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Abstract A method to facilitate the consistent inclusion of
cross-section measurements based on complex final-states
from HERA, TEVATRON and the LHC in proton parton
density function (PDF) fits has been developed. This can
be used to increase the sensitivity of LHC data to devia-
tions from Standard Model predictions. The method stores
perturbative coefficients of NLO QCD calculations of final-
state observables measured in hadron colliders in look-up
tables. This allows the a posteriori inclusion of parton den-
sity functions (PDFs), and of the strong coupling, as well as
the a posteriori variation of the renormalisation and factori-
sation scales in cross-section calculations. The main novel-
ties in comparison to original work on the subject are the
use of higher-order interpolation of Lagrangian form, which
substantially improves the trade-off between accuracy and
memory use, and a CPU and computer memory optimised
way to construct and store the look-up table using mod-
ern software tools. It is demonstrated that a sufficient ac-
curacy on the cross-section calculation can be achieved with
reasonably small look-up table size by using the examples
of jet production and electro-weak boson (Z, W ) produc-
tion in proton-proton collisions at a center-of-mass energy
of 14 TeV at the LHC. The use of this technique in PDF
fitting is demonstrated in a PDF-fit to HERA data and sim-
ulated LHC jet cross-sections as well as in a study of the
jet cross-section uncertainties at various centre-of-mass en-
ergies.

a e-mail: tancredi.carli@cern.ch

1 Introduction

The Large Hadron Collider (LHC) at CERN will collide pro-
tons at a centre-of-mass energy of up to 14000 GeV. The
combination of its high collision rate and centre-of-mass
energy will make it possible to probe new interactions at
very short distances. Such interactions might be revealed
in the production of cross-sections of particles at very high
transverse momentum (pT ) as a deviation from the Standard
Model theory.

The sensitivity to new physics depends on experimental
uncertainties in the measurements and on theoretical un-
certainties in the Standard Model predictions. It is there-
fore important to work out a strategy to minimise both the
experimental and theoretical uncertainties from LHC data.
Residual renormalisation and factorisation scale uncertain-
ties in next-to-leading order (NLO) QCD calculations for
single inclusive jet cross-sections are typically about 5–10%
and should hopefully be reduced as NNLO calculations be-
come available. However, in some kinematic regimes, PDF
uncertainties can be substantially larger than the uncertain-
ties from higher-order corrections, for example at large pT .
One strategy to reduce such uncertainty is to use single in-
clusive jet or Drell-Yan cross-sections at lower pT to con-
strain the proton parton density function (PDF) uncertainties
at high pT .

In order to further constrain PDF uncertainties, it would
be useful to be able to include final state data such as pT and
rapidity distributions for W/Z-boson and jet production in
global NLO QCD PDF fits, without recourse to inexact
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methods like the use of simple factor correcting of LO cross-
sections (k-factors). We propose here a method for a con-
sistent inclusion of final-state observables in global QCD
analyses.

For inclusive data, like the proton structure function F2 in
deep-inelastic scattering (DIS) the perturbative coefficients
are known analytically. During the fit the cross-section can
therefore be quickly calculated from the strong coupling
(αs ) and the PDFs and then be compared to the measure-
ments. However, final state observables, where detector ac-
ceptances or jet algorithms are involved in the definition of
the perturbative coefficients (called “weights” in the follow-
ing), have to be calculated using NLO QCD Monte Carlo
programs. Typically such programs need about one day of
CPU time to accurately calculate the cross-section. It is
therefore necessary to find less time consuming methods.

Any NLO QCD calculation of a final-state observable
involves Monte Carlo integration over a large number of
events. For deep-inelastic scattering and at hadron colliders
this must usually be repeated for each new PDF set, making
it impractical to consider many ‘error’ PDF sets, or carry out
PDF fits. Here, the “a posteriori” inclusion of PDFs is dis-
cussed, whereby the Monte Carlo run calculates a look-up
table (in momentum fraction, x, and momentum transfer, Q)
of cross-section weights that can subsequently be combined
with an arbitrary PDF. The procedure is numerically equiv-
alent to using an interpolated form of the PDF.

Many methods have been proposed to solve this problem
in the past [1–5]. In principle the highest efficiencies can
be obtained by taking moments with respect to Bjorken-x
[1, 2], because this converts convolutions into multiplica-
tions. This can have notable advantages with respect to
memory consumption, especially in cases with two incom-
ing hadrons. On the other hand, there are complications such
as the need for PDFs in moment space and the associated in-
verse Mellin transforms.

Methods in x-space have traditionally been somewhat
less efficient, both in terms of speed and in terms of memory
consumption. They are, however, somewhat more transpar-
ent since they provide direct information on the x values of
relevance. Furthermore they can be used with any PDF. The
use of x-space methods can be further improved by using
methods developed originally for PDF evolution [6–8].

Our method [9] bears a number of similarities to that of
the fastNLO project [10] and the two approaches were to
some extent developed in parallel. Relative to fastNLO,
we take better advantage of the sparse nature of the x-
dependent weights, allow for more flexibility in the scale
choice by keeping explicitly the scale dependence as an
additional dimension in the weighting table and provide a
means to evaluate renormalisation and factorisation scale-
dependence a posteriori. We also provide a broader range
of processes, since in addition to di-jet production, we in-
clude W- and Z-boson production. In order to make easy use

of the large number of weight files for practically all inclu-
sive jet pT spectra and di-jet mass spectra made available
by the fastNLO project, we provide a software interface
to make use of these weight tables within the APPLGRID
framework.

2 PDF-independent representation of cross-sections

2.1 Representing the PDF on a grid

We make the assumption that PDFs can be accurately rep-
resented by storing their values on a two-dimensional grid
of points and using nth-order interpolations between those
points. Instead of using the parton momentum fraction x and
the factorisation scale Q2, we use a variable transformation
that provides good coverage of the full x and Q2 range with
uniformly spaced grid points:

y(x) = ln
1

x
+ a(1 − x) and τ

(
Q2) = ln ln

Q2

�2
. (1)

The parameter � should be chosen of the order of �QCD, but
need not necessarily be identical. The parameter a serves to
increase the density of points in the large x region1 and can
be chosen according to the needs of the concrete applica-
tion.2

The PDF f (x,Q2) is then represented by its values fiy,ιτ

at the 2-dimensional grid point (iyδy, ιτ δτ ), where δy and
δτ denote the grid spacings, and is obtained elsewhere by
interpolation using polynoms of Lagrangian form:

f
(
x,Q2) =

n∑

i=0

n′∑

ι=0

fk+i,κ+ιI
(n)
i

(
y(x)

δy
− k

)

× I (n′)
ι

(
τ(Q2)

δτ
− κ

)
, (2)

where n, n′ are the interpolation orders. The interpolation
function I

(n)
i (u) is 1 for u = i, and otherwise is given by:

I
(n)
i (u) = (−1)n−i

i!(n − i)!
u(u − 1) · · · (u − n)

u − i
. (3)

Defining int(u) to be the largest integer such that int(u) ≤ u,
k and κ are defined as:

k(x) = int

(
y(x)

δy
− n − 1

2

)
,

κ
(
Q2

) = int

(
τ(Q2)

δτ
− n′ − 1

2

)
.

(4)

1For a fixed total number of bins, as the bins at large x get finer, the
low-x ones become wider.
2In case of a = 0 the function is analytically invertible, for a �= 0 a
numerical inversion has to be applied.
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Given finite grids whose vertex indices range from,
0, . . . ,Ny − 1, for the y grid and, 0, . . . ,Nτ − 1, for
the τ grid, one should additionally require that Eq. 2
only uses available grid points. This can be achieved
by remapping, k → max(0,min(Ny − 1 − n, k)), and,
κ → max(0,min(Nτ − 1 − n′, κ)).

2.2 Representing the final state cross-section weights on
a grid (DIS case)

To illustrate the method we take the case of a single flavour
in deep-inelastic scattering (DIS).

Suppose that we have an NLO Monte Carlo program
that produces events, m = 1, . . . ,N . Each event m has an
x value, xm, a Q2 value, Q2

m, as well as a weight, wm. We
define pm as the number of powers in the strong coupling αs

in event m. Normally one would obtain the final result W of
the Monte Carlo integration for one sub-process from:3

W =
N∑

m=1

wm

(
αs(Q

2
m)

2π

)pm

f
(
xm,Q2

m

)
, (5)

where f (x,Q2) is the PDF of the flavour under considera-
tion.

