (r)dt2 + f −1(r)dr2 + a2(r)d�2, (5)
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where d�2 is the metric of the spatial 2 section, which
can have a positive, negative or zero curvature, and Aμ =
(At (r), 0, 0, 0) is the scalar potential of the electromagnetic
field. We find the following three independent differential
equations:

f ′′(r) + 2
a′(r)
a(r)

f ′(r) + 2κV (φ) = 2κL(F2), (6)

f ′′(r) + 2
a′(r)
a(r)

f ′(r) +
(

4
a′′(r)
a(r)

+ 2κφ′(r)2
)

f (r)

+ 2κV (φ) = 2κL(F2), (7)

a′(r)
a(r)

f ′(r) +
((

a′(r)
a(r)

)2

+ a′′(r)
a(r)

)
f (r) − k

a(r)2 + κV (φ)

= κL(F2) + 4κA′
t (r)

2 dL(F2)

dF2 , (8)

where k = 1, 0,−1 parameterizes the curvature of the spatial
2-section. So, if we eliminate the potential V (φ) from the
above equations we obtain

a′′(r) + 1

2
κφ′(r)2a(r) = 0, (9)

f ′′ − 2

((
a′(r)
a(r)

)2

+ a′′(r)
a(r)

)
f (r) + 2k

a(r)2

= −8κA′
t (r)

2 dL(F2)

dF2 . (10)

In the following, we will work in units where κ = 1. By
considering the scalar field studied in [27],

φ(r) = 1√
2

ln
(

1 + ν

r

)
, (11)

where ν is a parameter controlling the behavior of the scalar
field and it has the dimension of length, from Eqs. (9) and
(11) we determine the function a(r), which reads

a(r) = √
r(r + ν). (12)

Also, from the Maxwell equations

∂μ

(√−gFμν dL(F2)

dF2

)
= 0, (13)

we obtain the following relation:

A′
t (r)

dL(F2)

dF2 = − Q̃

a(r)2 , (14)

where Q̃ is an integration constant. We can also determine
the metric function f (r) replacing (12) and (14) in (10)

f (r) = −


3
r2 − 1

3
ν(6α2 + 
)r + k − α2ν

2

− 2α2r(r + ν) ln

(
r

r + ν

)

− 8r(r + ν)

∫ ∫
r(r + ν)A′

t (r)
2 dL(F2)

dF2 dr

r2(r + ν)2 dr

= −


3
r2 − 1

3
ν(6α2 + 
)r + k − α2ν

2

− 2α2r(r + ν) ln

(
r

r + ν

)

+ 8Q̃r(r + ν)

∫ r

∞
At (r)

r2(r + ν)2 dr. (15)

To find hairy black hole solutions the differential equations
have to be supplemented with the Klein–Gordon equation of
the scalar field, which in general coordinates reads

�φ = dV

dφ
,

and whose solution for the self-interacting potential V (r) is

V (r) = ν2

2

∫
f ′(r)

r2(r + ν)2 dr. (16)

In the following sections we will consider two specific elec-
tromagnetic LagrangiansL(F2): power-law and Born–Infeld
type electrodynamics.

2.1 Power-law electrodynamics

In this section we consider power-law electrodynamics char-
acterized by the following Lagrangians [83]:

L(F2) = η|F2|p, (17)

where p is a rational number and the absolute value ensures
that any configuration of electric and magnetic fields can be
described by these Lagrangians. One could also consider the
Lagrangian without the absolute value and the exponent p
restricted to being an integer or a rational number with an odd
denominator [84]. The sign of the coupling constant η will
be chosen such that the energy density of the electromagnetic
field is positive; that is, the minus T t (F)

t component of the
electromagnetic energy-momentum tensor must be positive,

− T t (F)
t = η|F2|p(2p − 1) > 0. (18)

This condition is guaranteed in the following cases: p > 1/2
and η > 0 or p < 1/2 and η < 0. In the following we focus
our attention on purely electric field configurations.

