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Abstract We study a model of the generalized Brans–
Dicke gravity presented in both the Jordan and in the Ein-
stein frames, which are conformally related. We show that
the scalar field equations in the Einstein frame are reduced
to the geodesics equations on the target space of the nonlin-
ear sigma model. The analytical solutions in elliptical func-
tions are obtained when the conformal couplings are given by
reciprocal exponential functions. The behavior of the scale
factor in the Jordan frame is studied using numerical compu-
tations. For certain parameters the solutions can describe an
accelerated expansion. We also derive an analytical approx-
imation in exponential functions.

1 Introduction

Scalar fields play a significant role in studies of gravity,
understanding the dynamics of the Universe and the phys-
ical nature of its dark sector. First, various unified mod-
els of field theories predict the existence of scalar part-
ners to the tensor gravity of General Relativity. The sim-
plest generalizations of the Einstein theory of gravity, in
which in addition to the metric the gravitation interac-
tion is mediated by a scalar field, are those of scalar–
tensor theories. Second, recent observational evidence [1–
6] indicates that the Universe is presently dominated by
a component dubbed dark energy. One of the approaches
to account for dark energy is to introduce the cosmologi-
cal constant in the framework of general relativity. How-
ever, a huge and still unexplained fine-tuning of the cos-
mological constant value [7] has not been understood yet.
Another widespread interpretation of dark energy is that
of quintessence, which is described by a scalar field mini-
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mally coupled to Einstein gravity rolling down some self-
interaction potential [8,9]. To take into account the region
where the equation of state is less than ω = −1, the
model with a phantom scalar field (i.e. with a negative
kinetic energy), an extension of the quintessence model,
was suggested in [10]. A variety of works in scalar–tensor
gravity are devoted to a search of an alternate explana-
tion of dark energy [11]. Additional interest in scalar–
tensor theories arises from various inflationary scenar-
ios of the early universe [12–14]. Recently gravitational
models with the Higgs potential aroused much attention
[15–19].

In Refs. [20,21] the AWE hypothesis within the frame-
work of the generalized Brans–Dicke theory with a non-
universal coupling was proposed. The original motivation for
studying this type of models is related to a unified descrip-
tion of dark matter (DM) and dark energy (DE) based on a
relaxation of the weak equivalence principle on large scales
[22–25].

The model contains three different sectors: gravitation,
described by the metric and the fundamental Brans–Dicke
field, the visible matter (baryons, photons, etc.) and the invis-
ible sector, constituted by an abnormally weighting energy
(AWE). The AWE hypothesis assumes that the invisible sec-
tor experiences the background spacetime with a different
gravitational strength than the ordinary matter, which is for-
mulated in terms of the non-universality of the couplings to
gravity for the visible and invisible sectors. The idea of a
violation of the equivalence principle for the particular case
of DM appeared prior to the numerous evidence for cosmic
acceleration and the advent of DE. Several models based on
microphysics have been considered to achieve such a mass
variation for DM in particular [26–28].

As is well known one can describe the matter content with
either the fluid or scalar field approaches. In [21] the cosmo-
logical evolution was studied in a flat FLRW background
using a fluid description for the matter and the AWE sectors.
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It is shown that the late-time accelerated expansion may take
place in the Jordan frame as well as there is an opportunity
for building an inflation mechanism.

In this paper we continue our investigations of the AWE
model and aim to obtain explicit solutions. As distinct from
previous works [20,21] assuming exponential couplings
(mutually inverse) to gravity, we describe the matter and the
invisible sector by scalar fields, which can be both ordinary
or phantom ones. The complexity having scalar fields makes
difficulties for finding exact solutions. Nevertheless, in the
Einstein frame it can be shown that under the cosmologi-
cal ansatz for required solutions the gravitational equations
are trivial and scalar fields equations correspond to geodesic
equations on the target space of a nonlinear sigma model [29–
34]. We show that using the sigma-model approach yields an
effective one-component Lagrangian with a potential. The
model with reciprocal exponential coupling functions can
be turned to a Higgs-like one. Scalar models with Higgs
potentials inspired by string field theories have been stud-
ied recently in [17,35,36]. We also present exact solutions in
elliptic functions for this case of the coupling functions. In
gravity theories cosmological solutions in elliptic functions
have appeared [35,37–41].

The paper is arranged as follows. In the next section, we
describe the model of the generalized tensor–scalar gravity
both in the Jordan and the Einstein frames. In Sect. 3 assum-
ing the flat FLRW background we solve the Einstein equa-
tions and show that the scalar field equations are equivalent to
the equations of motions for a sigma model. We also present
solutions in quadratures for scalar fields with arbitrary cou-
pling functions. In Sect. 4 we fix the coupling functions as
reciprocal exponents and treat various sets of parameters. In
Sect. 5 using numerical computations we study the behavior
of the scale factor in the Jordan frame for certain parame-
ters and obtain its analytical approximation in exponential
functions. The conclusions are given in Sect. 6.

2 The generalized Brans–Dicke gravity

We start by considering the action in the Jordan frame of the
generalized Brans–Dicke theory introduced in [20,21]

S = c3

16π G̃

∫
d4x

√−g̃

{
�R̃−ωB D(M(�))

�
g̃μν∂μ�∂ν�

}

+ε1Sm[ψm, g̃μν] + ε2Sa[ψa,M2(�)g̃μν], (1)

where G̃ is the “bare” gravitational constant, g̃μν is the
Jordan-frame metric coupling universally to the ordinary
matter, g̃ is the determinant of the metric g̃μν , R̃ is the scalar
curvature build upon g̃μν , � is a scalar degree of freedom,
ωBD(�) is the Brans–Dicke coupling function while ψm,a

are the fundamental fields entering the physical description

of the matter and abnormally weighting sectors, respectively,
εi = ±1 denotes the sign of the kinetic term for the scalar
fields: εi = +1 corresponds to a usual scalar field with posi-
tive kinetic energy and εi = −1 to a phantom field, i = 1, 2.
It should be noted that the matter action Sm does not explicitly
depend on the scalar field�, so the local laws of physics are
those of special relativity. The presence of the non-minimal
coupling M(�) in the sector Sa represents a mass variation.