Instead one introduces a weight grid W
(p)
iy,iτ

and then for
each event one updates a portion of the grid with:
i = 0, . . . , n, ι = 0, . . . , n′:

W
(pm)
k+i,κ+ι → W

(pm)
k+i,κ+ι + wmI

(n)
i

(
y(xm)

δy
− k

)

× I (n′)
ι

(
τ(Q2

m)

δτ
− κ

)
,

where k ≡ k(xm), κ ≡ κ
(
Q2

m

)
. (6)

The final result for W , for an arbitrary PDF and an arbitrary
αs , can then be obtained subsequent to the Monte Carlo run:

W =
∑

p

∑

iy

∑

iτ

W
(p)
iy ,iτ

(
αs(Q

2(iτ )
)

2π

)p

f
(
x(iy),Q2(iτ ))

, (7)

where the sums with indices iy and iτ run over the number
of grid points and we have explicitly introduced x(iy) and

Q2(iτ )
such that:

y
(
x(iy)

) = iyδy and τ
(
Q2(iτ )) = iτ δτ. (8)

3Here, and in the following, renormalisation and factorisation scales
have been set equal for simplicity.

2.3 Including renormalisation and factorisation scale
dependence

If one has the weight matrix W
(p)
iy,iτ

determined separately
order by order in αs , it is straightforward to vary the renor-
malisation μR and factorisation μF scales a posteriori (we
assume that they were set equal in the original calculation).

It is helpful to introduce some notation related to the
DGLAP evolution equation:

df (x,Q2)

d lnQ2
= αs(Q

2)

2π
(P0 ⊗ f )

(
x,Q2)

+
(

αs(Q
2)

2π

)2

(P1 ⊗ f )
(
x,Q2) + · · · , (9)

where the P0 and P1 are the LO and NLO matrices of
DGLAP splitting functions that operate on vectors (in
flavour space) f of the PDFs. Let us now restrict our at-
tention to the NLO case where we have just two values of
p in Eq. 7. For example, in jet production in DIS, pLO = 1
and pNLO = 2. Introducing ξR and ξF corresponding to the
factors by which one varies μR and μF respectively, for
arbitrary ξR and ξF we may then write:

W(ξR, ξF )

=
∑

iy

∑

iτ

{(
αs(ξ

2
RQ2(iτ )

)

2π

)pLO

W
(pLO)
iy ,iτ

f
(
x(iy), ξ2

F Q2(iτ ))

+
(

αs(ξ
2
RQ2(iτ )

)

2π

)pNLO

× [(
W

(pNLO)
iy ,iτ

+ 2πβ0pLO ln ξ2
RW

(pLO)
iy ,iτ

)

× f
(
x(iy), ξ2

F Q2(iτ ))

− ln ξ2
F W

(pLO)
iy ,iτ

(P0 ⊗ f )
(
x(iy), ξ2

F Q2(iτ ))]
}
, (10)

where β0 = (11Nc − 2nf )/(12π) and Nc (nf ) is the num-
ber of colours (flavours). The a posteriori variation of the
renormalisation and factorisation scales works only, if ξr

and ξf are constants. If the functional form of μr and μf

is changed, for instance, from the leading jet transverse mo-
ments to the average transverse jet momentum, the weight-
ing grid has to be regenerated.

Though this formula is given for an x-space based ap-
proach, a similar formula applies for moment-space ap-
proaches. Furthermore it is straightforward to extend it to
higher perturbative orders.

To obtain the full DIS cross-section a summation of the
weights and the parton densities over the contributing sub-
processes is required.
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2.4 The case of two incoming hadrons

In hadron-hadron scattering one can use analogous proce-
dures but with one more dimension. Besides Q2, the weight
grid depends on the momentum fractions of the first (x1) and
second (x2) hadrons.

The analogue of Eq. 7 is given by:

W =
∑

p

nsub∑

l=0

∑

iy1

∑

iy2

∑

iτ

W
(p)(l)
iy1 ,iy2 ,iτ

(
αs(Q

2(iτ )
)

2π

)p

× F (l)
(
x

(iy1 )

1 , x
(iy1 )

2 ,Q2(iτ ))
, (11)

where nsub is the number of sub-processes and the initial
state parton combinations F are specified in Eqs. 12, 20
and 18.

The combinations of the incoming parton densities
(defining the number of sub-processes) often can be sim-
plified by making use of the symmetries in the weights.
In the case of jet production only seven sub-processes are
needed (see Sect. 2.4.1). The case of W -boson and Z-boson
production is treated in Appendix A. The case of b-quark
production is discussed in Ref. [11].

An automated way to find the sub-processes is discussed
in Appendix B.

2.4.1 Sub-processes for jet production in hadron-hadron
collisions

In the case of jet production in proton-proton collisions the
weights generated by the Monte Carlo program can be or-
ganised in seven possible initial-state combinations of par-
tons:

gg: F (0)
(
x1, x2;Q2

) = G1(x1)G2(x2),

qg: F (1)
(
x1, x2;Q2

) = (
Q1(x1) + Q̄1(x1)

)
G2(x2),

gq: F (2)
(
x1, x2;Q2

) = G1(x1)
(
Q2(x2) + Q̄2(x2)

)
,

qr: F (3)
(
x1, x2;Q2

) = Q1(x1)Q2(x2) + Q̄1(x1)Q̄2(x2)

− D(x1, x2),

qq: F (4)
(
x1, x2;Q2

) = D(x1, x2),

qq̄: F (5)
(
x1, x2;Q2

) = D̄(x1, x2),

qr̄: F (6)
(
x1, x2;Q2

) = Q1(x1)Q̄2(x2) + Q̄1(x1)Q2(x2)

− D̄(x1, x2),

(12)

where g denotes gluons, q , quarks and r , quarks of differ-
ent flavour, q ′ �= r and we have used the generalised PDFs

defined as:

GH (x) = f0/H

(
x,Q2

)
,

QH (x) =
6∑

i=1

fi/H

(
x,Q2),

Q̄H (x) =
−1∑

i=−6

fi/H

(
x,Q2),

D(x1, x2) =
6∑

i=−6i �=0

fi/H1

(
x1,Q

2
)
fi/H2

(
x2,Q

2
)
,

D̄(x1, x2) =
6∑

i=−6i �=0

fi/H1

(
x1,Q

2
)
f−i/H2

(
x2,Q

2
)
,

(13)

where fi/H is the PDF of flavour i = −6, . . . ,6 for hadron
H and H1 (H2) denotes the first or second hadron.4

2.5 Including scale dependence in the case of two
incoming hadrons

It is again possible to choose arbitrary renormalisation and
factorisation scales. Specifically for NLO accuracy:

W(ξR, ξF )

=
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∑
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)
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F (l)
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(iy1 )
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+
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2
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)
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× [(
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+ 2πβ0pLO ln ξ2
RW
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× F (l)
(
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1 , x
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2 , ξ2
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− ln ξ2
F W

(pLO)(l)
iy1 ,iy2 ,iτ

(
F

(l)
q1→P0⊗q1

(
x

(iy1 )

1 , x
(iy1 )

2 , ξ2
F Q2(iτ ))

+ F
(l)
q2→P0⊗q2

(
x

(iy1 )

1 , x
(iy1 )

2 , ξ2
F Q2(iτ )))]

}
, (14)

where F
(l)
q1→P0⊗q1

is calculated as F (l), but with q1 replaced

with P0 ⊗ q1, and analogously for F
(l)
q2→P0⊗q2

.

2.6 Reweighting to a different center-of-mass energy

From a weight grid W calculated at a particular centre-of-
mass energy

√
s it is also possible to calculate a cross-

section at a different centre-of-mass energy
√

s′ by using

4In the above equation and in the following we follow the standard
PDG Monte Carlo numbering scheme [12], where gluons are denoted
as 0, quarks have values from 1–6 and anti-quarks have the correspond-
ing negative values.
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transformed parton momentum fractions x′
1/2 and adding

a flux factor in the cross-section convolution as given by
Eq. 11 or Eq. 14:

W ′(ξR, ξF ) = s

s′ W(ξR, ξF ), (15)

and the momentum fractions x1/2 in the generalised parton
densities F(x1, x2,Q

2) are replaced by:

x′
1,2 =

√
s√
s′ x1,2. (16)

Using a higher beam energy would imply a lower x for the
same kinematics and for the same invariant mass of the par-
tonic system. When

√
s′ <

√
s it can occur that x′

1 > 1 or
x′

2 > 1, in which case the parton densities should be set to
zero. One should be aware that a jet transverse momentum
that corresponds to moderate x values with centre-of-mass
energy

√
s (and correspondingly low density of grid points

in x) may correspond to large x when using a smaller
√

s′.
In such cases, it can happen that the low density of grid
points in x is no longer sufficient, given that PDFs vary more
rapidly at large x than at moderate x.