From the Maxwell equations (14) we obtain

A′
t (r) = Q

(r(r + ν))1/(2p−1)
, (19)

where Q is an integration constant related to Q̃ by Q̃ =
η2p−1 p(Q2)p/Q. So

At (r) = (2p − 1)Qr (2−2p)/(1−2p)(1/ν)1/(−1+2p)

2(p − 1)
2F1

×
[

1

2p − 1
,

2(p − 1)

2p − 1
,

4p − 3

2p − 1
, − r

ν

]
+ C. (20)
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The integration constant C will be chosen in such a way the
electric potential goes to zero asymptotically for 1/2 < p <

3/2, and is given by

C = −Q(1/ν)
3−2p

−1+2p
�
(

2−2p
1−2p

)
�
(

3−2p
−1+2p

)

�
(

1
−1+2p

) . (21)

Thus, for r → ∞ the electric potential behaves as

At (r → ∞) ≈ Q
1 − 2p

3 − 2p
r

3−2p
1−2p + · · · , (22)

where . . . denotes terms that go to zero at large distances.
Equation (22) shows that the field At tends to zero at infinity
for 1/2 < p < 3/2 and diverges at infinity for p < 1/2
and p > 3/2. However, the above solution is not valid for
n = 1/(2p − 1) with n > 1 being an integer. Fortunately, in
that case we obtain analytical solutions that we present in the
appendix. We can also determine the metric function f (r)
replacing (20) in (15). We find

f (r) = −


3
r2 − 1

3
ν(6α′

2 + 
)r + k − α′
2ν

2

− 2α′
2r(r + ν) ln

(
r

r + ν

)

+ 2α1η2p p(2p − 1)ν(1−4p)/(1−2p)

p − 1
r(r + ν)

×
∫ r

∞
r2p/(1−2p)

(r + ν)2 2F1

×
[

1

2p − 1
,

2(p − 1)

2p − 1
,

4p − 3

2p − 1
, − r

ν

]
dr, (23)

where

α′
2 = α2 − 4α1η2p p

�
(

2−2p
1−2p

)
�
(

3−2p
−1+2p

)

�
(

1
−1+2p

) , (24)

and the following redefinition of the integration constant Q
has been taken into account:

(Q2)p = α1

(ν2)2p/1−2p . (25)

The scalar field potential can be written as

V (φ) = 


3
(2 + cosh(

√
2φ)) + 2α′

2(−
√

2φ[2
+ cosh(

√
2φ)] + 3 sinh(

√
2φ))

− 2α1ηp2p 2p − 1

p − 1

{
12(e

√
2φ − 1)2(1−p)/(2p−1)

× sinh2(φ/
√

2) sinh(
√

2φ)

× 2F1

[
1

2p − 1
,

2(p − 1)

2p − 1
,

4p − 3

2p − 1
,

1

1 − e
√

2φ

]

+ (2 + cosh(
√

2φ))F(φ)

}

+α1η2p
(

1

4 sinh2(φ/
√

2)

)2p/(1−2p)

, (26)

where we have defined

F(φ) = ν(1−4p)/(1−2p)
∫ ν

−1+e
√

2φ

∞
r2p/(1−2p)

(r + ν)2 2F1

×
[

1

2p − 1
,

2(p − 1)

2p − 1
,

4p − 3

2p − 1
, − r

ν

]
dr

=
∫ 1

−1+e
√

2φ

∞
r2p/(1−2p)

(r + 1)2 2F1

×
[

1

2p − 1
,

2(p − 1)

2p − 1
,

4p − 3

2p − 1
, −r

]
dr. (27)

The integral above apparently depends on ν; however, it can
be shown numerically that the integral does not depend on ν;
so, in the last line of the above expression we have set ν = 1
for simplicity. Therefore, the potential V (φ) does not depend
on the parameter ν. We have used the reverse type procedure
to obtain the potential, chosen in a way that the solution found
from the remaining equations of motion with a metric ansatz
and an electric field also solves the Klein–Gordon equation.
Then we can investigate whether our system has a charged
hairy black hole solution. In Fig. 1 we plot the behavior of
the metric function f (r) and the potential V (φ) in Fig. 2,
for a choice of parameters ν = 0.5, 
 = −1, α1 = 1,
α2 = 1, p = 2, 3, 5, and k = ±1, 0. Also, in Fig. 3 we plot
the potential for other choices of the parameters. The metric
function f (r) changes sign for low values of r , signaling the
presence of a horizon, while the potential tends to 
 = V (0)