To find solutions for the model (1) looks complicated due
to the admixture of scalar and tensor degrees of freedom.
Consequently, it is convenient to rewrite the action in the so-
called Einstein frame where the tensorial g̃μν and scalar �
degrees of freedom separate into a metric gμν and a scalar
field ϕ. The Jordan and the Einstein frames are related by the
conformal transformation

g̃μν = A2
m(ϕ)gμν (2)

with the scalar field redefinition

3 + 2ωBD =
(

d ln Am(ϕ)

dϕ

)−2

,

M(�) = Aa(ϕ)

Am(ϕ)
, � = A−2

m (ϕ), (3)

where Am(ϕ), Aa(ϕ) > 0 are the non-minimal coupling
functions. Doing so, the action (1) in the Einstein frame takes
the form

S = c3

16πG

∫
d4x

√−g{R[g] − 2gμν∂μϕ∂νϕ}

−
∫

d4x
√−gε1 A2

m(ϕ)g
μν∂μψm∂νψm

−
∫

d4x
√−gε2 A2

a(ϕ)g
μν∂μψa∂νψa, (4)

where (gμν) is the metric with the signature (−,+,+,+).
The action is similar to those of chameleon scalar fields [42,
43] (without the self-interaction potential).

The Einstein equations for the action (4) read as follows:

Rμν − 1

2
gμνR = 2∂μϕ∂νϕ − gμν∂αϕ∂

αϕ

+8πG

c3 [ε1T (m)μν + ε2T (a)μν ]. (5)

The stress-energy tensors for the ordinary and abnormally
weighting sectors read

T (m)μν = 2A2
m(ϕ)∂μψm∂νψm − A2

m(ϕ)gμν∂αψm∂
αψm, (6)

T (a)μν = 2A2
a(ϕ)∂μψa∂νψa − A2

a(ϕ)gμν∂αψa∂
αψa . (7)

The field equation for ϕ can be written in the following form:

�ϕ = −4πG

c3 (ε1αm T (m) + ε2αaT (a)), (8)
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with

�ϕ = 1√−g
∂μ(g

μν√−g∂νϕ), T i = −2A2
i ∂αψi∂

αψi ,

(9)

where T i is the trace of the stress-energy tensor of the sec-

tor i = m, a and αi = d(ln Ai )

dϕ
are the scalar coupling

strengths to the ordinary and abnormally weighting matter,
respectively.

The field equations for the scalar fields ψm and ψa read

ε1
1√−g

∂μ(A
2
m(ϕ)g

μν√−g∂νψm) = 0, (10)

ε2
1√−g

∂μ(A
2
a(ϕ)g

μν√−g∂νψa) = 0. (11)

3 The sigma model formalism

Here we consider a flat Friedman–Lemaître–Robertson–
Walker spacetime as a background

ds2 = gμνdxμdxν = −c2dt2 + a2(t)δi j dxi dx j . (12)

Owing to the presence of the coupling functions Am and Aa ,
obtaining solutions for the model (4) (especially solutions to
the scalar field equations) seems difficult. However, under the
assumption that the metric is given by (12) and that the scalar
fields depend on only a single (time) coordinate, the Einstein
equations (5) become trivial and the scalar field equations
(10)–(11) reduce to the equations of motion for a geodesic
curve for the 3-component nonlinear σ -model. To show this
we rewrite the Lagrangian corresponding to the action (4).
Representing the set of the scalar fields as a sigma-model
source term one obtains

L = R[g] − 2h AB σ́
Aσ́ B, (13)

where σ A is the multiplet

σ A =
⎛
⎝ϕψ̄m

ψ̄a

⎞
⎠ , A = 1, 2, 3, (14)

with ψ̄m =
√

8πG

c3/2 ψm, ψ̄a =
√

8πG

c3/2 ψa (15)

and the matrix (h AB), A = 1, 2, 3, reads

h AB = diag(1, ε1 A2
m, ε2 A2

a). (16)

Here´denotes differentiation with respect to time variable t . It
should be noted that the above model appeared in association
with spontaneous compactification of the extra dimensions
in higher-dimensional gravity [44,45].

Owing to the homogeneity and isotropy of the FLWR
background, we have only two Einstein equations (5)

3H2 = h AB σ́
Aσ́ B, (17)

2H́ + 3H2 = −h AB σ́
Aσ́ B, (18)

where H is the Hubble parameter H = á

a
. One can immedi-

ately integrate Eqs. (17)–(18) and write the result as follows:

aEF = a0[3H0(t − t0)+ 1]1/3, (19)

where a0, H0, and t0 are constants of integration.
Using the time variable τ = ln (t/t0) [46], the equations

of motion for the scalar fields (8), (10), (11) can be decoupled
from the gravitational part and take the form

d(h AB σ̇
A)

dτ
− 1

2

∂hC B

∂σ A
σ̇C σ̇ B = 0. (20)

Here and in what follows Ȧ = dA

dτ
. Now it is clear that

Eq. (20) are the Lagrange equations corresponding to the
following Lagrangian:

LSL = h AB σ̇
Aσ̇ B (21)

with the energy integral of motion

ESL = h AB σ̇
Aσ̇ B (22)

for the nonlinear sigma model with the metric (16) and coor-
dinates σ A ∈ R

3, A = 1, 2, 3, (14) on the target space
M = (R3, h). For the constant h AB(ϕ) = h AB the reduction
to the sigma model was proved (for a more general setup) in
[30]. The case of diagonal h AB with arbitrary dependence
on scalar fields in D dimensions, D ≥ 3, was considered in
[31].