Special care is also needed when taking
√

s′ >
√

s in-
sofar as there will be kinematic regions accessible with the
larger

√
s′ values that were not probed at all in the original

NLO calculation at centre-of-mass energy
√

s. As a con-
crete example, with

√
s′ = 14 TeV, there can be events with

three jets having respectively pT = 6,4,2 TeV. Such events
contribute to the inclusive jet spectrum at pT = 4 TeV. How-
ever, taking a grid calculated with

√
s = 10 TeV (where such

events are kinematically disallowed) and using it to deter-
mine the inclusive jet spectrum with

√
s′ = 14 TeV, this kind

of contribution will be left out.

3 Technical implementation

To test the scheme discussed above, the NLO QCD Monte
Carlo programs NLOJET++ [13–15] for jet production and
MCFM [16, 17] for the production of W - and Z-boson are
used. To illustrate the performance of the method jet and W -
and Z-boson production are used as examples. However, it
is worth noting that these two programs give access to many
of the NLO QCD calculations presently available.

The weight grid W
(p)(l)
iy1 ,iy2 ,iτ

of Eq. 11 is filled (for each

cross-section bin) in the user module of the NLO program,
where one has access to the event weights and the partons’
momenta. This object is called “grid” in the following. At
this point the cross-section definition is specified and the
physical observables that are being studied are defined (e.g.
using a jet algorithm).

The weight grid for each value of the observable in ques-
tion is represented as a multidimensional object with one

dimension each for x1, x2 and Q2, one for the sub-process
in question, and one for the order in αs . The task is to store
the weight grid in such a way that as little memory as pos-
sible is used and the information can be extracted in a fast
way. In the following several options to reduce the necessary
memory are discussed:

The simplest structure for a software implementation of
the weight grid is a multidimensional array (for x1, x2 and
Q2), like the TH3D-class available in the ROOT analysis
framework.

The overhead of storing empty bins can be largely re-
duced by calculating the x1, x2 and Q2 boundaries of the
weight grid using the NLO QCD program in a special run
before the actual filling step. At the beginning of the fill-
ing step the adjusted boundaries of the weight grids are then
read-in and an optimised weight grid is constructed.

Since the rectilinear region bounded by limits in x1, x2

and Q2 may contain many phase-space points that are un-
occupied, additional memory can be saved by using meth-
ods to avoid storing elements in the weight grid that are
not filled. Since the occupied regions are continuous, but ir-
regular, grid formats for truly sparse matrices (such as the
Harwell-Boeing format) are not used. Instead a custom for-
mat is favoured where the grid, lower- and upper-limits in
each dimension are stored along with all the elements in be-
tween.

This is illustrated in Fig. 1 for a simple two-dimensional
grid. For the three-dimensional structure, each of the row-
column elements would itself be a column with its own
lower and upper range delimiters. The resulting saving of
memory is usually around a factor of four, even after taking
into account the additional storage for the range delimiters.5

Since the grid itself knows the index of the first and last
filled element in each row, column etc., are the indices of the
first filled row, or the first filled column for a given row, the
grid that contain data. Similarly when interrogating the grid
for the value of an element, it is possible to ascertain whether
the element is in the occupied, or unoccupied region of the
grid and return the value of the filled element if filled, or
0 otherwise. This makes accessing the unfilled members of
the grid much faster than otherwise.

The actual implementation for the grid6 involves a num-
ber of related classes written in C++.7 The grid for a given
cross-section is represented by a concrete instance of a mas-
ter class, appl::grid. This class has a number of con-
structors that allow the cross-section it will calculate to be

5If additional savings are required in the future, packing the range de-
limiters for each sparse one dimensional structure into a single integer
will halve this additional overhead, but will slightly increase the access
time due to the unpacking.
6The complete code including the interfaces to NLOJET++ and
MCFM is available from http://svn.hepforge.org/applgrid.
7A FORTRAN interface is also available so that the basic functionality
can be accessed from within user FORTRAN code.

http://svn.hepforge.org/applgrid
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Fig. 1 An example of the
custom two-dimensional sparse
structure. Rows and columns are
numbered from 0 to 20 from the
top left. The elements with data
members are shown filled, only
rows 1 to 17 have data members,
for each row the columns that
have data members are shown
on the right. A total of 117
elements, from the maximum of
400 elements are stored, along
with the single pair of
row-range delimiters, and the 17
pairs of column range delimiters
for each of the individual rows

defined in terms of a fixed number of regular or variable
width bins in the cross-section observable.

For each bin in the observable, the master class has a
number of instances of an internal class—one for each order
of αs—so that for a cross-section with 10 bins, with contri-
butions at leading order and next-to-leading order, the mas-
ter class would contain a total of 20 instances of the internal
class.

This internal class, appl:igrid, encodes all the infor-
mation required to create the cross-section, at one particu-
lar order, for that bin. The class contains the x-to-y, y-to-x
and Q2-to-τ , τ -to-Q2 transform pairs, and a subclass that
encodes information on how to generate the N generalised
internal sub-processes for the particular interaction from the
basic parton distribution functions. It also contains instances
of the sparse grid class in x1, x2 and Q2 described above, for
each of the N sub-processes.

When requested to perform the convolution, the master
class calls the convolute method of the subclass for each or-
der of the cross-section in each bin. The convolute method
of the subclass performs the convolution over x1, x2 and Q2

for each of the sub-processes.
For each bin in the observable, the master class takes the

cross-sections from the subclasses for each order from each
bin and adds them to arrive at the final cross section for that
bin.

The subclass for the generalised internal sub-processes
are very basic classes which encode the number of sub-
processes, i.e. seven in the case of jet production, and twelve
in the case of Z-boson production, and simply take the
13 parton distribution values for each incoming hadron at
a given scale, and generate the N internal processes from
these.

When the grid is saved to a ROOT file8 the master class
encodes the complete status of the internal grids, which
transform pair, and which sub-process is required etc., so
that once reading from the file, everything required to calcu-
late the cross section (e.g. sub-process definition, CKM ma-
trix elements etc.) is available. In this way all information
to perform the cross-section calculation is available from
the output file from a single function call by the user and
the only additional information required is an input func-
tion for generating the PDFs and another one for calculat-
ing αs . We use the HOPPET program [8] to calculate the
DGLAP splitting functions needed for the cross-section con-
volution when the renormalisation and factorisation is varied
(see Eq. 10).

All the various choices in the weight grid architecture and
other information needed to calculate the cross-section are
encoded in the output file. They are described in the follow-
ing:

• The centre-of-mass energy at which the weight grid has
been produced.

• The choice of the coordinate transform function. By de-
fault the form of Eq. 1 is used. However, any other func-
tion can be provided by the user.

• The interpolation order as given by Eq. 2.
• The number of grid points to be used for each dimension

x1, x2 and Q2.
• The definition of the sub-processes via a 13 × 13 matrix.
• The CKM matrix elements or other constants needed to

calculate the cross-sections.

8Technically, the grid is transformed to TH3D-histograms that are
stored in the output ROOT file.
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• The required number of the points on the grid can be op-
tionally reduced with the aid of reweighting factor in the
filling step. This flattens out the PDF in the region where
it is steeply falling.

By default the following functional form is used for the
reweighting:9

w(x) = xa1(1 − 0.99x)a2 . (17)

The parameter a1 can be adjusted to flatten out the change
of the PDF at low-x while the parameter a2 can be opti-
mised for the high-x region. The factor 0.99 prevents the
weight from being zero for x = 1.

Reasonable values for the parameters a1 and a2 have
been determined by fitting the sum of the up, down and
gluon PDFs. For the CTEQ6 PDFs [18], values of a1 =
−1.5 to −1.6 and a2 = 3.0 to 3.4 have been found for the
range 5 < Q < 5000 GeV. The variation comes from a
slight dependence of the a1 and a2 parameters on Q2. For
other PDFs, the results of the fit can be slightly different.

The user can change the parameters or provide another
functional form.

4 Accuracy of the weight grids

The choice of the weight grid architecture depends on the re-
quired accuracy, on the exact cross-section definition and on
the available computer resources. For each possible appli-
cation the weight grid architecture has to be carefully cho-
sen in order to achieve the required accuracy with the avail-
able computer memory and computing time. For instance,
for observables where the PDFs are steeply falling, e.g. the
inclusive jet cross-section at high transverse momentum in
the forward region, a fine grid in x is needed. The memory
usage of weight grids for one cross-section should be kept
small since, e.g. in global PDF fits, it might be necessary to
read in a large number of weight grids. In addition, the con-
volution time depends on the number of grid nodes, and so
keeping memory requirements as small as possible is in any
case desirable. The number of points needed in the weight
grid is kept modest by using the higher-order interpolation
functions of Eq. 2, and optionally also by introducing a PDF
weight, as in Eq. 17 during the filling step, or by using a
sparse structure.