(V (0) < 0) as can be seen in Figs. 2 and 3. We observe a
different behavior of the potential, while it is bounded from
below in Fig. 3, this does not occur in Fig. 2. It is worth to
mention that potentials with similar behavior have been con-
sidered for instance in [17,20,27,29]. However, note that in
Fig. 3 the shift of the minimum of the potential depends on
the parameter p. Additionally, in Fig. 4 we plot the metric
function f (r) for other choices of the parameters, and we
observe that for certain values of the parameters the met-
ric can describe a black hole with two horizons, r+ and r−.
Moreover, the metric can describe an extremal black hole
with degenerate horizons when r+ = r−. Note that the full
range of the r coordinate covers all the values of a(r) from
the center r = rc, where a(rc) = 0, to infinity [15]. So,
for ν positive, the r coordinate is in the range 0 < r < ∞,
while for ν negative the range is −ν < r < ∞. Finally,
we have checked the behavior of the Kretschmann scalar
Rμνρσ Rμνρσ (r). Figure 5 shows that the Kretschmann scalar
(with ν = 0.5) is singular at the center rc = 0, which is an
essential property of these solutions, and the singularity is
located in the dynamic region ( f (rc) < 0) for the numeri-
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Fig. 1 The behavior of f (r) for ν = 0.5, 
 = −1, α1 = 1, α2 = 1, η = 1/4, p = 5 (dotted line), p = 3 (dashed line) and p = 2 (dot-dashed
line). Left figure for k = −1, right figure for k = 0, and bottom figure for k = 1
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20
V φ

Fig. 2 The behavior of V (φ) for 
 = −1, α1 = 1, α2 = 1, η = 1/4,
p = 5 (dotted line), p = 3 (dashed line) and p = 2 (dot-dashed line)

cal values considered (see Fig. 1). Furthermore, there is no
curvature singularity outside the horizon; therefore, the met-
ric (23) can describe a charged hairy black hole solution for
certain values of the parameters.

Equation (23) has an analytical solution for p = 3/4 given
by

f (r) = −


3
r2 − 1

3
ν(6α2 + 
)r + k − α2ν

2

− 2α2r(r + ν) ln

(
r

r + ν

)

+ 3ηα12−1/4

(
ν(2r + ν) + 2r(r + ν) ln r

r+ν

)2

r(r + ν)
.

(28)

1 2 3 4 5
φ

50

0

50

100

150

200
V φ

Fig. 3 The behavior of V (φ) for 
 = −1, α1 = 0.1, α2 = −5,
η = 1/4, p = 3.5 (dotted line), p = 3 (dashed line) and p = 2
(dot-dashed line)

The electric potential is

At (r) = − Q

ν2

2r + ν

r(r + ν)
− 2Q

ν3 ln
r

r + ν
, (29)

which goes to zero at infinity, and the self-interacting poten-
tial of the scalar field is

V (φ) = 


3
(2 + cosh(

√
2φ))

+ 2α2(−√
2φ[2 + cosh(

√
2φ)] + 3 sinh(

√
2φ))

+ 64η23/4α1 sinh6(φ/
√

2) − 3ηα12−1/4
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Fig. 4 The behavior of f (r) for ν = 1, 
 = −1, α1 = 1, η = 1/4,
p = 2. Left figure for k = −1 and α2 = −10 (dot-dashed line),
α2 = −25 (dashed line), α2 = −32.5 (dotted line). Right figure for

k = 0 and α2 = −10 (dot-dashed line), α2 = −23 (dashed line),
α2 = −28 (dotted line). Bottom figure for k = 1 and α2 = −10 (dot-
dashed line), α2 = −20 (dashed line), α2 = −24 (dotted line)
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Fig. 5 The behavior of Kretschmann scalar Rμνρσ Rμνρσ (r) as a function of r for ν = 0.5, 
 = −1, α1 = 1, α2 = 1, η = 1/4, p = 5 (dotted
line), p = 3 (dashed line) and p = 2 (dot-dashed line). Left figure for k = −1, right figure for k = 0, and bottom figure for k = 1
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Fig. 6 The behavior of f (r) for ν = 1, 
 = −1, η = 1/4, α1 = 1.5,
α2 = 0.01, p = 3/4, k = −1 (dot-dashed line), k = 0 (dashed line)
and k = 1 (continuous line)

×(−28 + 16φ2 + (31 + 8φ2) cosh(
√

2φ)

− 4 cosh(2
√

2φ) + cosh(3
√

2φ) − 24
√

2φ sinh(
√

2φ)).