The variablesσ A, A = 2, 3, are cyclic and the correspond-
ing equations of motion read

d

dτ
(h AB σ̇a) = 0, A = 2, 3, (23)

or in a more detailed form

d

dτ
(ε1 A2

m
˙̄ψm) = 0,

d

dτ
(ε2 A2

a
˙̄ψa) = 0. (24)

Equation (24) give rise to the constants of motion

A2
m

˙̄ψm = Cm, A2
a

˙̄ψa = Ca, (25)

where Cm and Ca are constants of integration, which are
usually interpreted as scalar charges.

Using (25) the Lagrangian (21) can be represented in the
following form:

Lϕ = 1

2
(ϕ̇2 − V (ϕ)), (26)
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where the potential is given by

V (ϕ) = ε1
C2

m

A2
m(ϕ)

+ ε2
C2

a

A2
a(ϕ)

. (27)

The energy integral of motion (22) now looks like

Eϕ = 1

2
(ϕ̇2 + V (ϕ)) (28)

and yields the following quadrature:
∫ ϕ

ϕ0

dϕ̄√
2Eϕ̄ − V (ϕ̄)

= τ, (29)

which defines the solutions for the scalar field ϕ.
Thus, we come to the effective one-component model with

a massive scalar field. In the case of arbitrary coupling func-
tions Am and Aa , the exact solutions for ϕ, ψm , ψa are given
by the quadratures (29) and

ψm = c3/2

√
8πG

∫ τ

0

Cm

A2
m

dτ̄ , ψa = c3/2

√
8πG

∫ τ

0

Ca

A2
a

dτ̄ . (30)

The detailed solutions for the model (4) and, hence, its
dynamics depend on the exact solution for the scalar field
ϕ which is defined by the particular form of the potential
V in an analogous way to the constitutive coupling function
A(ϕ) in [21].

One-loop corrections and the sigma model.
Let us now specify the coupling functions

Am = A−1
a = ekmϕ, (31)

where km is the coupling strength constant to the gravitational
scalar ϕ.

The Lagrangian of the scalar sigma model (21) has the
following form:

L = ϕ̇2 + ε1ekmϕ ˙̄ψ2
m + ε2ekaϕ ˙̄ψ2

a , (32)

where km , ka are couplings related by km = −ka .
For (31) one can estimate the influence of the quantum cor-

rections on the hierarchy between the coupling strengths. The
full analysis requires considering perturbations produced by
both metric and scalar field parts (see, for example, [47]) and
will be given in our forthcoming paper [48]. Here, for sim-
plicity, we confine ourselves to a discussion of the perturba-
tive expansions of the sigma-model fields following the geo-
metric background field method based on [49,50]. In order
take into account quantum corrections, counterterms should
be built from products of the Riemann tensor RABC D , includ-
ing contractions of it such as the Ricci tensor RAB and the
scalar curvature R.

Thus, at first loop, one obtains the following redefinition
of the sigma-model metric:

h AB → h AB + c1 RAB + c2 Rh AB . (33)

Using the relations for RAB and R from (95) and (97), we can
conclude that for the exponential coupling functions (31) the
hierarchy between the strength of the gravitational couplings
to the visible and dark sectors is protected from quantum
corrections at first loop.

4 Solutions in elliptic functions

Here we focus our attention on the exact solutions for the
couplings given by (31).

The metric h given by Eq. (16) defined on the target space
M can be written as follows:

h = dϕ ⊗ dϕ + ε1e2kmϕdψ̄m ⊗ dψ̄m

+ε2e−2kmϕdψ̄a ⊗ dψ̄a . (34)

The form of the coupling functions (31) is motivated by
two features. First, in [51] it was proved that the target space
M = (R3, h) with the metric (34) is a homogeneous space
isomorphic to the coset space G/H , where G is the isometry
group of M and H is the isotropy subgroup of G. Thus, in this
case one can find solutions to the geodesic equations (20).
Second, it was shown in [21] that cosmic acceleration in the
Jordan frame requires an inverse proportionality of Am and
Aa . It should be noted that the exponential coupling functions
give us a target space with constant curvature R = 2k2

m (see
Appendix A).

The quadrature (29) now takes the form∫ ϕ

ϕ0

dϕ̄√
2Eϕ̄ − ε1C2

me−2km ϕ̄ − ε2C2
a e2km ϕ̄

= τ. (35)

It is worth noting that a replacement ϕ = ϕ+ϕ0, where ϕ0 is
a certain constant, yields the sinh-Gordon equation, which is
well known in quantum field theory [52] and presents the
simplest integrable model of the affine Toda field theory,
based on the root data of the Lie algebra a(1)1 [53].

Introducing a new variable z and redefining the parameters

z =ekmϕ, a = −ε2k2
mC2

a , b=2k2
m Eϕ, c=−ε1k2

mC2
m,

(36)

one can rewrite (35) in the following form:∫ z

z0

dz̄√
az̄4 + bz̄2 + c

= τ. (37)

We can easily recognize in Eq. (37) the equation of motion
of the Higgs scalar field considered as the inflaton [18,19].