In the following, the influence of the grid architecture on
the achievable accuracy in the cross-section calculation is
discussed. The computer memory use and execution speed
are also investigated. The production of jets and of W - and
Z-bosons at LHC are used as examples.

In our test runs, to be independent from statistical fluctu-
ations (which can be large, in particular in the NLO case),

9Such a PDF reweighting was first introduced in Ref. [10].

in addition to the weight grid, reference histograms are filled
using the NLO QCD calculation without weights in the stan-
dard way. The result obtained from the weight grid is then
compared to these reference histogram.

4.1 Jet production at hadron colliders

The single inclusive jet cross-section as a function of the jet
transverse momentum (pT ) is calculated for jets in the cen-
tral rapidity (y) region of 0 < y < 1 and in the forward ra-
pidity region of 2 < y < 3. Jets are defined via the seedless
cone jet algorithm as implemented in NLOJET++, which
corresponds to the seedless algorithm of Ref. [19] (or SIS-
Cone [20]), except for small differences in the split–merge
procedure which are irrelevant at this order. The cone radius
has been set to R = 0.7, the overlap fraction to f = 0.5.10

The renormalisation and factorisation scales are set to Q2 =
p2

T ,max, where pT,max is the pT of the highest pT jet in the

required rapidity region.11

To discuss the dependence of the weight grid perfor-
mance on the grid architecture, a default weight grid is de-
fined from which variations in a single parameter are studied
systematically. The default weight grid consists of 30 bins in
x and 10 bins in Q2. The points are distributed according to
Eq. 1 with a = 5 and 5th order interpolation is used. No PDF
reweighting (see Eq. 17) is used.

The ratio of the cross-section calculated with the de-
fault weight grid to the reference cross-section calculation
is shown in Fig. 2 for the jet cross section in the central ra-
pidity region (0 < y < 1) (a) and the forward rapidity region
(2 < y < 3) (b). The weight grid is produced in a run where
the CTEQ6mE PDF [18] has been used to calculate the jet
cross-section. This PDF is used as standard in the follow-
ing. To show the independence of the weight grid perfor-
mance on the used PDF, Fig. 2 also includes more recent
PDFs based on the analyses of a large variety of data (global
analysis) like CTEQ6.6 [22] and MSTW2008 [23] or only
using inclusive DIS data based on combined H1 and ZEUS
data (HERAPDF01) [24]. In addition, we include a PDF that
does not use a parameterised input distribution NNPDF [25].
Further comparisons of the jet cross-sections calculated with
these PDFs can be found in Sect. 5.

10These choices are related to the fact that some of the NLOJET++ runs
were performed some time in the past. A modern cone-algorithm
(in the class of those with a split–merge procedure) would be SIS-
Cone [20], and a value of f = 0.75 would be recommended [21].
11Note that beyond LO the pT,max will in general differ from the pT of
the other jets, so when binning an inclusive jet cross-section, the pT of
a given jet may not correspond to the renormalisation scale chosen for
the event as a whole. For this reason separate grid dimensions for the
jet pT and for the renormalisation scale are used. This requirement has
been efficiently circumvented in some moment-space approaches [2].
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Fig. 2 Ratio of grid and standard calculations of the single inclusive
jet pT spectrum for 0 < y < 1 (a) and for 2 < y < 3 (b), for a variety
of PDFs. The results are shown for the default weight-grid settings, i.e.

30 bins in x, 10 bins in Q2, a coordinate transform parameter a = 5
and fifth order interpolation

In the central region the cross-section calculated with the
weight grid reaches an accuracy of about 0.1% for all trans-
verse jet momenta and all PDFs. In the forward region a sim-
ilar performance is achieved for transverse jet momenta up
to 1000 GeV. For transverse jet momenta above that value
the performance degrades to 0.6% and a variation with the
PDF is observed.

The dependence of the accuracy on the number of x-bins
is illustrated in Fig. 3. If only 25 x-bins are used, the accu-
racy is 0.3% in the central and 0.6% in the forward rapidity
region. The accuracy decreases towards low jet transverse
momenta. More accuracy is achieved by a larger number
of x-bins. For 30 bins the accuracy is 0.1%. For 40 x-bins
the improvement is small, but visible. A very sensitive kine-
matic region is the forward region with very high transverse
momenta. In this region at least 30 x-bins are needed to get
an accuracy of 0.1%.

Figure 4 shows the dependence of the accuracy on the
number of Q2-bins. This dependence is rather small. When
a large enough number of x-bins is chosen, no change is
observed for 8 to 15 bins in Q2.

The dependence on the interpolation order (as defined in
Eq. 3) is shown in Fig. 5. While varying the default interpo-
lation order n = 5 to n = 4 and n = 6 gives similar results
within 0.1%, the interpolation order n = 3 leads to an ac-
curacy loss of 0.5% at low transverse jet momenta in the
central regions, and by 0.4–1% at low and high transverse
jet momenta in the forward region.

In conclusion, the results in Figs. 2–5 demonstrate that an
accuracy of 0.1% can be reached with a reasonable weight
grid size. The most critical parameter is the number of x-
bins, which must be large enough to accommodate strong
PDF variations in certain phase space regions. In compar-
ison, the dependence on the number of Q2 bins is rather

weak. The interpolation between the grid points is suffi-
ciently accurate to allow the grid technique to be used and
fifth order interpolation produces reasonable results. The
achieved accuracy is probably sufficient for all practical ap-
plications.

In applications where a very small weight grid is needed,
one can also introduce a PDF-weight to flatten out the x-
dependence of the PDFs (see Eq. 17). The PDF weight is
calculated using a1 = −1.5 and a2 = 3. This is illustrated in
Fig. 6, where grids with very low number of x-bins (8, 9,
10) and eight Q2 bins are used, the interpolation is lowered
to n = 4. Even with the smallest weight grid an accuracy
of 1% is achieved using the PDF-weight. For a somewhat
larger weight grid with 10 x-bins the accuracy is 0.5% in all
phase space regions.

One of the important theoretical uncertainties in NLO
QCD calculations is the variation of the results with the
choice of the factorisation and renormalisation scale. Equa-
tion 14 allows the calculation of the cross-section for any
scale choice a posteriori from one weight grid produced at a
fixed scale choice. The results from scale variations by a fac-
tor of 2 up and down is shown in Fig. 7. The renormalisation
and factorisation scales are either varied together or varied
individually. The weight grid result has been calculated with
a single weight grid and the reference cross-sections have
been calculated by repeating the standard NLO QCD calcu-
lation for each of the scale variations. The cross-section cal-
culated with the weight grid reproduces the standard results
to within about 0.1% in the central region and 0.1–0.2% in
the forward region.

4.2 Reweighting jet cross-sections to a different
centre-of-mass energy

As outlined in Sect. 2.6 a weight grid produced at a given
centre-of-mass energy can also be used to calculate the
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Fig. 3 Ratios of grid and standard calculations of the single inclusive
jet pT spectrum for 0 < y < 1 (a) and for 2 < y < 3 (b), illustrating
the impact of varying the number of x-bins in the grid. All weight grids

have 10 bins in Q2, a coordinate transform parameter a = 5 and fifth
order interpolation. The PDF set is CTEQ6mE

Fig. 4 Ratios of grid and standard calculations of the single inclusive
jet pT spectrum for 0 < y < 1 (a) and for 2 < y < 3 (b), illustrating
the impact of varying the number of Q2-bins in the grid. All weight

grids have 30 bins in x, a coordinate transform parameter a = 5 and
fifth order interpolation. The PDF set is CTEQ6mE

Fig. 5 Ratios of grid and standard calculations of the single inclusive
jet pT spectrum for 0 < y < 1 (a) and for 2 < y < 3 (b), illustrating
the impact of varying the grid interpolation order. All weight grids

have 30 bins in x, 10 bins in Q2 and a coordinate transform parameter
a = 5. The PDF set is CTEQ6mE
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Fig. 6 Ratios of grid and standard calculations of the single inclusive
jet pT spectrum for 0 < y < 1 (a) and for 2 < y < 3 (b), illustrating
the use of small grids with PDF reweighting. The weight grids have a

low number of x-bins (8, 9, 10), 8 bins in Q2, a coordinate transform
parameter a = 5, fourth order interpolation and PDF reweighting with
Eq. 17. The PDF set is CTEQ6mE

Fig. 7 Ratios of grid and standard calculations of the single inclusive
jet pT spectrum for 0 < y < 1 (a) and for 2 < y < 3 (b), with scale
variation. The default weight grid is used, with 30 bins in x, 10 bins in
Q2, a coordinate transform parameter a = 5 and fifth order interpola-

tion. The grid results are based on a posteriori variation of the renor-
malisation and factorisation scales, using Eq. 10, while the standard
results have been obtained separately for each choice of renormalisa-
tion and factorisation scale. The PDF set is CTEQ6mE

cross-section at a lower or higher centre-of-mass energy.
This procedure works if the coverage in x in the weight grid
is large enough. For instance, when lowering the centre-of-
mass energy to calculate the jet cross-section at a fixed trans-
verse jet momentum, it might happen that the required large
x values are not present in the weight grid produced at a
higher centre-of-mass energy. The variation of the centre-
of-mass energy has therefore to be done with care by the
user.