(30)

This solution is a special case of more general analytical
solutions that we show in the appendix. In Fig. 6 we show
the behavior of f (r) for p = 3/4 and different values of k.

2.2 Born–Infeld type electrodynamics

In this section we consider a Born–Infeld type Lagrangian
given by

L(F2) = 4b2

⎛
⎝1 −

√
1 + F2

2b2

⎞
⎠ , (31)

where b is the Born–Infeld coupling. In the limit b → ∞
the Maxwell electrodynamics is recovered and in the limit
b → 0 this Lagrangian vanishes. By inserting (31) in (14),
we obtain straightforwardly the electric field

A′
t (r) = Q̃√

r2(r + ν)2 + Q̃2

b2

. (32)

Then, by performing the change of variable u = r(r + ν) +
ν2/12, the scalar potential reads

At = Q̃
∫

du√
4u3 − g2u − g3

, (33)

where

g2 = 1

12

(
ν4 − 48

Q̃2

b2

)
, g3 = − ν2

216

(
144

Q̃2

b2 + ν4

)
.

(34)

Therefore, the solution for the scalar potential is

At (r) = Q̃℘−1(r(r + ν) + ν2/12; g2, g3), (35)

20 40 60 80 100
r

0.3

0.2

0.1

0.0

0.1
At r

Fig. 7 The behavior of At (r), for b = 1, ν = 1, and Q̃ = 1

where ℘ denotes the ℘-Weierstrass elliptic function, with the
Weierstrass invariants g2 and g3 given in (34). In Fig. 7 we
plot At (r) for b = 1, ν = 1, and Q̃ = 1.

The metric function f (r) reads

f (r) = −


3
r2 − 1

3
ν(6α2 + 
)r + k − α2ν

2

− 2α2r(r + ν) ln

(
r

r + ν

)
+ 8ν4α2

1r(r + ν)

×
∫ r

∞
℘−1

(
r(r + ν) + ν2/12; g2, g3

)
r2(r + ν)2 dr, (36)

where we have taken into account the following redefinition:

Q̃ = α1ν
2, (37)

and the potential can be written as

V (φ) = 


3
(2 + cosh(

√
2φ))

+ 2α2(−
√

2φ[2 + cosh(
√

2φ)] + 3 sinh(
√

2φ))

+ 4b2

⎛
⎝1 − be

√
2φ√

α2
1(e

√
2φ − 1)4 + b2e2

√
2φ

⎞
⎠

− 64α2
1

sinh2(φ/
√

2)√
csch4(φ/

√
2) + 16α2

1/b2

− 8α2
1(2 + cosh(

√
2φ))F(φ)

− 32α2
1 sinh2(φ/

√
2) sinh(

√
2φ)G(φ), (38)

where we have defined

F(φ) = ν4
∫ ν

e
√

2φ−1

∞
℘−1

(
r(r + ν) + ν2/12; g2, g3

)
r2(r + ν)2 dr

=
∫ 1

e
√

2φ−1

∞
℘−1 (r(r + 1) + 1/12; g2, g3)

r2(r + 1)2 dr,
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Fig. 8 The behavior of f (r) for 
 = −1, α1 = 0.01, α2 = 1.5, b = 1, ν = 1 (dotted line), ν = 2 (dashed line) and ν = 5 (dot-dashed line). Left
figure for k = −1, right figure for k = 0, and bottom figure for k = 1

G(φ) = ν℘−1
(

ν2

4
(csch2(φ/

√
2) + 1/3); g2, g3

)

= ℘−1
(

1

4
(csch2(φ/

√
2) + 1/3); g2, g3

)
. (39)

Equation (39) apparently depends on the parameter ν; how-
ever, it can be shown numerically that these expressions do
not depend on ν; for this reason, we have set ν = 1 in (39)
for simplicity. Therefore, the potential V (φ) does not depend
on the parameter ν.