Thus, the case of exponential coupling functions (31) gives
rise to a quartic polynomial for the integrand (37) and the
solution for ϕ can be obtained in terms of elliptic functions
[54,55]. Depending on the sets of parameters a, b, and c,
the roots of the polynomial define the following five cases of
solutions.
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(i) When the parameters obey the restrictions

a < 0, c < 0, b > 0, b2 > 4ac, (38)

the roots of the polynomial az4 + bz2 + c are given by

ρ2 = b − √
b2 − 4ac

2|a| > 0, λ2 = b + √
b2 − 4ac

2|a| > 0,

(39)

where

ρ2 < λ2, 0 < ρ ≤ z ≤ λ. (40)

Then Eq. (37) can be rewritten in the form

∫ z

z0

dz̄√
(z̄2 − ρ2)(λ2 − z̄2)

= √|a|τ. (41)

The latter equation can be brought to the form

1

λ
F

⎛
⎝arcsin

⎡
⎣λ

z

√
z2 − ρ2

λ2 − ρ2

⎤
⎦ ,

√
λ2 − ρ2

λ

⎞
⎠ = √|a|τ, (42)

where F(u, k) is an elliptical integral of the first kind with
argument u and modulus k; τ0 is the constant of integration.

The conditions (38) correspond to the scalar fields ψm

and ψa with ordinary kinetic terms (εi = +1, i = 1, 2)
and positive energy Eϕ . In order to write the solution for the
scalar field ϕ, one needs to find the inverse function to the
elliptic integral in (42), i.e. the Jacobi elliptic function. The
solution to the scalar field ϕ is

ϕ= 1

km
ln

[
λρ√

λ2 − λ2sn2[√|a|λτ, k] + ρ2sn2[√|a|λτ, k]

]
,

(43)

where sn[√|a|λτ, k] is the elliptic sine function with modu-

lus k =
√
λ2 − ρ2

λ
.

The coupling functions can be presented as follows:

Am(ϕ) = A−1
a (ϕ)

= λρ√
λ2 − λ2sn2[√|a|λτ, k] + ρ2sn2[√|a|λτ, k] .

(44)

(ii) In this case we consider the parameters a < 0, c > 0
and b arbitrary. The roots of the polynomial are defined by

ρ2 = b + √
b2 − 4ac

2|a| , λ2 = −b + √
b2 − 4ac

2|a| (45)

and

0 < z ≤ ρ. (46)

Equation (37) now reads
∫ z

z0

dz̄√
(z̄2 + λ2)(ρ2 − z̄2)

= √|a|τ (47)

and can be rewritten in the form

1√
λ2 + ρ2

F

⎛
⎝arcsin

⎡
⎣ z

ρ

√
λ2 + ρ2

z2 + λ2

⎤
⎦, ρ√

λ2 + ρ2

⎞
⎠=√|a|τ.

(48)

From (48) one obtains

ϕ= 1

km
ln

⎡
⎣ ρλsn[√|a|(λ2 + ρ2)τ, k]√

λ2 + ρ2 − ρ2sn2[√|a|(λ2 + ρ2)τ, k]

⎤
⎦ , (49)

where the modulus k = ρ√
λ2 + ρ2

.

The corresponding coupling functions are given by

Am(ϕ) = A−1
a (ϕ)

= ρλsn[√|a|(λ2 + ρ2)τ, k]√
λ2 + ρ2 − ρ2sn2[√|a|(λ2 + ρ2)τ, k]

. (50)

The choice of parameters a, b, and c corresponds to a case
with a phantom scalar field for the matter sector (ε1 = −1)
and a scalar field with an ordinary kinetic term for the AWE
sector (ε2 = +1). The energy of the scalar field ϕ can be
either positive or negative.

(iii) Here b can be either positive or negative as in the
previous case, while the parameters a and c obey

a > 0, c < 0. (51)

The roots of the integrand (37) are defined by

ρ2 = b + √
b2 − 4ac

2a
, λ2 = −b + √

b2 − 4ac

2a
, (52)

with

0 < λ ≤ z < ∞. (53)

Equation (37) can be rewritten in the following form:
∫ z

z0

dz̄√
(z̄2 + ρ2)(z̄2 − λ2)

= √
aτ, (54)

and it can be represented as follows:

1√
λ2 + ρ2

F

(
arccos

(
λ

z

)
,

ρ√
λ2 + ρ2

)
= √

aτ. (55)

Then the solution for the scalar field ϕ reads

ϕ = 1

km
ln

(
λ

cn(
√

a(λ2 + ρ2)τ, k)

)
, (56)

123



3125 Page 6 of 13 Eur. Phys. J. C (2014) 74:3125

where cn(
√

a(λ2 + ρ2)τ, k) is the Jacobi elliptic cosine func-
tion with the modulus k = ρ√

λ2+ρ2
.

The coupling functions read

Am(ϕ) = A−1
a (ϕ) = λ

cn(
√

a(λ2 + ρ2)τ, k)
. (57)

Solutions (56)–(57) correspond to a model with the usual
scalar field ψm (due to ε1 = +1) and a phantom one ψa

(due to ε2 = −1). The scalar field energy Eϕ can be either
positive or negative.

(iv) In this case, the parameters are restricted by

a > 0, c > 0, b > 0, b2 > 4ac. (58)

The roots are then given by

ρ2 = b + √
b2 − 4ac

2a
, λ2 = b − √

b2 − 4ac

2a
, (59)

where

0 < z < ∞, 0 < λ2 < ρ2. (60)

Equation (37) is rewritten in the form∫ z

z0

dz̄√
(z̄2 + λ2)(z̄2 + ρ2)

= √
aτ (61)

and can be represented as follows:

1

ρ
F

⎛
⎝arctan

(
z

ρ

)
,

√
ρ2 − λ2

ρ

⎞
⎠ = √

aτ. (62)

The solution for ϕ reads

ϕ = 1

km
ln(ρsc(

√
aλτ, k)), (63)

where sc(
√

aλτ, k) is the Jacobi elliptic function which can
be written as the ratio of the elliptic sine function to the

elliptic cosine function with modulus k =
√
ρ2−λ2

ρ
.