As an example, the accuracy of the jet cross-section cal-
culation using the default weight grid at a fixed centre-of-
mass energy of

√
s = 14000 GeV is investigated. Refer-

ence cross-sections are calculated at various centre-of-mass
energies, i.e. 1800, 5000, 7000, 10000, 14000, 16000 and
18000 GeV. Since the calculations at the various centre-
of-mass energies are statistically independent, each refer-

ence cross-section as well as the default weight grid at√
s = 14000 GeV needs to be calculated with large event

samples. Each of the calculations is done with 50 000 000
events produced with NLOJET++.

In order to make the comparisons more meaningful the jet
transverse momentum pT is transformed to xT = 2pT /

√
s.

For central jets the variable xT gives approximately the mo-
mentum fraction of the incoming parton with respect to the
proton. Fig. 8a) shows the ratio of the cross-section cal-
culated with the standard weight grid produced at

√
s =

14000 GeV to the cross-section calculated at various centre-
of-mass energies in the standard way as a function of xT . For
most points, the calculations agree within 2%. The observed
fluctuations are statistical.

For large changes in centre-of-mass energy and large xT

values the approximation of the standard grid becomes inac-



Eur. Phys. J. C (2010) 66: 503–524 513

Fig. 8 Ratios of grid and standard calculations of the single inclusive
jet dσ/dxT spectrum, with xT = 2pT /

√
s, for various centre-of-mass

energies. The standard calculation has been performed separately for
each centre-of-mass energy, while the grid results are all based on a
common

√
s = 14000 GeV grid. The PDF set is CTEQ6mE. (a) The

default grid parameters are used (30 bins in x and 10 bins in Q2).
The last two points for

√
s = 1800 GeV are drawn at 1.4 for better

visibility, but their true values are very large. (b) A larger grid with 50
bins in x and 20 bins in Q2 is used

curate. For instance, for
√

s = 1800 GeV and xT = 0.6 the
weight grid calculation gives a result that is 10% higher than
the standard calculation. This discrepancy increases further
for large xT values. The ratio of the last two xT values be-
comes very large.12

Figure 8(b) shows the result for a larger grid using 50 bins
in x and 20 bins in Q2. With such a grid the deviations are
mostly reduced to statistical fluctuations. Only the largest
xT value for the lowest centre-of-mass energy exhibits a de-
viation by 30 % from the standard calculation.

A small grid with a PDF weighting leads to large discrep-
ancies to the standard calculation and cannot be used.

In conclusion, the grid technique gives a good accuracy to
compute the jet cross-section at various centre-of-mass ener-
gies. For very high transverse momenta and extreme centre-
of-mass variations a large grid might be required.

4.3 W-boson production at hadron colliders

To further demonstrate the performance of the weight grid
method, the production of W -bosons at LHC energies is
taken as example. The observable that will be examined is
the transverse-momentum distribution of the positron from
W+-boson decays, when the positron is either central |η| ≤
0.5, or very forward, |η| ≥ 3.0.

As in the previous section, a default weight grid is de-
fined and variations in a few parameters are studied. The
default weight grid consists of 25 bins in x. The points are

12In Fig. 8(a) they are drawn at 1.4 for better visibility of the rest of
the points.

distributed according to Eq. 1 with a = 5 and a fifth or-
der interpolation is used. No PDF weight (see Eq. 17) is
used. The cross-sections are calculated with the factorisation
and renormalisation scale fixed to the mass of the W -boson.
Therefore, the weight grid need only be two dimensional.

The influence of the number of bins in x is shown in
Fig. 9. If the number of bins in x is too small (Nbins = 20)
the cross-section is reproduced to about 0.5% in the central
region and 0.2% in the forward region.

For the default weight grid, lowering the interpolation
order from n = 5 to n = 4 results in an accuracy loss of
about 0.2% over much of the pT range, as shown in Fig. 10.
The accuracy for positrons with low transverse momenta de-
grades to 0.8%. The good precision for n = 5 can only be
improved using n = 7.

Figure 11 shows the dependence on the grid spacing pa-
rameter corresponding to the parameter a in Eq. 1. The x-
values in the cross-section calculation are not large and con-
sequently a fine spacing at large x (corresponding to a large
a parameter) is not needed and the result improves for low
a values. An accuracy of better than 0.1% is achieved for all
variations.

Finally, Fig. 12 shows that, if a PDF weighting is used,
it is possible to use very small grid sizes. For a weight grid
with only eight x-bins an accuracy of 0.1% can be achieved.
In this case the gain in accuracy is small when increasing the
number of x-bins. Only in the forward region and for high
transverse energies the increase in the number of x-bins is
beneficial.

In summary, a sufficient accuracy is achieved with about
25 x-bins and a fifth order interpolation. A grid spacing of
a = 1 is sufficient.



514 Eur. Phys. J. C (2010) 66: 503–524

Fig. 9 Ratios of grid and standard calculations of the positron
pT spectrum in W+-boson production, for |ηe+ | < 0.5 (a) and for
|ηe+ | > 3 (b). Results are shown for three weights grids with different

numbers of x bins. All grids use a coordinate transform parameter
a = 5 and fifth order interpolation. The PDF set is CTEQ6mE

Fig. 10 Ratios of grid and standard calculations of the positron
pT spectrum in W+-boson production, for |ηe+ | < 0.5 (a) and for
|ηe+ | > 3 (b). Results are shown for four grids, each with a different

interpolation order. All grids have 25 bins in x and a coordinate trans-
form parameter a = 5. The PDF set is CTEQ6mE

Fig. 11 Ratios of grid and standard calculations of the positron
pT spectrum in W+-boson production, for |ηe+ | < 0.5 (a) and for
|ηe+ | > 3 (b). Results are shown for four grids, each with a different

coordinate transform parameter, a. All grids have 25 bins in x and fifth
order interpolation. The PDF set is CTEQ6mE
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Fig. 12 Ratios of grid and standard calculations of the positron
pT spectrum in W+-boson production, for |ηe+ | < 0.5 (a) and for
|ηe+ | > 3 (b). Results are shown for grids with a reduced number of

x bins and PDF reweighting. All the grids use fifth order interpo-
lation and a coordinate transform parameter a = 1. The PDF set is
CTEQ6mE

Fig. 13 The time per call for filling grid classes based on various grid architectures on a 1.5 GHz PowerPC (left) and 3 GHz Linux PC (right)

4.4 CPU and computer memory performance

The execution time for each call to the filling routine for the
grid has been studied on a 1.5 GHz PowerPC and a 3 GHz
Intel Xeon running Linux, using a dummy structure with
N points in each dimension. Figure 13 shows the perfor-
mance for various grid architectures. The grids are based
on either the ROOT TH3D class, the custom sparse class
(SparseMatrix3d) described in Sect. 3, or the TMa-
trixDSparse class which implements the 2-dimensional
Harwell-Boeing matrix representation. In the latter case, a
sparse 1-dimensional structure of TMatrixDSparse ma-
trices using the classes of the SparseMatrix3d has been

used to create a sparse 3-dimensional structure. As expected
the Harwell-Boeing based class is very quick for filling
when the grid is small, but as the grid size becomes larger,
since the occupation is reasonably large, the number of en-
tries that must be examined becomes large and the filling
time increases rapidly. For the TH3D and custom sparse
structures, the filling time is largely independent of the grid
size.