Then we can investigate whether our system has a charged
hairy black hole solution. In Fig. 8 we plot the behavior of the
metric function f (r) and the potential V (φ) in Fig. 9, for a
choice of parameters 
 = −1, α1 = 0.01, α2 = 1.5, b = 1,
and ν = 1, 2, 5. The metric function f (r) changes sign for
low values of r signaling the presence of a horizon, while the
potential tends to 
 = V (0) (V (0) < 0), as can be seen in
Fig. 9. Additionally, in Fig. 10 we plot the metric function
f (r) for other choices of the parameters, and we observe that
for certain values of the parameters the metric can describe
a black hole with two horizons, r+ and r−. Moreover, the
metric can describe an extremal black hole with degener-
ate horizons when r+ = r−. It is worth mentioning that in
Fig. 10 we have set ν = −1. As we mentioned in the previ-
ous section, for ν negative the full range of the r coordinate
is −ν < r < ∞, and rc = −ν corresponds to the center.
It can be shown that the scalar field and the Kretschmann

0.5 1.0 1.5 2.0 2.5 3.0
φ

40

20

0

20

40

V φ

Fig. 9 The behavior of V (φ) for 
 = −1, b = 1, α1 = 0.01, α2 = 1.5
(dashed line) and α2 = −1.5 (dotted line)

scalar both diverge at the center rc = 1, which is an essential
property of these solutions, and the singularity can be located
either in a static region ( f (rc) > 0) as the dot-dashed and
dashed lines illustrate in Fig. 10 or in the dynamic region
( f (rc) < 0) as the dotted lines show in Fig. 10. Additionally,
in Fig. 11 we have plotted the behavior of the Kretschmann
scalar Rμνρσ Rμνρσ (r) for ν = 0.5, and it is shown that it
is singular at the center rc = 0. The numerical results also
show that there is no curvature singularity outside the hori-
zon; therefore, the metric (36) can describe a charged hairy
black hole solution for certain values of the parameters.
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Fig. 10 The behavior of f (r) for 
 = −1, α1 = 1, ν = −1, b = 1,
(dotted line), ν = 2 (dashed line) and ν = 5 (dot-dashed line). Left
figure for k = −1 and α2 = −15 (dotted line), α2 = −8 (dashed line),
α2 = −2.5 (dot-dashed line). Right figure for k = 0 and α2 = −15

(dotted line), α2 = −10 (dashed line), α2 = −6.5 (dot-dashed line).
Bottom figure for k = 1 and α2 = −20 (dotted line), α2 = −11.5
(dashed line), α2 = −9.5 (dot-dashed line)
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r0

20
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60
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100
R R (r)μνρσ

μνρσ

Fig. 11 The behavior of Kretschmann scalar Rμνρσ Rμνρσ (r) as a
function of r for ν = 0.5, 
 = −1, α1 = 1, α2 = 1, b = 1, k = −1
(dotted line), k = 0 (dashed line) and k = 1 (dot-dashed line)

3 Thermodynamics

In this section we will study the thermodynamics of the
hairy black hole solutions found. To compute the conserved
charges we will apply the Euclidean formalism, we will work
in the ρ = √

r (r + ν) coordinate, in which the metric (5)
can be written in the following form:

ds2 = −N (ρ)2g(ρ)2dt2 + 1

g(ρ)2 dρ2 + ρ2d�2, (40)

where

N (ρ)2 = ρ2(
ν2

4 + ρ2
) , g (ρ)2 = f (ρ)

ρ2

(
ν2

4
+ ρ2

)
, (41)

and where f (ρ) corresponds to the metric function f (r) eval-

uated at r = − ν
2 +

√
ν2

4 + ρ2. In these coordinates the scalar
field is given by

φ(ρ) = 1√
2

ln

[
ν + √

ν2 + 4ρ2

−ν + √
ν2 + 4ρ2

]
. (42)

Now, we go to the Euclidean time t → iτ , and, for the
Euclidean metric associated with (40), the Maxwell equation
(13) yields

A′
t (ρ)

N (ρ)

dL(F2)

dF2 = − Q̃

ρ2 ; (43)

here and in the following the prime ′ denotes a derivative
with respect to ρ. Thus, to apply the Euclidean formalism
we consider the following action:
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IE = −β�

4π

∫ ∞

ρ+
(
N (ρ)H(ρ) + AtP ′) dρ + B, (44)

where

H(ρ) = ρ2

2G

[
g(ρ)2 − 1 + ρ(g(ρ)2)′

ρ2

+
(

1

2
g(ρ)2φ′2 + V (φ)