The coupling functions are given by

Am(ϕ) = A−1
a (ϕ) = ρsc(

√
aλτ, k). (64)

Owing to (58), the matter and AWE sectors are described
by phantom fields ψm , ψa since ε1 = −1, ε2 = −1, while
the energy of the field ϕ is positive (Eϕ > 0).

(v) In this case, the parameters obey

a > 0, c > 0, b < 0, b2 > 4ac. (65)

The integrand roots are defined by

ρ2 = −b − √
b2 − 4ac

2a
>0, λ2 = −b + √

b2 − 4ac

2a
>0,

(66)

with

0 < ρ < λ < z. (67)

Equation (37) can be represented as follows:∫ z

z0

dz̄√
(z̄2 − ρ2)(z̄2 − λ2)

= √
aτ. (68)

Using elliptic integrals of the first kind one arrives at

1

λ
F

⎛
⎝arcsin

⎡
⎣
√

z2 − λ2

z2 − ρ2

⎤
⎦ , ρ

λ

⎞
⎠ = √

aτ. (69)

The solution for the scalar field ϕ is given by

ϕ = 1

km
ln

⎛
⎝
√
ρ2sn2(

√
aλτ, k)− λ2

sn2(
√

aλτ, k)− 1

⎞
⎠ . (70)

The corresponding coupling functions are

Am(ϕ) = A−1
a (ϕ) =

√
ρ2sn2(

√|a|λτ, k)− λ2

sn2(
√

aλτ, k)− 1
. (71)

As in the previous case, both ψm and ψa are phantom
fields (ε1 = −1, ε2 = −1), but the energy of the gravitational
scalar is now negative (Eϕ < 0).

Thus, all generic solutions for the scalar fieldsϕ (43), (49),
(56), (63), (70) and the coupling functions (44), (50), (57),
(64), (71) are of oscillating type. The effective frequency of
the oscillations is determined by the rate of growth of the
argument.

Let us briefly discuss the classical stability of the obtained
solutions. As mentioned above, they correspond to the
Lagrangian (26) which describes the motion in the one-
dimension potential (27). Here one can use the Lyapunov
method for the stability of solutions close to a point of equi-
librium [56]. Under this method, the points are stable in the
sense of Lyapunov, if at these points the first derivatives of the
potential vanish and its second derivatives are greater than 0,
i.e. the potential should have a minimum at the equilibrium
point. Thus, one has stability in the sense of Lyapunov for
case (i), where we have both kinetic terms of the positive sign
(ε1 = +1 and ε2 = +1). For cases (ii, iii, iv, v), the potential
does not obey the conditions required for stability. Never-
theless, the potential’s behavior can be changed by quantum
corrections, which will be analyzed in detail in [48].

5 Back to Jordan frame

We recall that observable quantities are not directly obtained
in the Einstein frame since physical units are universally
scaled with Am(ϕ). Therefore, one has to find the behav-
ior of the scale factor in the Jordan frame. Under Eq. (2), the
scale factors in the Jordan and the Einstein frames are related
in the following way:

ãJF = AmaEF, (72)
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where ãJF is the scale factor in the Jordan frame. Thus, we
have five cases of solutions.1

(a) Using the relation for the coupling function (44) from the
case (i) (Sect. 4), one gets

ãJF = a0λρ[3H0(t − t0)+ 1]1/3√
λ2−λ2sn2[√|a|λ ln (t/t0), k]+ρ2sn2[√|a|λ ln (t/t0), k] .

(73)

(b) Owing to (50), the scale factor in the Jordan frame cor-
responding to the case (ii) (Sect. 4) reads

ãJF = a0ρλ[3H0(t − t0)+ 1]1/3sn[√|a|(λ2 + ρ2) ln (t/t0), k]√
λ2 + ρ2 − ρ2sn2[√|a|(λ2 + ρ2) ln (t/t0), k]

.

(74)

(c) Taking into account the relation (57) one obtains for the
third case (Sect. 4)

ãJF = a0λ[3H0(t − t0)+ 1]1/3

cn(
√

a(λ2 + ρ2) ln (t/t0), k)
. (75)

(d) Owing to (64), the scale factor corresponding to case (iv)
(Sect. 4) can be written as follows:

ãJF = a0ρ[3H0(t − t0)+ 1]1/3sc(
√

aλ ln (t/t0), k).

(76)

(e) Finally, for the fifth case with (71) (Sect. 4), we have

ãJF = a0ρ[3H0(t − t0)+ 1]1/3

×
√
ρ2sn2(

√
aλ ln (t/t0), k)− λ2

sn2(
√

aλ ln (t/t0), k)− 1
. (77)

We note that relations (73)–(77) express the dependence
of the scale factors on the Einstein time. The time variable in
the Jordan frame is related to the time variable in the Einstein
frame as follows:

dt̃ = Amdt. (78)

To find the dependence of the scale factor ãJF on t̃ one has to
integrate (78)

t̃ − t̃0 =
∫ t

t0
Am(t

′)dt ′ ≡ B(t) (79)

and substitute the inverse function to B(t), which expresses
the dependence t̃(t), into (72):

ã(t̃)JF = Am(B
−1(t̃))aEF(B

−1(t̃)). (80)

1 Here we use the time variable t , which is related to τ by ln (t/t0) = τ .

Owing to the complexity of the couplings given as com-
binations of elliptic functions, it appears to be difficult to
integrate the right-hand side of (80). However, in the third
case (57) (which, as a matter of fact, can be used to describe
an accelerated expansion) one can obtain an approximate
analytical solution for the scale factor in the Jordan frame
with dependence on t̃ .