The reduction in memory occupied by the custom sparse
grid structure after trimming away unoccupied elements is
illustrated in Fig. 14. The bottom-left plot shows the ab-
solute size of the stored elements in MBytes, both before,
and after trimming away unfilled elements. The top-left plot
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Fig. 14 (a) Memory used for the default grid architecture using a cus-
tom sparse grid (untrimmed) and after removing the unoccupied ele-
ments. The top figure shows the ratio of the reduced to the full case.
(b) Time needed to calculate the cross-section by convoluting the co-

efficients on the grid with PDFs and αs . The convolution times are
measured on a 1.5 GHz PowerPC for a default grid. The memory and
the CPU time performance is evaluated for the W -boson cross-sections
as a function of the electron rapidity and transverse momentum

shows the fraction of the total, untrimmed grid size, occu-
pied by the filled elements. As the grid spacing decreases,
the overall grid size naturally increases.

The execution time using the grid to perform the final
cross-section calculation including the PDF convolution has
also been studied using a 1.5 GHz PowerPC. The results
are based on calculations of differential cross-sections with
respect to the positron pseudo-rapidity and transverse mo-
mentum in W -boson production using MCFM [16, 17], as
presented in Sect. 4.3. The cross sections involve 20 and
24 bins for the lepton pseudo-rapidity and transverse energy
distributions respectively. Figure 14(b) shows the convolu-
tion time for grids with N bins in dimensions x1 and x2

for the sparse structure. Results are given for the trimmed
and untrimmed structures In the case of the untrimmed grid,
all data elements are retained in the convolution, even those
with no entries.

Excluding the unfilled data elements in the convolution
improves the convolution time by a factor approaching two.
In addition, we see that the convolution time varies approx-
imately linearly with the grid linear dimension. This is be-
cause the most costly part of the convolution is the calcu-
lation of the PDF at the grid nodes. With independent grid

nodes for x1 and x2, there are 2N evaluations of the PDF for
each observable bin, and so the convolution scales linearly
with N .

In conclusion, the custom sparse structure using trimmed
blocks gives the best performance.

5 Application example: calculation of NLO QCD
uncertainty for inclusive jet cross-sections for proton
proton collisions at various centre-of-mass energies

As an example in this section the uncertainties of the in-
clusive jet cross-section in the central region (0 < y < 1)
are evaluated from the default grid obtained at a centre-of-
mass energy of

√
s = 14000 GeV. The jet cross-sections are

calculated at various centre-of-mass energies. The most re-
cent PDF parameterisations along with their associated un-
certainties are used, i.e. CTEQ6.6 [22], MSTW2008 [23],
HERAPDF01 [24] and NNPDF [25].

Figure 15 shows the effect of the PDF uncertainty
from CTEQ6.6 (a), MSTW2008 (b), HERAPDF01 (c) and
NNPDF (d) on the inclusive jet cross-section with respect
to the central value of the somewhat older PDF, CTEQ6mE
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Fig. 15 PDF uncertainty of the inclusive jet cross-section for jets
within 0 < y < 1 as a function of the transverse jet momentum pT for
a centre-of-mass energy of

√
s = 14000 GeV. Shown is the jet cross-

section uncertainty induced by the CTEQ6mE PDF and the CTEQ6.6

(a) the MSTW2008 (b), the HERAPDF (c) and the NNPDF PDF (d).
The reference cross-section σ0 is the one obtained by the central value
of the CTEQ6mE PDF. The default PDF is indicated by a marker

[18]. The uncertainty from the CTEQ6mE PDF is also over-
layed. The band illustrates the result of adding the jet cross-
sections obtained for each of the PDF variations.13 The
marker indicates the central value. Figure 16 shows the PDF
uncertainty together with the renormalisation and factorisa-
tion scale uncertainty added in quadrature with respect to
the central value for each of the PDFs.

For pT < 1000 GeV the jet cross-section obtained
with CTEQ6.6 is about 2% smaller than from CTEQ6mE.
Above this value the CTEQ6.6 cross-section increases with
respect to the one from CTEQ6mE as the jet pT in-
creases. At pT = 2000 GeV it is about equal and at

13The uncertainty band is obtained using Eq. 51 and Eq. 52 in Ref. [23]
for the HERA, MSTW and the CTEQ PDFs. This formula has also
been suggested earlier in Ref. [26]. For the NNPDF Eq. 164 in Ref. [25]
is used. The uncertainty in the NNPDF corresponds to the standard de-
viation of all variations, while in the case of the other PDFs it corre-
sponds to the 90% confidence limit. For better comparison, the uncer-
tainties of the NNPDF and the HERAPDF01 have been scaled up using
Eq. 165 in Ref. [25].

pT = 4000 GeV it is about 10% larger. The uncertainty is
reduced for the CTEQ6.6 PDF. The uncertainty is about 3%
for pT < 500 GeV, about 8% at pT = 1000 GeV and about
20% at pT = 3000 GeV.

The MSTW2008 PDF gives a jet cross-section that is
5% larger than the one obtained with CTEQ6mE at pT <

500 GeV and is about the same at pT = 1000 GeV and
then further decreases. The uncertainty is only about 2%
for pT < 500 GeV and then increases to about 6% at pT =
1000 GeV. The MSTW2008 PDF gives a smaller uncertainty
than the CTEQ6.6 PDF. It seems that the differences be-
tween the jet cross-section calculated with CTEQ6.6 and
MSTW2008 are a bit larger than the individual uncertain-
ties.

The result obtained with the HERAPDF01 is more sim-
ilar to the one obtained from MSTW2008 than the one
from CTEQ6.6. At low pT the central value is about
2% higher than the one from CTEQ6mE. In the region
500 < pT < 1500 GeV the HERAPDF01 predicts a lower
jet cross-section than the other PDFs. The uncertainty



518 Eur. Phys. J. C (2010) 66: 503–524

Fig. 16 Uncertainty of the inclusive jet cross-section for jets within
0 < y < 1 as a function of the transverse jet momentum pT at fixed
centre-of-mass energy

√
s = 14000 GeV. Shown is the ratio of the

cross-section with varied PDFs and renormalisation and factorisation
scales (σ ) to the cross-section calculated with the central value of each

PDF set and no scale variation, i.e. μr = μf = 1 (σ0). The inner uncer-
tainty band shows only the PDF uncertainty. The outer band shows the
PDF and the scale uncertainty added in quadrature. The uncertainty of
CTEQ6.6 is shown in (a), of MSTW2008 in (b), of HERAPDF in (c)
and of NNPDF in (d)

is about 5% for pT < 1000 GeV and then increases
to about 20–40% at pT = 3000 GeV. The small uncer-
tainty of the jet cross-section calculated with the HERA-
PDF01 is remarkable, since only DIS data are used. How-
ever, model and parametrization uncertainties are not in-
cluded in this cross-section calculation. The MSTW and
CTEQ sets do not yet include the most recent HERA
data. The NNPDF predicts jet cross-sections that are 5–
10% higher than the one from the other PDFs; in partic-
ular in the region 300 < pT < 1000 GeV. The uncertainty
is about 5% at low pT , 10% at 1000 GeV and 20–30% at
3000 GeV.

The overall uncertainty, i.e. including the PDF and the
scale variation added in quadrature, is shown in Fig. 16. It is
about 8% up to a pT of about 1000 GeV and then increases
towards higher pT . It is about 20–30% at pT = 3000 GeV.
For very high pT the PDF uncertainty dominates.

Figure 17(a) shows the total inclusive cross-section for
central jets (0 < y < 1) integrated for pT > 100 GeV,
pT > 300 GeV and pT > 500 GeV as a function of the

centre-of-mass energy. The markers denote the reference
cross-section calculated in the standard way. The lines are
obtained from a weight grid produced at

√
s = 14000 GeV.

The cross-section calculation from the default weight grid
reproduces the reference cross-sections within 1–2% (see
also Sect. 4.2). For each jet transverse momentum thresh-
old the total jet cross-section rises with increasing centre-
of-mass energy. Figure 17(b) shows the centre-of-mass
energy dependence of the jet cross-section normalised to
the jet cross-section at 5000 GeV for each jet transverse
momentum threshold. As expected the centre-of-mass en-
ergy dependence is strongest for high transverse jet mo-
menta.

Figure 18 shows for each of the considered PDF sets
the PDF uncertainty along with the renormalisation and
factorisation scale uncertainty added in quadrature for jets
with pT > 100 GeV as a function of the centre-of-mass en-
ergy

√
s. Both the PDF and the scale uncertainties only de-

pend weakly on the centre-of-mass energy. For high centre-
of-mass energies the uncertainties are a bit smaller.



Eur. Phys. J. C (2010) 66: 503–524 519

Fig. 17 (a) Inclusive jet cross-section for jets within 0 < y < 1 and
with transverse jet momenta pT > 100 GeV, pT > 300 GeV and pT >

500 GeV as a function of the centre-of-mass energy
√

s. (b) Shows
the same as (a), but all results are normalised to

√
s = 5000 GeV.