)
−
(
L(F2) − 4A′

t (ρ)

N (ρ)

Q̃

ρ2

)]

(45)

is the reduced Hamiltonian which satisfies the constraint
H(ρ) = 0 and

P(ρ) = −4A′
t (ρ)ρ2

N (ρ)

dL(F2)

dF2 , (46)

which satisfies P ′(ρ) = 0. By using the Maxwell equation
(43) we can show thatP(ρ) = 4Q̃ is a constant. Furthermore,
B is a surface term, β = 1/T is the period of Euclidean time
and finally � is the area of the spatial 2 section. We now
compute the action when the field equations hold. The con-
dition that the permitted geometries should not have conical
singularities at the event horizon ρ+ imposes the requirement

T = N (ρ+)
(
g(ρ+)2

)′
4π

. (47)

So, by using the grand canonical ensemble we can fix the
temperature and the electric potential � = −At (ρ+). Then
the variation of the surface term yields

δB = δBG + δBφ + δBF , (48)

where

δBG = β�N (ρ)ρδg(ρ)2
∣∣∣∣
∞

ρ+
, (49)

δBφ = β�N (ρ)ρ2g(ρ)2φ′δφ
∣∣∣∣
∞

ρ+
, (50)

δBF = β�At (ρ)δP
∣∣∣∣
∞

ρ+
. (51)

For the variation of the fields at large distances we must
be careful with the integral appearing in the metric function
(15). It can be shown numerically that when At tends to zero
at infinity (for 1/2 < p < 3/2 in power-law electrodynamics
and in Born–Infeld type electrodynamics) the integral does
not contribute to the conserved charges, and the variation of
the fields at large distances yields

δBG∞ = β�

(
−
νρ

6
− α2ν

2 + O
(

1

ρ

))
δν, (52)

δBφ∞ = β�

(

νρ

6
+ O

(
1

ρ

))
δν, (53)

δBF∞ = β�At (∞)δP. (54)

On the other hand, when the electric potential diverges
at infinity (for p > 3/2 in power-law electrodynamics)
the variation of the integral in the metric function (15)
diverges too. However, it can be verified numerically that
it cancels out exactly with the contribution coming from
δBF∞ = β�At (∞)δP . So, we can have well defined con-
served charges in that case.

The variation of the fields at the horizon yields

δBGρ+ = − 4π

N (ρ)β
δρ+, (55)

δBφρ+ = 0, (56)

δBFρ+ = β�At (ρ+)δP. (57)

Therefore

δB = −β�

3
α2δν

3 + 2π�δρ2+ + β��δP. (58)

Thus, as the Euclidean action is related to the free energy F
through IE = −βF , we obtain

IE = S − βM + β�Q. (59)

Then this relation makes it possible to identify the mass (M),
the entropy (S) and the electric charge (Q) as

M = �

3
α2ν

3, S = �

4G
ρ2+,Q = �P = 4�Q̃. (60)

Thus, for power-law electrodynamics the electric charge is
given by

Q(1) = 4�η2p−1 pα(2p−1)/2p
1 ν2, (61)

and for the Born–Infeld type electrodynamics the electric
charge is

Q(2) = 4�α1ν
2. (62)

Having the temperature, mass, entropy, and electric charge
it is possible to study phase transitions between the nonlin-
early charged black holes with scalar hair and nonlinearly
charged black holes without hair. For this analysis it is con-
venient to write the temperature of four-dimensional charged
black holes with scalar hair (with k = −1) as

T = 1

4π

{
−1

3
(2r+
 + (12α2 + 
)ν)

− 2α2(2r+ + ν) ln

(
r+

r+ + ν

)
+ 22+pηp(Q2)p/Q

×
(

(2r+ + ν)

∫ r+

∞
At (r)

r2(r + ν)2 dr

+ r+(r+ + ν)
At (r+)

r2+(r+ + ν)2

)}
. (63)

On the other hand, in the absence of a scalar field, the field
equations have as a solution topological nonlinearly charged
black holes, which correspond to the metric presented in
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Eq. (15) of Ref. [63] by setting the parameter α = 0 and
n = 3. The non-hairy black hole we consider here is also
a generalization of the metric considered in [58], where a
thermodynamic study of spherically symmetric black holes
charged with power-law electrodynamics but with no cos-
mological constant was performed. The solution is

ds2 = − f̃ (ρ)dt2 + 1

f̃ (ρ)
dρ2 + ρ2d�2,

f̃ (ρ) = k − 


3
ρ2 − m

ρ
+ η

2p(2p − 1)2(q2)p

(3 − 2p)ρ
2

2p−1

, (64)

Ãt (ρ) = 1 − 2p

3 − 2p
qρ

3−2p
1−2p .