Let us represent the elliptic cosine function in terms of
hyperbolic functions [54]

cn(u, k) ≈ 1

cosh u
− 1

4
k′2(sinh u cosh u − u)

sinh u

cosh2 u
, (81)

where k2 + k′2 = 1 and the modulus of the elliptic function
k2 is close to unity.

Consequently, for the coupling function Am given by
Eq. (57) one obtains

Am = λ cosh(
√

a(λ2 + ρ2) ln (t/t0)) (82)

and taking into account the expression for the modulus

k2 = ρ2

λ2 + ρ2 we have the following conditions for the

parameters:

b>0, c ≈ 0, a �0 or Eϕ > 0, Cm ≈ 0, Ca �1.

(83)

Using (79) and fixing, for simplicity, the parameters by√
a(λ2 + ρ2) = 1 and Eϕ = 1, one can take the time variable

in the Jordan frame to be

t̃ = 1

4
t2 + 1

2
ln (t)− 1

4
. (84)

The time variable in the Einstein frame with dependence on
t̃ reads

t = exp

⎡
⎣4t̃ + λ− λW

(
exp

[
λ+4t̃
λ

])

2λ

⎤
⎦ , (85)

where W(z) is the Lambert W-function, which is defined by
the equation

W (z)eW (z) = z. (86)

It worth noting that the Lambert W-function for exact cosmo-
logical solutions arises in non-local models of stringy origin
in Ref. [36].

Finally, taking into account (80) and (85) one can write
the scale factor in the Jordan frame as

aJF(t̃) = 31/3λ cosh

⎛
⎝4t̃ + λ− λW

(
exp

[
λ+4t̃
λ

])

2λ

⎞
⎠

× exp

⎡
⎣4t̃ + λ− λW

(
exp

[
λ+4t̃
λ

])

6λ

⎤
⎦ . (87)
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Fig. 1 Comparison of numerical and analytical solutions for the third
type of solution. In the top panel, differences between the generic com-
putational integration and the analytical formula (87) for a set of param-
eters satisfying the condition (83) are presented. On short time scales,
the two scale factors in the Jordan frame evolve in the same way as
shown by the enlarged plot. But on larger time scales, the numerical
integration exhibits an accelerated expansion, as opposed to the solu-

tion in terms of Lambert W-function. This difference comes from the
fact that the analytical formula only keeps first order terms of the expan-
sion. Nevertheless, this allows one to check the general validity of the
numerical approach. The bottom plot displays another approach to con-
trol this validity by evaluating the relative error in energy conservation
at each time step. As shown here, this error stays below 10−10, thus
providing a guarantee for the numerical result

The Hubble parameter that corresponds to the solutions
reads

HJF =
2

(
1 − 3 tanh

[
λW

(
exp

[
4t̃+λ
λ

])
−λ−4t̃

2λ

])

3λ
(

1 + W
(

exp
[

4t̃+λ
λ

])) . (88)

Another possibility for study of the scale factor in the Jor-
dan frame (80) is to find the scale factor numerically. Here
we integrate numerically Eqs. (79)–(80) when the coupling
functions are given by Eq. (57). The numerical results pre-
sented below have been obtained thanks to a parallel C++11
program specially designed to explore the parameter space of
the solutions described in this work. To handle large acceler-
ations of the scale factor with both good precision and com-
putation speed, the underlying algorithm relies on the main
following steps:

• the input parameters km , Cm , Cm , Eϕ , ε1 and ε2 are read,
checked and used to determine the associated form of the
solution in terms of elliptic functions;

• the complete shape of the potential V (ϕ) according to
(27) is computed using an optimized version of the algo-
rithms described in [57] to evaluate the elliptic functions;

• the boundaries ϕmin and ϕmax between which computa-
tions can be executed without floating-point issues are
determined using the shape of V (ϕ);

• the integration starts from t = t0 with an adaptive time
step to ensure an accurate probing of the evolution of the
potential;

• at each step n, the value of t̃n is computed using Romberg
integration [58] and the value of the energy En is esti-
mated using a Ridders derivation [59] to give an order of
magnitude of the error 1 − En/Eϕ ;

• the integration ends when ϕ reaches the boundaries of
the [ϕmin, ϕmax] interval.

A comparison of the approximate analytical solution (87)
with the numerical one for the same set of parameters is pre-
sented on Fig. 1. It is seen that according to the chosen ansatz
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Fig. 2 Evolution of the scale
factor in the Jordan frame for
several groups of parameters for
the third type of solution. Five
groups of solutions are shown
for several values of the
coupling strength constant km :
as expected higher values of km
result in faster evolution of the
scale factor. For each group,
three values of the scalar
charges (Cm ,Ca) are shown: for
a given km , higher values of Cm
produce faster evolutions

Fig. 3 Accelerations of the
scale factor in the Jordan frame
for several groups of parameters
for the third type of solution.
The values of the scale factor
acceleration corresponding to
the evolutions of Fig. 2 are
presented for the same five
groups of parameters. Compared
to the analytical formula,
numerical integration allows one
to probe highly accelerated
solutions as in the case km = 4,
Cm = 40, Ca = 20, and Eϕ = 1

for the elliptic function expansion (81), the solution (87) can
be used for the estimation at small times, while the numer-
ical result, including higher order terms of the expansion,
is more accurate. Both energy conservation and the approx-
imate analytical solution for small times scales have been
used to check the validity and the numerical behavior of the
integration algorithms. As shown in Fig. 1, in this case, the
relative error for the energy, estimated under the formula (26)
with potential given by (27) and using relations (56)–(57),
stays below 10−10, which guarantees the correctness of the
exhibited solution.