The markers indicate the results calculated at each centre-of-mass
energy in the standard way. The lines indicate the results deduced
from the default weight grid produced for a centre-of-mass energy at√

s = 14000 GeV

Fig. 18 Uncertainty of the inclusive jet cross-section for jets with
transverse momenta pT > 100 GeV and within 0 < y < 1 as a function
of the centre-of-mass energy

√
s. Shown is the ratio of the cross-section

with varied PDFs and renormalisation and factorisation scale (σ ) to the
cross-section calculated with the central value of each PDF set and no

scale variation (σ0). The inner uncertainty band shows only the PDF
uncertainty. The outer band shows the PDF and the scale uncertainty
added in quadrature. The uncertainty from CTEQ6.6 is shown in (a),
from MSTW2008 in (b), from HERAPDF in (c) and from NNPDF
in (d)
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Fig. 19 The distributions of the up-valence, down-valence, total sea
and gluon PDFs (a), and the fractional uncertainty on the gluon distri-
bution at a number of Q2 values (b) as a function of the parton momen-
tum fraction x. The results from the fit using weight grids to include
simulated LHC jet data is shown by the shaded band. For comparison,

in (b), the results of the ZEUS NLO QCD fit are also shown, indicated
by the hatched band. The simulated LHC jet data included in the new
fit assume a statistical uncertainty corresponding to an integrated lu-
minosity of 10 fb−1, uncorrelated systematics of 5% and a jet energy
scale uncertainty of 1%

6 Application example: PDF fit including DIS data and
jet production data at hadron colliders

An important application of the method outlined above, is
the consistent inclusion of final state measurements from
hadronic colliders into the final extraction of PDFs by NLO
QCD fits. Measurements of final states—such as jet pro-
duction or the production of lepton pairs via the Drell-Yan
process—can provide important additional constraints on
the proton PDFs, complementary to those from inclusive
DIS data.

As a simple “proof-of-principle” example, the grid tech-
nique outlined in this paper has been used to include simu-
lated LHC jet data into a NLO QCD fit. The fit framework
used here is based on the recent ZEUS-JETS PDF, derived
from a fit to inclusive DIS and jet data from HERA. Jet
cross-sections from the TEVATRON or any other data than
that from HERA are not used. Full details of the data-sets,
PDF parameterisation and other assumptions are given else-
where [5].

To represent the LHC data for inclusion in the fit, jet pro-
duction from proton-proton collisions at a centre-of-mass
energy of 14000 GeV was simulated using the JETRAD [27]
program, using the CTEQ6.1 PDF [28]. Single inclusive jet
cross sections, differential in pT , were obtained in three re-
gions of rapidity: 0 < |y| < 1, 1 < |y| < 2 and 2 < |y| < 3.
A grid with default parameters, as described in Sect. 4.1,

was produced and interfaced to the ZEUS NLO QCD fit pro-
gram. Several fits were performed, using different assump-
tions on the statistical and systematic uncertainties on the
simulated data. The PDF uncertainties were calculated us-
ing the Hessian method [29, 30], with 
χ2 = 1.14

A representative result is shown in Fig. 19. In this exam-
ple, the statistical uncertainty on the simulated LHC jet data
corresponds to an integrated luminosity of 10 fb−1 and un-
correlated systematic uncertainties have been assumed to be
at a level of 5%. A precise jet energy scale uncertainty of 1%
(corresponding to ∼5–15% on the generated cross-sections)
has also been assumed, and is included as a correlated sys-
tematic in the fit. Figure 19(a) shows the up-valence, down-
valence, total sea and gluon PDF distributions as a function
of x, at Q2 = 10000 GeV2. The shaded band shows the
results of the fit including the simulated LHC jet data. In
Fig. 19(b), the fractional uncertainties on the gluon PDF, at
a number of Q2 values, are shown.

14Note that a using 
χ2 = 1 in the Hessian method is generally con-
sidered to underestimate the PDF uncertainties. However, the main aim
of this study is to provide a proof-of-principle example of the use of the
grids discussed in this paper, and not to provide qualitative estimates of
weight expected PDF uncertainties. Furthermore, all fits shown in this
section have used the same definition of the PDF uncertainties, such
that any comparison should still be valid.
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Comparison with the results from a fit which does not
include the simulated LHC jet data indicates that some con-
straint on the high-x gluon could be provided by the LHC
single inclusive jet data.15 However, this is reliant on a very
precise knowledge of the jet energy scale.

In fact, according to this study, a precise knowledge of
the jet energy scale is the key factor. Other fits, which as-
sumed a smaller integrated luminosity (1 fb−1) or larger
uncorrelated systematics (10%), still indicated an improve-
ment on the gluon uncertainties, provided the jet energy
scale uncertainty was kept at a level of ∼1%. However, fits
in which the latter uncertainty was assumed to be larger, in-
dicated little or no improvement in the gluon uncertainty
compared to the reference. More details can be found in
Ref. [33].

Such precision on the jet energy scale is achievable,
but will require a lot of experimental work on the under-
standing of the LHC detectors. The inclusion of TEVA-
TRON jet cross-sections in the NLO QCD fit might pro-
vide further constrains. However, it may be the case that ra-
tios of jet cross sections—for example, in different rapidity
regions—may have substantially smaller systematic uncer-
tainties, while retaining sensitivity to the gluon density in
the proton. Further constraints on the proton PDFs are also
expected from Drell-Yan data measured at LHC or any other
data than those from HERA. Such data sets can now be con-
sistently included in NLO QCD fits.

7 Conclusions

A technique has been developed to store the perturbative
coefficients calculated by a NLO QCD Monte Carlo pro-
gram in a look-up table (grid) allowing for a posteriori in-
clusion of an arbitrary parton density function (PDF) set and
of alternative values of the strong coupling constant as well
as for a posteriori variation of the renormalisation and fac-
torisation scale. This extends a technique that has already
been successfully used to analyse HERA data to the more
demanding case of proton-proton collisions at LHC ener-
gies.

The technique can be used to constrain PDF uncertain-
ties by allowing the consistent inclusion of final state ob-
servables in global QCD PDF fit analyses. This will help to

15Note that the fit without the simulated LHC jet data is not identical
to the ZEUS-JETS fit since the standard ZEUS fit [5] uses the Off-
set method to determine the PDF uncertainties. The ZEUS fit shown
here is a modified version of the published analysis, with uncertain-
ties determined using the Hessian method, with 
χ2 = 1. Different
treatments of experimental uncertainties in PDF analyses are discussed
extensively elsewhere [29–32].

increase the sensitivity of the LHC to find new physics as
deviations from the Standard Model predictions.

An accuracy of better than 0.1% can be reached with
reasonably small look-up tables for the single inclusive jet
cross-section in the central rapidity region |y| < 1, for jet
transverse momenta (pT ) from 100 to 4500 GeV and about
0.2% for jets in the forward rapidity region 2 < y < 3.
Similar accuracy can be achieved for the differential cross-
sections in rapidity and transverse momentum of electrons
produced in Z and W -boson decays. This was examined in
the central y < 0.5 and very forward y > 3 regions for trans-
verse momentum up to pT < 500 GeV.

The look-up tables provide a powerful tool to quickly
evaluate the PDF and scale uncertainties of the cross-section
at various centre-of-mass energies. The most recent PDFs
predict jet cross-sections in the central rapidity region within
a few percent accuracy over a large range of jet transverse
momenta.