The temperature, entropy, mass, and electric charge are given,
respectively, by

TBH = 1

4π

(
− 1

ρ+
− 
ρ+ + η2p(1 − 2p)(q2)pρ

1+2p
1−2p
+

)
,

SBH = 2π�ρ2+,

MBH = −�ρ+

⎛
⎜⎝1 + ρ2+


3
− η

2p(2p − 1)2ρ

2
1−2p
+ (q2)p

3 − 2p

⎞
⎟⎠ ,

QBH = 2η
�p2p(q2)p

q
, (65)

where

q = (2p − 3)�

(1 − 2p)ρ
3−2p
1−2p
+

. (66)

So, the horizon radius ρ+ can be written as a function of
the temperature and of the electric potential. Now, in order
to find phase transitions, we must consider both black holes
in the same grand canonical ensemble, i.e., at the same T
and �. Making T and � equal for both black holes and by
considering the free energy F ,

F = F(T,�) = M − T S − �Q, (67)

we plot the difference of the free energies for the nonlin-
early charged black hole (F1) and the nonlinearly charged
black hole with scalar hair (F0), �F = F1 − F0 as a func-
tion of the temperature in Figs. 12 and 13. In Fig. 12 we
show that there is a second-order phase transition at the fixed
critical temperature Tc ≈ 0.16 for low values of p, and the
topological nonlinearly charged hairy black hole dominates
for temperatures lower than critical, whereas for tempera-
tures higher than critical the topological nonlinearly charged
black hole is thermodynamically preferred. In Fig. 13 we
show that there are no phase transitions for high values of p
and the charged black hole without scalar hair is thermody-
namically preferred. It is worth mentioning that since ν and
Q̃ are related, the temperature and the electric potential are
not independent; thus, we can express the free energy as a

0.10 0.12 0.14 0.16 0.18 0.20

0.04
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F

Fig. 12 The behavior of�F = F1−F0 as a function of the temperature
T with k = −1, � = 1, 
 = −3, α1 = 0.05, α2 = −1, η = 0.5 with
p = 0.9 (continuous line) and p = 1.2 (dashed line)

0.15 0.16 0.17 0.18 0.19 0.20
0.02
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F

Fig. 13 The behavior of�F = F1−F0 as a function of the temperature
T with k = −1, � = 1, 
 = −3, α1 = 0.05, α2 = −1, η = 0.5 with
p = 2 (continuous line) and p = 3 (dashed line)

function of T or � only. This is similar to what happens in
[85] for a charged hairy black hole in linear electrodynamics.

4 Conclusions

We have considered a gravitating system consisting of
a scalar field minimally coupled to gravity with a self-
interacting potential and a U(1) nonlinear electromagnetic
field. We solved the coupled field equations with a profile
of the scalar field which falls sufficiently fast outside the
black hole horizon. For a range of values of the scalar field
parameter, which characterizes its behavior, we found numer-
ically charged hairy black hole solutions in power-law and
Born–Infeld type electrodynamics, with the scalar field reg-
ular everywhere outside and on the event horizon. Also, in
the case of power-law electrodynamics, we found analytical
hairy black hole solutions for some special values of the expo-
nent p in the range 1/2 < p < 1. Then we studied the ther-
modynamics for both electrodynamics and phase transitions
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of our black hole solutions in power-law electrodynamics,
and we showed that there is a second-order phase transition
for low values of p. Moreover, at a low temperature, the topo-
logical nonlinearly charged hairy black hole is thermody-
namically preferred, whereas the topological charged black
hole without scalar hair is thermodynamically preferred at
a high temperature for power-law electrodynamics. Interest-
ingly enough, these phase transitions occur at a fixed critical
temperature and do not depend on the exponent p of the
nonlinearity electrodynamics. On the other hand, we showed
that there is no phase transition for high values of p. This
picture is consistent with the findings of the application of
the AdS/CFT correspondence to condensed matter systems.
In these systems there is a critical temperature below which
the system undergoes a phase transition to a hairy black hole
configuration at a low temperature. This corresponds in the
boundary field theory to the formation of a condensation of
the scalar field.
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Appendix A: Analytical solutions