The numerical integration allows one to move away from
the condition (83); thus one can obtain larger values of the
scale factor on shorter time scales. Figures 2 and 3 illustrate
the behavior of the numerical solution for the scale factor in
the Jordan frame and its acceleration for other sets of param-
eters in the third case (ε1 = +1, ε2 = −1). It worth empha-

sizing that the global shape is the same as in Fig. 1, but the fig-
ure shows that very large accelerations can be achieved with
this model on relatively short time scales. The full numerical
analysis and computational investigations of each solution
obtained in this work will be given in a forthcoming paper.

6 Conclusions

In this work we have constructed solutions for a four-
dimensional model of the generalized Brans–Dicke theory
with a non-universal coupling, using a combination of analyt-
ical and numerical methods. The description of the ordinary
and the AWE sectors of the matter content are given in terms
of scalar fields non-universally coupled to gravitation via the
conformal functions Am(ϕ) and Aa(ϕ). The kinetic terms of
these fields can have either positive or negative signs.
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In the Einstein frame, we presented the considered action
as a model with a sigma-model source term for the scalar
fields. Assuming the flat FLRW background, we have shown
that the Einstein equations in this frame are trivial. At the
same time, the scalar field equations correspond to geodesic
equations on the target space of a sigma model decoupled
from gravitation. We have reduced the sigma model to a one-
component Lagrangian with a potential and have found the
solutions for arbitrary coupling functions. The solutions for
the scalar fields describing the visible and invisible sectors
are determined by the solution for the dilaton ϕ and the forms
of the coupling functions. We have considered the case when
the couplings are given by reciprocal exponential functions.
The choice of coupling functions yields a Higgs-like equation
for the dilaton. Depending on the signs of the kinetic terms of
the scalar fields, there are five cases of solutions for the scalar
fields in terms of elliptic functions. Under conformal trans-
formations, the five cases of solutions for the dilaton yield five
various forms of the scale factor in the Jordan frame. Since the
couplings are represented by combinations of elliptic func-
tions it turns out to be difficult to derive explicit formulas for
the scale factors in the Jordan frame with dependence on the
Jordan time. However, we have obtained an approximate ana-
lytical solution in terms of exponential functions when the
matter sector is described by a scalar field with an ordinary
kinetic term and when a phantom scalar field corresponds to
the AWE sector. This approximate solution is defined for a
special case of the parameters: a small value of the scalar
charge Cm for the scalar field describing ordinary matter and
a sufficiently large value of the scalar charge Ca related to
the dark sector. For this matter content case, the solution in
the Jordan frame has been studied numerically; see Fig. 2.
By contrast to the analytical approximate solution, which is
valid at very small times, the numerical one can be suitable
for the description of an accelerated expansion.

A natural extension of this work would be a detailed anal-
ysis of the conditions in which an accelerated expansion is
possible. Further study is of interest in the context of the
inflationary scenario and hence would include an estimation
of the expansion rate of the universe and of the number of
e-folds. In addition, retracing the dynamics for the other four
scale factor cases using a numerical calculation is a topic of
a forthcoming publication.

The present work has been focused on solutions for the
flat FLWR background. At the same time, investigation of the
model for an anisotropic metric ansatz would be very attrac-
tive, since the coupling functions which are given in terms
of reciprocal exponential functions might lead to interesting
dynamics. However, in the case of a non-diagonal anisotropic
metric, one should use the ADM formalism as was done in
[33].

Here we have also briefly discussed the influence of the
quantum corrections on the hierarchy of the gravitational

couplings to the matter content for the coupling functions
given by reciprocal exponential functions. In this case, we
have shown that the hierarchy is protected from quantum
corrections at first loop. It would be of interest to perform
a detailed analysis of the higher order quantum corrections
and its influence of the stability of solutions.
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Appendix A: The geometric characteristics of the target
manifold

Here we present the expressions for the Christoffel symbols,
Riemann and Ricci tensors and the scalar curvature built from
the metric tensor

h =
⎛
⎝1 0 0

0 A2
m(ϕ) 0

0 0 A2
a(ϕ)

⎞
⎠ , (89)

which arises as the metric of the target space in Sect. 2.
Consider the case Am(ϕ) = A−1

a (ϕ).
The nonvanishing Christoffel symbols can be repre-

sented as

�
ψ̄m

ψ̄mϕ
= 1

Am(ϕ)

∂Am(ϕ)

∂ϕ
= αm, �

ϕ

ψ̄m ψ̄m
= −A2

m(ϕ)αm,

�
ψ̄a

ψ̄aϕ
= 1

Aa(ϕ)

∂Aa(ϕ)

∂ϕ
= αa = −αm,

�
ϕ

ψ̄aψ̄a
= −A2

a(ϕ)αa = A−2
m αm, (90)

where we denote by αm and αa the logarithmic derivatives

αm = d ln Am(ϕ)

dϕ
and αa = d ln Aa(ϕ)

dϕ
.

The choice of exponential coupling functions Am = ekmϕ

and Aa = ekaϕ gives rise to

�
ψ̄m

ψ̄mϕ
= km, �

ϕ

ψ̄m ψ̄m
= −kme2kmϕ,

�
ψ̄a

ψ̄aϕ
=ka = −km, �

ϕ

ψ̄aψ̄a
= −kae2kaϕ = kme−2kmϕ. (91)