This technique has been successfully applied to a PDF
fit using inclusive deep-inelastic scattering and jet data mea-
sured at the electron-proton collider HERA and using sim-
ulated LHC jet cross-sections. An improvement on the un-
certainty of the gluon density can only be achieved if the
jet energy scale is very precisely known. A more compre-
hensive analysis will be possible in the future, since the grid
technique can be applied to most of the available NLO QCD
calculations.
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Appendix A: Sub-processes for W - and Z-boson
production

The production of W - and Z-bosons in proton-proton col-
lisions involves flavour-dependent electro-weak couplings.
Therefore, the number of sub-processes that need to be de-
fined is larger than in the case of jet production. To reduce
the number of sub-processes as much as possible, quarks
are assumed to be massless and the CKM matrix elements
[34, 35] to describe the contributions of the various quark
flavours are used.
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In the case of Z-boson production 12 combinations of
initial state partons need to be distinguished:

UŪ : F (0)
(
x1, x2,Q

2
) = U12(x1, x2),

DD̄: F (1)
(
x1, x2,Q

2
) = D12(x1, x2),

ŪU : F (2)
(
x1, x2,Q

2
) = U21(x1, x2),

D̄D: F (3)
(
x1, x2,Q

2
) = D21(x1, x2),

gU : F (4)
(
x1, x2,Q

2
) = G1(x1)U2(x2),

gŪ : F (5)
(
x1, x2,Q

2
) = G1(x1)Ū2(x2),

gD: F (6)
(
x1, x2,Q

2
) = G1(x1)D2(x2),

gD̄: F (7)
(
x1, x2,Q

2
) = G1(x1)D̄2(x2),

Ug: F (8)
(
x1, x2,Q

2
) = U1(x1)G2(x2),

Ūg: F (9)
(
x1, x2,Q

2
) = Ū1(x1)G2(x2),

Dg: F (10)
(
x1, x2,Q

2
) = D1(x1)G2(x2),

D̄g: F (11)
(
x1, x2,Q

2
) = D̄1(x1)G2(x2),

(18)

where g denotes gluons and U(D) denotes up (down)-type
quarks. Use is made of the generalised PDFs defined as:

GH (x) = f0/H

(
x,Q2

)
,

UH (x) =
∑

i=2,4,6

fi/H

(
x,Q2),

ŪH (x) =
∑

i=2,4,6

f−i/H

(
x,Q2),

DH (x) =
∑

i=1,3,5

fi/H

(
x,Q2),

D̄H (x) =
∑

i=1,3,5

f−i/H

(
x,Q2),

U12(x1, x2) =
∑

i=2,4,6

fi/H1

(
x1,Q

2)f−i/H2(x2,Q
2),

D12(x1, x2) =
∑

i=1,3,5

fi/H1

(
x1,Q

2)f−i/H2(x2,Q
2),

U21(x1, x2) =
∑

i=2,4,6

f−i/H1

(
x1,Q

2)fi/H2(x2,Q
2),

D21(x1, x2) =
∑

i=1,3,5

f−i/H1

(
x1,Q

2)fi/H2(x2,Q
2),

(19)

where fi/H is the PDF of flavour i = −6, . . . ,6 for hadron
H and H1 (H2) denotes the first or second hadron.

In the case of W+-boson production16 6 initial state com-
binations are needed:

D̄U : F (0)
(
x1, x2,Q

2
) = S12(x1, x2),

UD̄: F (1)
(
x1, x2,Q

2
) = S21(x1, x2),

D̄g: F (2)
(
x1, x2,Q

2
) = D̄1(x1)G2(x2),

Ug: F (3)
(
x1, x2,Q

2
) = U1(x1)G2(x2),

gD̄: F (4)
(
x1, x2,Q

2
) = G1(x1)D̄2(x2),

gU : F (5)
(
x1, x2,Q

2
) = G1(x1)U2(x2),

(20)

16The case of W−-boson can be treated in an analogous way.

where the generalised PDFs are used. They are defined
as:

GH (x) = f0/H

(
x,Q2

)
,

UH (x) = f2/H

(
x,Q2)

(
V 2

ud + V 2
us

)

+ f4/H

(
x,Q2

)(
V 2

cd + V 2
cs

)
,

D̄H (x) = f−1/H

(
x,Q2

)(
V 2

ud + V 2
cd

)

+ f−3/H

(
x,Q2

)(
V 2

us + V 2
cs

)
,

S12(x1, x2) = f−3/H1

(
x1,Q

2
)
f2/H2

(
x2,Q

2
)
V 2

us

+ f−3/H1

(
x1,Q

2
)
f4/H2

(
x2,Q

2
)
V 2

cs

+ f−1/H1

(
x1,Q

2
)
f2/H2

(
x2,Q

2
)
V 2

ud

+ f−1/H1

(
x1,Q

2
)
f4/H2

(
x2,Q

2
)
V 2

cd ,

S21(x1, x2) = f2/H1

(
x1,Q

2
)
f−3/H2

(
x2,Q

2
)
V 2

us

+ f4/H1

(
x1,Q

2
)
f−3/H2

(
x2,Q

2
)
V 2

cs

+ f2/H1

(
x1,Q

2
)
f−1/H2

(
x2,Q

2
)
V 2

ud

+ f4/H1

(
x1,Q

2
)
f−1/H2

(
x2,Q

2
)
V 2

cd ,

(21)

where Vij are the CKM matrix elements.17

For simplicity in the former equations we omitted the
top contribution, since the parton densities are zero for most
practical applications.

Appendix B: Automated identification of sub-processes

In general there are 169 (13×13 flavour) possible PDF com-
binations for proton proton collisions. In order to store only
the minimal amount of information, one needs to establish
which of those combinations always come with correlated
weights, or equivalently one should identify the underlying
physical sub-processes. So far, for each process under study,
the sub-processes have been identified manually, on a case-
by-case basis. However, the sub-processes can also be found
in an automated way.

To simplify the discussion (without loss of generality) it
will be convenient to assume that the PDFs are always eval-
uated at fixed values of x. For each event i and for each of
the 169 PDF combination j (with PDF weight pj ), the NLO
QCD program calculates matrix-element weights Wij . The
total weight for the event i is

∑
j Wij pj . The PDF combi-

nations are called channels in the following.
To identify the sub-processes, one determines the Wij

weights for 169 events, giving a 169 × 169 matrix, whose

17The CKM matrix elements are stored together with the weight grid
in the same file. This ensures that the same values are used in the NLO
calculation and in the PDF combinations. This choice can be changed
a posteriori according to the needs to the user. In MCFM, only four non-
zero CKM matrix elements are used.
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i (event) index labels the rows and whose j (PDF channel)
index labels the columns. One then carries out an eigen-
value decomposition of the Wij matrix. If vn denotes the
nth eigenvalue and Ln and Rn the left and right eigenvectors
(with components Lni , etc.), then as long as the there are no
degenerate eigenvalues, an orthonormality relation can be
written:

Ln · Rm = δmn, (22)

where the normalisation is our specific choice. Then one can
rewrite the Wij matrix as

Wij =
∑

n

RnivnLnj , (23)

it being straightforward, for example, to verify that both
sides satisfy

∑
i LniWij = vnLnj and

∑
j WijRmj =

vmRmi . Let us now assume that only N of the eigenvalues
are non-zero.18 Then Eq. 23 can be interpreted as follows:
there are N relevant sub-processes; each n ≤ N corresponds
to a sub-process that multiplies a linear combination of PDF
channels in which the contribution of channel j is Lnj . In
event i, sub-process n comes with a weight Rnivn. It will be
convenient to denote this by win. By virtue of the orthornor-
mality condition Eq. 22, we have that win = ∑

j WijRnj ,
i.e. to determine the weight of sub-process n (whose PDF
channel combination is given by the left eigenvector Lnj )
we take the right-eigenvector that corresponds to this chan-
nel and use it to right-multiply the full weight matrix, so
to as to eliminate all but the contribution to the nth sub-
process.

The next step is to observe that the sub-processes deter-
mined for the first 169 events should hold for all remain-
ing events.19 So now for any event i, we can determine
the weight for sub-process n, win = ∑

j WijRnj , using the
Rnj determined from the initial events. Having stored the
win one can then subsequently reconstruct the full Wij as
Wij = ∑

n winLnj .
We have verified, in the context of a number of MCFM

processes, that this approach is viable in practice.20 How-
ever, it is has yet to be fully integrated with the rest of

18This contradicts the requirement that the eigenvalues be non-
degenerate. In practice the rounding errors in the original calculation of
the Wij cause the nominally zero eigenvalues to be slightly non-zero,
thus alleviating this issue in practice.
19This is guaranteed as long as the NLO Monte Carlo weights include
all sub-processes for each of the first 169 events.
20For carrying out this step in practice, we found the ALGLIB library
to be useful, because it provides the necessary software tools written in
C++ and has the option of using the mpfr multiple-precision library
(available on most distributions), which turned out to be necessary in
order to get numerically convergent results for the full set of flavours.
The ALGLIB algorithms are translations of the LAPACK ones.

our grid code and the results shown above are based on the
manual sub-process decompositions explicitly spelled out in
Sect. 2.4.1 and in Appendix A.

One should be aware that while the automated suprocess
decomposition yields a number of subprocesses that is iden-
tical to what can be found with manual decomposition, the
specific linear combinations of PDF channels are usually
different. To help understand why, one can take the example
of jet production with the 7 subprocesses of Eq. 12. There,
rather than using qq and qq̄ channels, one might have cho-
sen instead to store weights for the combinations of qq +qq̄

and qq −qq̄ channels. More generally, one would have been
free to base the grid on any 7 linearly independent combi-
nations of the channels of Eq. 12. For the automated chan-
nel decomposition process, the particular independent linear
combinations that emerge depend on the random weights of
the events used to identify the channels.
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