In this appendix we present some analytical hairy black hole
solutions with power-law electrodynamics for some particu-
lar values of the exponent p. For p = 1

2 + 1
2n , with n > 1

being an integer number, so 1
2 < p < 1, the electric field is

given by

At (r) = QI1(r; n), (A1)

where we have defined

I1(r; n) ≡
∫

dr

(r(r + ν))n
=

ν
2 + r

− ν2

2 (n − 1)(r(r + ν))n−1

+
ν
2 + r

(n − 1)

n−2∑
j=1

⎛
⎝

j∏
i=1

2n − 2i − 1

n − i − 1

⎞
⎠

× 1

(− ν2

2 ) j+1(r(r + ν))n− j−1

+ 1

ν
(
− ν2

2

)n−1

n−1∏
i=1

2n − 2i − 1

n − i
ln

(
r

r + ν

)
.

(A2)

So, using this expression, we find that the metric function is
given by

f (r) = −


3
r2 − 1

3
ν(6α2 + 
)r + k − α2ν2

− 2α2r(r + ν) ln

(
r

r + ν

)

+ 2
3
2 + 1

2n η
(n + 1)

n
Q

(n+1)
n

{
−r(r + ν)

1
ν2

2 (n − 1)

×
(ν

2
I1(r; n + 1) + I2(r; n + 1)

)

+ r(r + ν)

n−2∑
j=1

⎛
⎝

j∏
i=1

2n − 2i − 1

n − i − 1

⎞
⎠ 1

(n − 1)
(
− ν2

2

) j+1

×
(ν

2
I1(r; n − j + 1) + I2(r; n − j + 1)

)

− 1(
− ν2

2

)n−1
ν4

⎛
⎝n−1∏

i=1

2n − 2i − 1

n − i

⎞
⎠

×
(

ν + (r + ν) ln

(
r

r + ν

)) (
ν + r ln

(
r

r + ν

))}
,

(A3)

where we have defined

I2(r; n) ≡
∫

rdr

(r(r + ν))n
= r

ν(n − 1)(r(r + ν))n−1

+ 2n − 3

ν(n − 1)
I1(r; n − 1). (A4)

On the other hand, for p = 1
2 + 1

2m−1 , with m > 1 being

an integer number, so 1
2 < p < 1, the electric field is given

by

At (r) = QI3(r;m), (A5)

where

I3(r;m) ≡
∫

dr

(r(r + ν))
2m−1

2

=
ν
2 + r

− ν2

2
2m−3

2 (r(r + ν))
2m−3

2

+
ν
2 + r
2m−3

2

m−1∑
j=1

⎛
⎝

j∏
i=1

2m − 2i − 2
2m−1

2 − i − 1

⎞
⎠

× 1

(− ν2

2 ) j+1(r(r + ν))
2m−2 j−3

2

, (A6)
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and the metric function is

f (r) = −


3
r2 − 1

3
ν(6α2 + 
)r + k − α2ν

2

− 2α2r(r + ν) ln

(
r

r + ν

)

+ 2
3
2 + 1

2m−1 η
2m + 1

2m − 1
Q

2m+1
2m−1

{
−r(r + ν)

1
ν2

2 (2m − 3)

×
(ν

2
I3(r;m + 1) + I4(r;m + 1)

)

+ r(r + ν)

m−1∑
j=1

⎛
⎝

j∏
i=1

2m − 2i − 2
2m−1

2 − i − 1

⎞
⎠

× 1

( 2m−3
2 )

(
− ν2

2

) j+1

×
(ν

2
I3(r;m − j + 1) + I4(r;m − j + 1)

)}
,

(A7)

where

I4(r;m) ≡
∫

rdr

(r(r + ν))
2m−1

2

= r
2m−3

2 ν(r(r + ν))
2m−3

2

+ 2(m − 2)
2m−3

2 ν
I3(r;m − 1). (A8)
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