The nonzero components of the Riemannian tensor in
the general case read

Rψ̄m

ϕψ̄mϕ
= −Rψ̄m

ϕϕψ̄m
= −∂ϕαm − α2

m = − 1

Am

∂2 Am

∂ϕ2 ,
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Rψ̄a

ϕψ̄aϕ
= −Rψ̄a

ϕϕψ̄a
= −∂ϕαa − α2

a = − 2

A2
m

(
∂Am

∂ϕ

)2

+ 1

Am

∂2 Am

∂ϕ2 ,

Rϕ
ψ̄mϕψ̄m

= −Rϕ
ψ̄m ψ̄mϕ

= −Am
∂2 Am

∂ϕ2 ,

Rϕ
ψ̄aϕψ̄a

= −Rϕ
ψ̄aψ̄aϕ

= −2
1

A4
m

(
∂Am

∂ϕ

)2

+ 1

A3
m

∂2 Am

∂ϕ2 ,

Rψ̄a

ψ̄m ψ̄aψ̄m
=
(
∂Am

∂ϕ

)2

, Rψ̄m

ψ̄aψ̄m ψ̄a
= 1

A4
m

(
∂Am

∂ϕ

)2

. (92)

According to (91) for Am = ekmϕ Aa = ekaϕ , one obtains

Rψ̄m

ϕψ̄mϕ
=−Rψ̄m

ϕϕψ̄m
=−k2

m, Rψ̄a

ϕψ̄aϕ
=−Rψ̄a

ϕϕψ̄a
=−k2

m,

Rϕ
ψ̄mϕψ̄m

= −Rϕ
ψ̄m ψ̄mϕ

= −k2
me2kmϕ, Rϕ

ψ̄aϕψ̄a

= −Rϕ
ψ̄a ψ̄aϕ

= −k2
me−2kmϕ,

Rψ̄a

ψ̄m ψ̄a ψ̄m
=k2

me2kmϕ=k2
me2kmϕ, Rψ̄m

ψ̄a ψ̄m ψ̄a
=k2e−2kmϕ.

(93)

The nonzero components of the Ricci tensor are given
by

Rϕϕ= 2

A2
m

(
∂Am

∂ϕ

)2

, Rψ̄m ψ̄m
=
(
∂Am

∂ϕ

)2

− Am
∂2 Am

∂ϕ2 ,

Rψ̄aψ̄a
= − 1

A4
m

(
∂Am

∂ϕ

)2

+ 1

A3
m

∂2 Am

∂ϕ2 . (94)

For the exponential coupling functions Am = ekmϕ and
Aa = ekaϕ we have

Rϕϕ = 2k2
m, Rψ̄m ψ̄m

= 0, Rψ̄aψ̄a
= 0. (95)

Owing to (94) the scalar curvature can be written in the
following form:

R = hϕϕRϕϕ + hψ̄m ψ̄m Rψ̄m ψ̄m
+ hψ̄aψ̄a Rψ̄aψ̄a

= 2

A2
m

(
∂Am

∂ϕ

)2

= 2α2
m . (96)

Remark 1 It worth noting that for the case Am(ϕ) =
A−1

a (ϕ) = ekmϕ , the scalar curvature of the target space
depends on the coupling strength:

R = 2k2
m . (97)

Appendix B: The direct method

In the Einstein frame, the solutions for the scale factor and
scalar fields from Sect. 3 with arbitrary coupling functions
can be obtained without resorting to the sigma-model for-
malism. Here we consider a direct approach for solving the

field equations for the model (4). The Einstein equation in
the FLRW background can be written

3
ȧ2

a2 = ϕ̇2 + 8πG(ε1 A2
m(ϕ)ψ̇

2
m + ε2 A2

a(ϕ)ψ̇
2
a ), (98)

2äa + ȧ2

a2 =−(ϕ̇2 + 8πG(ε1 A2
m(ϕ)ψ̇

2
m + ε2 A2

a(ϕ)ψ̇
2
a )).

(99)

The KGl dilaton equation reads now

ϕ̈ + 3H ϕ̇ = 8πG(ε1αm A2
m(ϕ)ψ̇

2
m + ε2αa A2

a(ϕ)ψ̇
2
a ). (100)

The KGl equation for the ordinary ψm and abnormal ψa

sectors can now be rewritten as

ε1
d

dt
(A2

m(ϕ)a
3ψ̇m) = 0, (101)

ε2
d

dt
(A2

a(ϕ)a
3ψ̇a) = 0. (102)

Equations (101)–(102) give rise to the constants of motion

A2
m(ϕ)a

3ψ̇m = cm, ⇒ ψ̇m = cm

A2
m(ϕ)a

3 , (103)

A2
a(ϕ)a

3ψ̇a = ca, ⇒ ψ̇a = ca

A2
a(ϕ)a

3 , (104)

where cm and ca are some constants. Adding Eqs. (98) to
(99) one obtains

ä

a
+ 2

ȧ2

a2 = 0. (105)

Integration of Eq. (105) yields the result

a = a0(3t + C)1/3, (106)

where a0 and C are constants of integration.
As a consequence of (103), (104), and (106), the field

equation for the scalar field ϕ (100) now takes the form

ϕ̈ + 3

3t + C
ϕ̇ = 8πG

(
ε1αm

c2
m

A2
ma6

0(3t + C)2

+ε2αa
c2

a

A2
aa6

0(3t + C)2

)
. (107)

To solve Eq. (107) we should make a change of variables.
So let t + C̃ = eu , where C̃ = C/3. Under this assumption,
Eq. (107) can be rewritten

ϕ
′′
uu = f (ϕ), (108)

where

f (ϕ) = 8πG

(
ε1αm

c2
m

9A2
ma6

0

+ ε2αa
c2

a

9A2
aa6

0

)
. (109)

Putting υυ
′
ϕ = f (ϕ) leads us to the following equation:

|u| + A1 =
∫
(A2 + 2

∫
f (ϕ)dϕ)−1/2dϕ, (110)
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where A1 and A2 are constants. Comparing Eqs. (110) and
(29) it is easy to see the following correspondence:

τ=|u|, τ0 = A1, Eϕ= A2, Vϕ = −2
∫

f (ϕ)dϕ.

(111)
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